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Zusammenfassung

Fast 55 Jahre vergingen bis die Entdeckung des Phänomens der Verschränkung durch Ein-
stein, Podolski, Rosen und Schrödinger Ende des zwanzigsten Jahrhunderts Einzug in die
Labore hielt. Mittlerweile wurde eine Vielfalt von verschränkten Zuständen untersucht; die
größte davon in Systemen photonischer Qubits. Alle modernen Experimente zu viel-Photonen
Verschränkung lassen sich in drei wesentliche Bestandteile untergliedern: Eine Photonenquel-
le, ein Netzwerk aus linearen optischen Komponenten welches die Photonen verarbeitet, und
eine bedingte Detektion der Photonen am Ausgang des Netzwerks.

Die vorliegende Arbeit führt zwei neue Netzwerke ein und präsentiert deren Anwendungen in
verschiedenen Problemstellungen der Quanteninformation. Als Photonenquelle dient hierbei
der Prozeß der spontanen parametrischen Fluoreszenz in unterschiedlichen Konfigurationen.

Das erste Netzwerk ist ein neuartiges Kontroll-Phasengatter das sich gegenüber früheren Rea-
lisierungen vor allem durch seine hohe Stabilität auszeichnet. Wie anhand mehrerer Beispiele
gezeigt wird, eignet es sich besonders für den Einsatz in mehr-Photonen Experimenten. Mit
Hilfe des Gatters werden alle vier Bell Zustände in einem Teleportations- und ”entanglement
swapping“ Experiment unterschieden. Ein ähnlicher experimenteller Aufbau erlaubt ferner
die direkte Messung der Verschränkung zweier Kopien eines Zustands in Form der ”Concur-
rence“. Ausgehend von zwei Bell Zuständen wird das Gatter darüberhinaus zur Beobachtung
eines Vier-Photonen ”Cluster Zustands“ verwendet. Die Analyse der Ergebnisse konzentriert
sich dabei auf die Hauptanwendung von Cluster Zuständen, das meßbasierte Quantenrechnen.

Das zweite Netzwerk bildet, zusammen mit der Emission zweiter Ordnung der parametrischen
Fluoreszenz als Input, eine einstellbare Quelle verschiedenster Zustände. Während die Beob-
achtung eines Zustands bisher einen individuell maßgeschneiderten Versuchsaufbau benötigte,
können mit dem neuen Netzwerk viele verschiedene Zustände innerhalb desselben Aufbaus be-
obachtet werden. Dies erfordert lediglich die Veränderung eines einzelnen, leicht zugänglichen
experimentellen Parameters. Die so erzeugten Zustände besitzen eine Reihe nützlicher Eigen-
schaften und spielen eine zentrale Rolle in vielen Anwendungen. Hier werden sie zur Lösung
eines vier-Parteien Quanten ”Minority“ Spiels verwendet. Es wird gezeigt, dass die Quanten
Version des Spiels durch den Einsatz von vier-Qubit Verschränkung sein klassisches Pendant
an Möglichkeiten deutlich übertrifft.

Mit Hilfe experimenteller Daten beider Netzwerke wird eine neue Methode der Unterschei-
dung vier-Qubit verschränkter Zustände vorgestellt. Obwohl theoretische Klassifizierungen
verschränkter Zustände existieren, gab es bisher keine einfache experimentelle Methode einen
beobachteten Zustand der einen oder anderen Klasse zuzuordnen. Das hier vorgestellte Kon-
zept ermöglicht eine experimentelle Klassifizierung basierend auf Operatoren die aus zustand-
sabhängigen Korrelationsmessungen bestimmt werden.
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Abstract

Since the awareness of entanglement was raised by Einstein, Podolski, Rosen and Schrödinger
in the beginning of the last century, it took almost 55 years until entanglement entered the
laboratories as a new resource. Meanwhile, entangled states of various quantum systems
have been investigated. Sofar, their biggest variety was observed in photonic qubit systems.
Thereby, the setups of today’s experiments on multi-photon entanglement can all be struc-
tured in the following way: They consist of a photon source, a linear optics network by which
the photons are processed and the conditional detection of the photons at the output of the
network.

In this thesis, two new linear optics networks are introduced and their application for
several quantum information tasks is presented. The workhorse of multi-photon quantum
information, spontaneous parametric down conversion, is used in different configurations to
provide the input states for the networks.

The first network is a new design of a controlled phase gate which is particularly in-
teresting for applications in multi-photon experiments as it constitutes an improvement of
former realizations with respect to stability and reliability. This is explicitly demonstrated
by employing the gate in four-photon experiments. In this context, a teleportation and en-
tanglement swapping protocol is performed in which all four Bell states are distinguished by
means of the phase gate. A similar type of measurement applied to the subsystem parts of
two copies of a quantum state, allows further the direct estimation of the state’s entanglement
in terms of its concurrence. Finally, starting from two Bell states, the controlled phase gate is
applied for the observation of a four photon cluster state. The analysis of the results focuses
on measurement based quantum computation, the main usage of cluster states.

The second network, fed with the second order emission of non-collinear type ii sponta-
neous parametric down conversion, constitutes a tunable source of a whole family of states.
Up to now the observation of one particular state required one individually tailored setup.
With the network introduced here many different states can be obtained within the same ar-
rangement by tuning a single, easily accessible experimental parameter. These states exhibit
many useful properties and play a central role in several applications of quantum information.
Here, they are used for the solution of a four-player quantum Minority game. It is shown that,
by employing four-qubit entanglement, the quantum version of the game clearly outperforms
its classical counterpart.

Experimental data obtained with both networks are utilized to demonstrate a new method
for the experimental discrimination of different multi-partite entangled states. Although
theoretical classifications of four-qubit entangled states exist, sofar there was no experimental
tool to easily assign an observed state to the one or the other class. The new tool presented
here is based on operators which are formed by the correlations between local measurement
settings that are typical for the respective quantum state.
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Introduction and outline

Das, wobei unsere Berechnungen
versagen, nennen wir Zufall.

Albert Einstein

In the early twentieth century, the development of quantum mechanics coerced physicists
into radically changing the concepts they used to describe the world. The new theory, though
being incredibly successful, discomfited even its own founders and caused debates lasting until
today. Albert Einstein, who was one of the first to apply and generalize Planck’s quantum
hypothesis, never liked the consequences following from quantum theory. In particular, he
thought that randomness is rather something for which the calculus fails, than an inherent
principle of nature. He explicitly expressed his concerns about the random character of
quantum effects in a seminal work together with Boris Podolsky and Nathan Rosen in the year
1935 [1]. In their argument, Einstein, Podolski, Rosen (epr) pointed first at something which
was, still in the same year, named ”entanglement” by Erwin Schrödinger [2]. Schrödinger
described entanglement as a situation which can regularly occur if two or more bodies enter a
situation in which they influence each other and separate again. Each of the bodies might be
maximally known prior to the interaction. However, there is no necessity that the knowledge,
though remaining maximal, splits into a logical sum of knowledges about the individual bodies
after they have separated again. As a consequence, the entangled particles, even if they are
spatially spread, behave as a whole and have to be treated as such.

For a long time, entanglement was considered as nothing but a weird effect, useless besides
being topic for philosophical discussions. It was not until the end of the twentieth century that
entanglement turned out to be not only the ”great difference” between classical and quantum
physics, but the essential ingredient of a new field of research – quantum information [3].
This branch of physics is a quantum theory of information that applies quantum effects,
and in particular entanglement, to enhance conventional information processing. On a more
fundamental level it is even a completion of classical information theory. As such it includes
two complementary kinds of information, classical and quantum information. While the
commonly known ”bit” is a measure of classical information, the newly introduced ”qubit”
corresponds to the quantum mechanical counterpart [4].

The physical implementation of single qubits as two level quantum systems, as well as the
quantitative study of their entanglement and their interaction with classical information are
essential prerequisites to harness the power of quantum mechanics for applications in quantum
information science. The cornerstone for this was already put in the 1970’s when many
techniques for controlling single quanta of various kinds started to be developed. Methods
have been invented to hold single ions in traps, move single atoms, transfer single electrons
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within the operation of electronic devices and process single photons by means of linear optical
elements.

Each of the different qubit realizations has its own advantages within the different branches
of quantum information science which can be roughly divided into quantum computation and
quantum communication. The former deals with the processing of quantum information, for
which it was shown that it solves certain computational tasks more efficiently than classical
computers. The latter studies quantum protocols for information transfer for which it opens
up new possibilities, such as, e.g., the unconditionally secure key exchange in cryptographic
applications [5]. Both fields are linked and attended by the study of the entanglement of
qubits. The investigation of entanglement in the context of information theory leads thereby
in turn to a deeper understanding of quantum theory itself.

For quantum communication, photons are the most suited system as they are the fastest
carrier of information and couple only very weakly to the environment, thus profiting from
extremely low decoherence. In contrast, for quantum computation, localized systems exhibit-
ing a controllable interaction, like atoms or ions seem to be the preferable implementations.
Surprisingly, as long as only the processing, but not the storage of information is concerned,
photons offer also interesting possibilities for quantum computation. As was shown, universal
linear optics quantum computation is indeed possible in principle [6]. Linear optical ele-
ments, such as phase shifters and beam splitters, though not able to let photons interact, can
make them interfere. In combination with proper single-photon sources and photon-number
resolving detectors this can be used for a realization of logical operations (for a review see
[7]). In order to make the operations near deterministic, which is essential to combine them
in scalable circuits, this approach requires a commensurate overhead of resources in form of,
e.g., ancillary (entangled) qubit states. At the moment this is technically still too demanding.
However, the additional resources are dispensable, and a probabilistic functioning tolerable,
as long as only a limited number of quantum logic operations is sufficient for the solution
of a given task. Following these suggestions, photon interference in linear optical networks
could be successfully used for the (non-deterministic) implementation of various quantum
computation primitives (for a review see [8, 9]). Moreover it allowed also the observation and
characterization of a multitude of different entangled states.

Referring to this progress, in this thesis, two new linear optics networks are introduced.
The workhorse of multi-photon quantum information, spontaneous parametric down conversion
(spdc), is used in different configurations to provide the input states for the networks. Ac-
cordingly, the aim of the work at hand is twofold: On the one hand, it should be shown that
the presented networks face up to the current technical challenges of quantum computation
as well as quantum communication. This is demonstrated by their application for several
quantum information tasks. On the other hand, by implementing these tasks, the networks
can serve for an experimental characterization and a better understanding of different kinds
of multi-photon entanglement.

The first network is a controlled phase (cphase) gate which belongs to the set of universal
quantum logic gates necessary for quantum computation. It is one of the fundamental two-
qubit gates that allow to entangle and disentangle qubits. In this respect it applies in basic
protocols, such as quantum teleportation and entanglement swapping [10, 11]. The cphase
operation represents furthermore the central interaction in the generation principle of cluster
states. These are particular entangled states which themselves provide again a resource for an
alternative way of quantum computation [12, 13]. The design of the cphase gate presented
here distinguishes itself from previous realizations [14–17] due to its interferometric stability
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and reliability. This property makes it particularly interesting for applications in multi-photon
experiments.

Usually in experiments aiming at the study of multi-photon entanglement, the observation
of one particular state required one individually tailored setup. The second network which
is presented breaks with this inflexibility. Once fed with the second order emission of non-
collinear type ii spdc, it constitutes a tunable source of a whole family of states. The
states of the family can be conveniently chosen by the variation of a single, easily accessible
experimental parameter. They differ strongly in their entanglement properties and can be
used in several applications. The ability to obtain different states within the same setup allows
to experimentally study the performance of a given quantum information task depending on
the kind of entanglement that is used. For example, quantum game theory studies competitive
situations within quantum communication settings. In strategic situations the optimal results
for the involved parties might depend on the type of entangled state that is used as resource.
The investigation of such scenarios requires a source which provides more than just one type
of state.

The observation of different types of entangled states demands also tools for their char-
acterization, or a scheme to classify them. Indeed, it turns out that the establishment of
classifications is an endeavor which becomes increasingly difficult with a rising number of
qubits. For two qubits the situation is still simple as there is only one type of entanglement.
Schemes to theoretically classify entangled states of three and four qubits exist [18–21]. They
assume that two states belong to the same class if they can be converted into each other by
means of local operations and classical communication. In the case of three qubits, this leads
to a set of only a few classes which is still manageable, also experimentally. For four qubits,
however, infinitely many classes exist, and sofar there was no experimental tool to easily as-
sign an observed state to the one or the other. There are methods to experimentally acquire
full information about an observed state, but they are laborious and often not practicable
[22]. Within this work, a new approach is introduced which focuses on a very restricted but
relevant part of information about a state. It relies on characteristic operators which allow
to discriminate an observed state from states of other entanglement classes. These operators
are constructed from the correlations of local measurement settings that are typical for the
respective quantum state. For the entangled states observed with the two networks they
provide an efficient tool for their characterization.

The thesis is structured as follows: The first chapter addresses readers who are not fa-
miliar with the field. It recapitulates fundamentals of quantum mechanics and introduces
definitions and notions which are frequently used in quantum information and required for
the comprehension of the subsequent chapters. In the second chapter the layout and the func-
tioning of the two new linear optics networks is presented and their applicability for different
tasks is tested in chapters three and five. Chapter four introduces the characteristic operators
for state discrimination. Finally, they are applied for the analysis of data obtained with both
networks.



4 Introduction and outline



Chapter 1

Basic concepts in quantum
information

This chapter gives an introduction to basic concepts in quantum information. It should
facilitate the comprehension of the subsequent chapters for a reader who is not familiar with
the field. Starting from the principle differences between classical and quantum mechanics
it establishes fundamental terms like the superposition principle as well as entanglement and
violation of local realism for bi- and multi-partite quantum systems. As will be shown, these
typical quantum effects, though seemingly strange from an everyday life perspective, have
intriguing and very practical applications in information tasks. Since single photons are
the quantum system of choice throughout all the experiments presented in this thesis, this
chapter finally provides insight in their generation and detection. The inherent benefits and
disadvantages of the components of a typical setup are discussed briefly with respect to the
experiments presented in the following chapters.

1.1 Classical vs. quantum states

The description of a physical state in quantum mechanics is almost as axiomatic as in classical
Newtonian mechanics. However, there is a principal difference in the mathematical framework
which has far-ranging consequences. Quantum mechanical phenomena like entanglement and
violation of local realism emerge naturally as a consequence of the superposition principle,
which is inherent to a description of physical states as elements of an abstract vector space,
the Hilbert space.

1.1.1 Description of physical states

The physical state, with regard to a given underlying physical theory, is the minimal set of
physical quantities that provides maximal information about the considered physical system.

In Newtonian mechanics the state of a physical system is fully described by its generalized
coordinate ~q and generalized momentum ~p. The space of all possible states of the system is
called phase space, and each state is uniquely represented by a point (~q, ~p) in this space.
Based on Newton’s laws of motion the knowledge of ~q and ~p does not only provide complete
information about the state at an initial time t0, but allows further to make predictions about
the state of the system at any later time t. The dynamics of a particle with mass m subject
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(a) Coordinate space (b) Phase space (c) Hilbert space

Figure 1.1: (a) In classical mechanics the state and the dynamics of a system is completely
determined by the knowledge of the generalized position ~q and the generalized momentum ~p
at a given initial time t0. (b) The state of a classical system is represented as a point (~q, ~p) in
phase space. The time evolution corresponds to a trajectory, i.e., a sequence of points. (c) In
quantum mechanics the state of a physical system is represented by a vector |ψ 〉 of a Hilbert
space spanned by a set of basis vectors {|ϕ 〉1, |ϕ 〉2, . . . }. The dynamics equals a rotation of
the state vector.

to a force ~F is accordingly described by

~F = 0 : ~q(t) = ~q(t0) +
1
m
~p(t0) t

and
~̇q(t) ≡ d

dt
~q(t) =

1
m
~p(t)

~̇p(t) ≡ d
dt
~p(t) = ~F (~q, ~̇q, t)

 m~̈q(t) ≡ m d2

dt2
~q(t) = ~F (~q, ~̇q, t)

(see Fig. 1.1(a)). Thus, the time evolution is represented by a trajectory, i.e., a sequence of
points in phase space (see Fig. 1.1(b)).

By contrast, in quantum mechanics, the complete information about a physical state is
provided by a vector |ψ 〉 of an, in general, infinite-dimensional and complex vector space H.
This space is called Hilbert space and might be seen as a mathematical extension of the well-
known vector algebra of Euclidean space to infinite dimensions. The dynamics of a system,
characterized by the Hamiltonian �, is described by the Schrödinger equation and can be
interpreted as a rigid rotation of the state vector in this space (see Fig. 1.1(c)):

d
dt
|ψ(t) 〉 = − i

~
�t|ψ(t) 〉, (1.1)

with the general solution |ψ(t) 〉 = �(t, t0)|ψ(t0) 〉 and�(t, t0)�†(t, t0) = 1 = �†(t, t0)�(t, t0).
In classical statistical physics it is sometimes not possible to describe the state of a system

as a single point in phase space. In such an instance, due to macroscopic information about the
system, the state can only be represented by a probability distribution ρ(~qj , ~pj) that specifies
the probability to find the system in a particular state (~qj , ~pj). The analogue description of
a system in quantum mechanics, in case of a lack of complete knowledge about the state, is
given by the so-called density operator �. It is a Hermitian, positive-semidefinite operator of
trace one. For a finite dimensional Hilbert space H of dimension N , defined by a complete
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set of orthonormal basis vectors {|ϕj 〉}, it can be written as

� =
N∑
i=1

ai|ϕi 〉〈ϕi |, (1.2)

with ai ≥ 0,
∑N

i=1 ai = 1 and 〈ϕj | the dual vector to |ϕj 〉. It provides the probabilities aj to
find the system in the state |ϕj 〉 and its time evolution is in analogy to Eqn. (1.1) given by

∂

∂t
�(t) = − i

~
[�t, �] , (1.3)

with the commutator [�t, �] = �t �− ��t.
Properties of a system’s state that can be determined by a sequence of physical operations

are called observables. In quantum mechanics, observables are represented by Hermitian
operators whose spectrum denotes the set of possible measurement results. The expectation
value of an observable � for a system in the state |ψ 〉 or � is given by

〈� 〉ψ ≡ 〈ψ |�|ψ 〉 or 〈� 〉� ≡ tr(� �), (1.4)

respectively. It can be seen as the average outcome of a measurement repeated (infinitely)
many times or as the average outcome of a measurement performed on (infinitely) many
copies of the system.

1.1.2 Superposition principle, entanglement and violation of local realism

In the preceding section it was established that the quantum mechanical description of the
world deals with physical states being vectors of a vector space. One characteristic feature
of a vector space is a defined binary operation that maps two elements of the space onto
another element of the same space. This, usually referred to as vector addition, means that
the result of two vectors being added will be again a vector. Although it seems not worth
being mentioned from a mathematical point of view and was tacitly assumed in Sec. 1.1.1,
it has intriguing implications concerning the interpretation of vectors as physical states. In
fact it turns out to be the essential difference between classical and quantum mechanics and
leads to a number of peculiar phenomena as shall be seen in the following.

Superposition principle

S be an N -dimensional quantum system and � be an observable of the system with spectrum
sp� = {a1, . . . , aN} and corresponding non-degenerate eigenvectors {|α1 〉, . . . , |αN 〉} ∈ HS .
As � is an observable of the system, each |αj 〉 is a valid state of S. However, due to the
vector addition any linear superposition

|ψ 〉 =
N∑
i=1

bi |αi 〉 with bi ∈ C and
N∑
i=1

|bi|2 = 1 (1.5)

is also an element of the Hilbert space HS and hence a valid state of S. That this concept,
called superposition principle, is astonishing and surely unknown to classical mechanics is best
seen by applying it to a macroscopic example, as first done by Erwin Schrödinger [2]:
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S be a cat and � its state of health with, for reason of simplicity only two, eigenstates
|dead 〉 and |alive 〉. In agreement with the above considerations

|ψ 〉 =
1√
2

(|dead 〉+ |alive 〉)

has to be a valid state of the cat as well. The fact that naturally a real cat was never
observed in such a state, pending between dead and alive or being neither nor, is a problem
of lacking coherence in macroscopic systems. Superposition states like the one above occur
only in a coherent system, i.e., a system whose Hamiltonian is a (time dependent) function of
observables of only that system. A process, like in the above scenario, e.g., the cat crossing
a street, is coherent if the observables at the end of the process are functions only of the
observables of the same system at the beginning. These conditions are clearly not fulfilled
for the example of the cat. To keep at the language of the example, the cat’s state of health,
after having passed the street, might strongly depend on a car coming along the street or not
during the crossing. So, a more realistic description of the cat would be the ”classical” state

�cat =
1
2

(|dead 〉〈 dead |+|alive 〉〈 alive |)

expressing that the cat is indeed in a well defined state of health, either dead or alive, it is
just not known, due to lack of information about the system. This example seems weird but it
nicely illustrates the principle difference between the state given by a coherent superposition
or a statistical mixture. In a macroscopic system all the constituting quanta face a continuous
interaction, means disturbance, by their environment leading to a loss of coherence. Therefore,
in every-day life typical quantum phenomena are usually not observed.

However, on a microscopic scale coherent systems as well as coherent processes can be
realized and superposition states are existent.

Entanglement

The phenomenon entangelment, a term coined also by Erwin Schrödinger [2], appears as
natural consequence of the superposition principle when going from a single indecomposable
system to systems composed of two and more subsystems.
S1, . . . ,Sn be n quantum systems and HS1 , . . . ,HSn the corresponding Hilbert space of

each. In a classical description the state space of the total system would be the Cartesian
product of the n subsystem spaces and consequently the state of the total system would be a
product state of the n subsystems. Contrary, in quantum physics, the state space of the total
system H is given as the tensor product of the subsystem spaces, H = HS1 ⊗HS2 ⊗ · · ·⊗HSn .
The superposition principle implies that the state of the total system can be written in the
form

|ψ 〉 =
∑
i1,...,in

bi1,...,in |ϕi1 〉 ⊗ |ϕi2 〉 ⊗ · · · ⊗ |ϕin 〉 (1.6)

with |ϕij 〉 ∈ HSj . In general |ψ 〉 is not a product of states |ψj 〉 ∈ HSj of the subsystems,
|ψ 〉 6= |ψ1 〉 ⊗ |ψ2 〉 ⊗ · · · ⊗ |ψn 〉 ≡ |ψ1 ψ2 . . . ψn 〉. A first phenomenological definition of
entanglement can hence be stated as follows:

Definition 1.1.1 (Entanglement.) A pure state of a composed quantum system is called
entangled if it cannot be written as a product of states of the individual subsystems.
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In case of mixed states the situation is more difficult and entanglement is not equivalent to
being non-product. Rather, a mixed state � of n subsystems is called entangled if it cannot
be written as a convex combination of product states [23]:

� 6=
∑
i

ai �i1 ⊗ �i2 ⊗ · · · ⊗ �in . (1.7)

Short review of Def. 1.1.1 suggests the necessity of its refinement also in another direction.
While being clear what ”non-product” means for systems composed of two subsystems (bi-
partite systems), it might lead to ambiguities for systems of more than two components.
However, a more careful discussion about the meaning of ”being entangled or not” shall be
held off for now on Sec. 1.2.2.

In any case, entangled states give rise to the third phenomenon discussed in this section,
violation of local realism.

Reality or locality? – EPR’s paradoxon and Bell’s inequality

In the year 1935 Albert Einstein, Boris Podolski and Nathan Rosen (epr) published an article
on the question whether the quantum mechanical description of physical reality could be
considered complete [1]. Its content triggered not only physical and philosophical discussions
lasting to date, but is also of importance for the work presented in this thesis and shall be
shortly recapitulated in the following.

In order to do this, two definitions made by epr are required:

Definition 1.1.2 (Completeness) A physical theory is complete, iff every element of the
physical reality has a counterpart in the physical theory.

Definition 1.1.3 (Reality) If, without in any way disturbing the system, the value of a
physical quantity can be predicted with certainty (i.e., with probability equal to unity), then
there exists an element of physical reality corresponding to this physical quantity.

Based on these definitions epr derive a proposition of the form A or B (A ∨ B) and
show that the negation of A implies the negation of B (¬A → ¬B) from what they finally
conjecture that A has to be true. For deduction of the former they consider a single particle
state, whereas a two-particle entangled state is used for the demonstration of the latter.

� and � be the operators corresponding to the momentum and position observable of a
single particle with one degree of freedom, respectively. |ψ 〉 be the state of the particle and
an eigenstate of �. Consequently, in the coordinate basis it holds that

〈 q |�|q 〉 = −i ~ ∂

∂q
, 〈 q |�|q 〉 = q, (1.8)

and one can choose, e.g.,
ψ(q) ≡ 〈 q |ψ 〉 = exp

(
i
~ p0 q

)
, (1.9)

with p0 as constant and q the variable position of the particle. Obviously �|ψ 〉 = p0|ψ 〉,
〈� 〉ψ = p0 and the momentum of the particle can be predicted to have certainly the value
p0. According to Def. 1.1.3 it must be thus an object of physical reality. In contrast, the
position of the particle � is completely indefinite and its value cannot be predicted but just
determined by a measurement. The latter would clearly mean a disturbance of the system
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changing its state. In fact, measuring � (or any other observable), leaves the system in an
eigenstate of � (or the corresponding operator). As [�,�] = i~ 6= 0 these operators do not
have common eigenvectors and therefore the values for both observables cannot be predicted
with certainty simultaneously.

From the above considerations and Def. 1.1.2 epr formulate the proposition

Proposition 1.1.4 (1) The quantum mechanical description of physical reality, representing
states as vectors and observables as operators, is not complete, or,
(2) two physical observables represented by two non-commuting operators cannot have simul-
taneous reality.

How does the situation described above change for a state of two particles that is entan-
gled?
|Ψ 〉 be an entangled state of two particles. It can be chosen exemplarily as

〈 q1q2 |Ψ 〉 ≡ Ψ(q1, q2) =

∞∫
−∞

exp
(

i
~ (q1p− q2p+ q0p)

)
dp (1.10)

with q0 being some constant. In analogy to Eqn. (1.8) it holds for the momentum and position
observables of the first and second particle

〈 q1 |�1|q1 〉 = −i ~ ∂

∂q1
, 〈 q2 |�2|q2 〉 = −i ~ ∂

∂q2
, 〈 q1 |�1|q1 〉 = q1, 〈 q2 |�2|q2 〉 = q2. (1.11)

Once the two particles are in the state |Ψ 〉 they are space-like separated from each other and
do not interact in any way. This ensures that whatever measurement is carried out on one
particle cannot influence results obtained for measurements performed on the other one.

As a consequence of the entanglement contained in |Ψ 〉 it is possible to predict the value
for the momentum of the second particle by measuring the momentum of the first particle.
This can be easily seen by slightly rewriting Eqn. (1.10),

Ψ(q1, q2) =

∞∫
−∞

exp
(

i
~ q1p

)︸ ︷︷ ︸
1stparticle

exp
(
− i

~ (q2 − q0)p
)︸ ︷︷ ︸

2ndparticle

dp. (1.12)

Obviously both parts of Ψ(q1, q2) describing particle one and two are each eigenfunctions of
�1 and �2, respectively and, whenever particle one is measured to have momentum p, particle
two must have momentum −p. Similarly, a measurement of position on particle one, enables
the prediction of position for particle two. In order to understand this, Eqn. (1.10) has to be
(fourier) basis transformed,

Ψ(q1, q2) = 2π~
∞∫
−∞

δ(q1 − q)︸ ︷︷ ︸
1stparticle

δ(q − q2 + q0)︸ ︷︷ ︸
2ndparticle

dq, (1.13)

where δ(.) is the Dirac delta function. In the new basis representation both parts of Ψ(q1, q2)
are eigenfunctions of �1 and �2, respectively and, finding particle one at position q implies
particle two will be found at q+q0. This is of course not surprising as |Ψ 〉 is, by construction,
eigenvector of the operators �1⊗�2 as well as of �1⊗�2, but it shows another characteristic
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feature of entangled states: The measurement outcomes for measurements on an entangled
state are correlated in more than just one basis.

In conclusion, both the momentum and the position of particle two can be predicted with
certainty by a measurement of the corresponding quantity on particle one. As the particles
are space-like separated, the measurement on subsystem one cannot influence subsystem two.
Consequently, according to Def. 1.1.3 the position and momentum of particle two are objects
of physical reality. As this proves Prop. 1.1.4 (2) to be wrong, epr reason Prop. 1.1.4 (1)
to be true. This reasoning is of course strongly dependent on the definition of reality and
the authors were well aware of the fact that ”one would not arrive at our conclusion if one
insisted that two or more physical quantities can be regarded as simultaneous elements of
reality only when they can be simultaneously measured or predicted.” However, according to
epr no reasonable conception of reality could permit that the existence of properties like �
or � of one subsystem depend on measurements carried out on another system in the absence
of any interaction. Abiding such a concept would require either non-local ”spooky actions at
a distance”, like Einstein said, or the abandonment of an objective reality. Indeed the latter,
like Schrödinger’s cat, seems even more weird when again translated to the macroscopic
world. Abraham Pais, Einstein’s biographer, reports: ”I recall that during one walk Einstein
suddenly stopped, turned to me and asked whether I really believed that the moon exists only
when I look at it.” [24] Hence, it was the credo of epr that quantum mechanics, though
logically consistent, is an incomplete manifestation of a more fundamental theory capable of
explaining these phenomena in a local and objectively realistic manner [25]. As the quantum
mechanical state vector does not a priori determine the result for an individual measurement,
it was thought that such a predetermination could be established in a new theory by a more
complete specification of the state in terms of additional parameters. These parameters were
just conjectured and should hence not be accessible by measurement wherefore they are often
referred to as ”hidden” variables.

In the year 1964 John Bell showed that such a theory, if it may exist at all, cannot meet
all of the concerns raised by epr [26]. In particular, it cannot simultaneously be realistic,
Lorentz invariant and consistent with the statistical predictions made by quantum mechanics.

Five years later John Clauser, Michael Horne, Abner Shimony and Richard Holt (chsh)
published a generalization of Bell’s considerations in a form which is suitable to be experi-
mentally tested and which shall be sketched shortly in the following [27].

A source emit pairs of particles in an entangled state. After the emission, the particles be
subjected to measurements at space-like separated locations. Two dichotomic observables �,
�′ and �, �′ with spectrum {±1} be measured each on particle one and two respectively. The
allegedly complete description of the initial quantum state be given in terms of the hidden
variables λ with probability distribution %(λ), fixing the measurement results for any possible
measurement setting. The results Ai, A′i for measurements on particle one and Bi, B′i for
measurements on particle two might depend on λ. However, the condition of locality, ensured
by the space-like separation of the measurement apparatus, requires that both Ai and A′i do
not depend on Bi or B′i, nor Bi and B′i on Ai or A′i. Consequently, the correlation E of the
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measurement results, i.e., the weighted mean of their product is given by

E(A,B) =
∫

A(λ)B(λ)%(λ)dλ
E(A,B′) =

∫
A(λ)B′(λ)%(λ)dλ (1.14)

E(A′,B) =
∫

A′(λ)B(λ)%(λ)dλ
E(A′,B′) =

∫
A′(λ)B′(λ)%(λ)dλ.

As the possible measurement outcomes are ±1 it holds for a single measurement run j that

AjBj + AjB′j + A′jBj − A′jB
′
j = Aj︸︷︷︸

±1

(Bj + B′j)︸ ︷︷ ︸
+2

0
−2

+ A′j︸︷︷︸
±1

(Bj − B′j)︸ ︷︷ ︸
0
±2

0

= ±2 (1.15)

and accordingly

−2 ≤ E(A,B) + E(A,B′) + E(A′,B)− E(A′,B′) ≤ +2. (1.16)

In contrast, for particular entangled states |ψ 〉 of two subsystems and appropriate choices of
�, �′, �, �′ quantum mechanics predicts

−2
√

2 ≤ 〈�⊗� 〉ψ + 〈�⊗�′ 〉ψ + 〈�′ ⊗� 〉ψ − 〈�′ ⊗�′ 〉ψ ≤ +2
√

2. (1.17)

The comparison of Eqn. (1.16) and Eqn. (1.17) shows that the quantum mechanical statistical
prediction for measurement results cannot be reproduced in its entirety by a theory which
is local (in the sense of Eqn. (1.14)) and realistic (in the sense of assigning predetermined
values to each measurement) at the same time. The experimentally demonstrated violation
of Eqn. (1.16) [28–30] proves that a local realistic theory is not only unable to account for the
predictions made by quantum mechanics, but, that it is even not capable of describing nature.
It is a fact to be accepted that the world is not local and realistic after the belief of epr1. It
might be either or neither of both, a question which is still not answered to date. However,
very recently it was demonstrated that a whole class of non-local realistic theories (based on
a set of rather sensible restrictions) conflicts with the observations made in experiments [33].
A fact which makes the authors ”believe that our results lend strong support to the view that
any future extension of quantum theory that is in agreement with experiments must abandon
certain features of realistic descriptions.”

1.2 (Quantum)-information

The preceding section has established that the mathematical framework of quantum mechan-
ics leads to a number of phenomena which might seem counterintuitive from an every day life
perspective. It is surely legitimate to philosophize about the implications on the world view
of such a physical description of nature. However, once taking quantum mechanics, though
probably being weird, as granted (and in 100 years there was no single experiment performed

1The ultimate, incontrovertible proof of this ”fact” requires still the closure of basically two loopholes (see,
e.g., [31]) in a single experiment, each of which apart has been already darned [30, 32]. However, it is the
personal belief of the author that any kind of experiment to be performed in this respect will only corroborate
what might be today still a conjecture.
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proving it to be possibly wrong), the question about the usefulness and applicability of its
non-classical effects for practical tasks arises.

Indeed, it turns out that the quantum mechanical description of physical systems opens
up several new vistas when applied to information theory.

As this thesis deals with some of these applications, in the following the required basic
notions of quantum information are introduced.

1.2.1 Information encoded in physical systems – (qu)bits

The term information itself has slightly different connotations in different branches of science.
In every field dealing with its communication or processing, information is however understood
as a structure or pattern imprinted on a physical system, i.e., as something that can be
distinguished. Hence, as every distinction requires at least two discriminative options the
simplest possible system which is capable of containing information is one with a degree of
freedom that can take one out of at least two distinct values. In classical physics such a system
would be one that possesses (at least) two states described by a single (at least) two-valued
physical quantity. The observable corresponding to this physical quantity is called ”bit” and
provides the answer to a single ”yes/no”-question. It is easy to imagine that the answer to
every possible question can be obtained by a sequence of properly chosen ”yes/no”-questions.
Thus, a bit can be also seen as the unit in which information is measured. Various practical
realizations of a one-bit system are conceivable as, e.g., a coin lying ”head-up” or ”tail-up”, or,
more sophisticated, an electrical circuit carrying current or not. As the notion of information
is obviously tightly bound to the description of physical systems it must consequently change
with the transition from classical to quantum physics.

In analogy to the classical bit, Benjamin Schumacher coined in the year 1995 the term
”qubit” or ”quantum bit” [4].

Definition 1.2.1 (qubit) A qubit is a two-state quantum system, i.e., it is the minimal
quantum physical system whose non-trivial observables have spectrum two.

The state space of the qubit is a two dimensional Hilbert space H2 with a set of orthonormal
basis vectors {|0 〉, |1 〉}. These basis vectors which are usually referred to as ”computational
basis” are the pendants to the two distinct states of a classical one-bit system associated with
the logical values ”0” and ”1” or ”yes” and ”no”. However, in contrast to the classical bit, a
quantum bit is not a two-valued quantity, but a quantum system described by a state vector
(see Def. 1.2.1). This implies that due to the superposition principle (cp. Sec. 1.1.2) the most
general state of a qubit is given by any superposition of the two basis vectors, i.e., as

|$ 〉θ,ϕ = exp(iγ)
(

cos
(
θ
2

)
|0 〉+ exp(iϕ) sin

(
θ
2

)
|1 〉
)

(1.18)

with θ ∈ [0, π[ and ϕ, γ ∈ [0, 2π[. As the global phase γ is not a physical observable it is
irrelevant and can be omitted. Thus qubit states can be seen as elements of the complex
projective line2 which is isomorphic to a three dimensional sphere. This leads to a nice
visualization of qubits as points (θ, ϕ) on the surface of a sphere of radius one, the Bloch sphere
(see Fig. 1.2), with coordinate vector ~r = (cos(ϕ) sin(θ), sin(ϕ) sin(θ), cos(θ)). In contrast to
classical bits the information needed to describe a qubit is in general infinite as it requires two

2
{

(a, b) ∈ C2|a, b ∈ C, a ∨ b 6= 0, (a, b) = (ca, cb) ∀c ∈ C \ {0}
}
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Figure 1.2: Visualization of qubit states. A pure
qubit state |$ 〉θ,ϕ = cos

(
θ
2

)
|0 〉 + exp(iϕ) sin

(
θ
2

)
|1 〉

can be represented as a point (θ, ϕ) on the surface of
a three dimensional sphere, the Bloch sphere. The
point is characterized by the coordinate vector ~r =
(cos(ϕ) sin(θ), sin(ϕ) sin(θ), cos(θ)) with θ ∈ [0, π[ and
ϕ ∈ [0, 2π[. The pole points (π2 , 0), (π2 , π) correspond to
the eigenstates of �x, (π2 ,

π
2 ), (π2 ,

3π
2 ) to the one of �y and

(0, 0), (0, π) to the one of �z.

real numbers (θ, ϕ). The information which can be read out of or transmitted by one qubit
corresponds, however, to only one classical bit [34], as all of its observables are by Def. 1.2.1
dichotomic.

For the representation of operators acting on H2 it is convenient to choose the Pauli spin
operators {�x, �y, �z} together with the identity 1 as they form a orthogonal basis in the
corresponding operator space. Throughout this work the following definition is used

�x|+ 〉 = +1 |+ 〉 ≡ +
1√
2

(|0 〉+ |1 〉), �x|− 〉 = −1 |− 〉 ≡ − 1√
2

(|0 〉 − |1 〉)

�y|R 〉 = +1 |R 〉 ≡ +
1√
2

(|0 〉+ i|1 〉), �y|L 〉 = −1 |L 〉 ≡ − 1√
2

(|0 〉 − i|1 〉) (1.19)

�z|0 〉 = +1 |0 〉, �z|1 〉 = −1 |1 〉,

1|$ 〉 = +1|$ 〉, ∀ |$ 〉 ∈ H2 (1.20)

and

�2
x = �2

y = �2
z = 1, det(�i) = −1, tr(�i) = 0, �i�j = δij1 + i εijk�k, (1.21)

with

δij =

{
1, for i = j

0, for i 6= j
, εijk =


+1, for even permutations of {ijk}
−1, for odd permutations of {ijk}

0, otherwise.

, i, j, k ∈ {x, y, z}.

(1.22)
As can be seen from Eqn. (1.19) the eigenvectors of the Pauli operators form the pole points of
the Bloch sphere (Fig. 1.2). In order to use matrix algebra it is common practice to represent
the computational basis vectors as

|0 〉 =
(

1
0

)
, |1 〉 =

(
0
1

)
(1.23)

such that the operators read

1 =
(

1 0
0 1

)
, �x =

(
0 1
1 0

)
, �y =

(
0 −i
i 0

)
, �z =

(
1 0
0 −1

)
. (1.24)
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An arbitrary, general observable �θ,ϕ of a qubit can be written in terms of the Pauli
operators as

�θ,ϕ = ~r ·~� = cos(ϕ) sin(θ) �x + sin(ϕ) sin(θ)�y + cos(θ)�z with ~� =
(
�x
�y
�z

)
. (1.25)

From Eqn. (1.21) can be derived that the eigenvalues of the Pauli operators, and consequently
for all �θ,ϕ are ±1 in agreement with Def. 1.2.1. The projector �±θ,ϕ on the eigenvector of �θ,ϕ
with positive or negative eigenvalue, respectively, is expressed as

�
±
θ,ϕ =

1± �θ,ϕ

2
. (1.26)

In Sec. 1.1.1 it was stated that the dynamics of quantum states equals their rigid rotation
in state space. For qubits the time evolution is therefore usually given by unitary operations
which are elements of the special unitary group SU(2). As the Pauli operators are (up to a
constant factor) the generators of SU(2), they can be also used to write an arbitrary general
unitary single qubit operation � ∈ U(2) = U(1) o SU(2) as [35]

�(α, γ, θ, ϕ) = exp (iα)︸ ︷︷ ︸
phase

exp
(
−iγ2~r ·~�

)︸ ︷︷ ︸
rotation

= exp (iα)
(
cos
(γ

2

)
1− i sin

(γ
2

)
�θ,ϕ

)
. (1.27)

In terms of the Bloch sphere representation this form suggests the interpretation of a qubit
evolution as a rotation by the angle γ about the axis ~r followed by the application of a phase
α. In the language of information theory transformations of the form Eqn. (1.27) represent
gates, acting on qubits and processing information. One important example is the so called
Hadamard gate had = �(π2 , π, 0,

π
2 ) = 1√

2
(�x +�z) which transforms between the eigenstates

of �x and �z;

had =

{
|0 〉 → 1√

2
(|0 〉+ |1 〉)

|1 〉 → 1√
2

(|0 〉 − |1 〉)
,

1√
2

(
1 1
1 −1

)
. (1.28)

This gate is often used in quantum information algorithms to generate equally weighted
superpositions of the computational basis states. A prominent example thereof is the Deutsch
algorithm [36] (and its extension [37]) which constitutes the first proof that the superposition
principle enables a speedup in quantum computation compared to any classical information
processing.

1.2.2 Entanglement of qubits

As seen in the previous section, the main difference between classical and quantum bits is
the fact that qubits are in general not in one of the two computational basis states but in
an arbitrary superposition thereof. This implies that qubits, also in contrast to classical bits,
can be entangled. In Sec. 1.1.2 it was adumbrated that the definition of ”entangled” as being
”non-product” might require detailed refinement in terms of the number of subsystems under
consideration. This shall now be supplemented in the following in particular with respect to
qubits as individual subsystems.
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Two-qubit entanglement

The state space of two qubits is the four-dimensional Hilbert space H2⊗H2. A natural exten-
sion of the one-qubit case might be to choose a set of four basis vectors as {|00 〉, |01 〉, |10 〉, |11 〉}
in analogy to the logical states of two classical bits ”00”, ”01”, ”10”, ”11”. However, the gen-
eral state of two qubits does not need to be a product state of the two subsystems (see
Sec. 1.1.2), and just as well four orthonormal entangled states can form a set of basis vec-
tors. One simple, but important example are the four Bell states, named after John Bell and
featuring in his inequality [38]:

|φ± 〉 =
1√
2

(|00 〉 ± |11 〉)

|ψ± 〉 =
1√
2

(|01 〉 ± |10 〉) . (1.29)

From an information theoretic point of view, the entanglement of qubits has interesting im-
plications on the encoding of information in quantum physical systems. In accordance with
the one-qubit case of the previous section the information, necessary to characterize the state
of the two qubits is infinite, but the information which can be transmitted and read by two
qubits is limited and restricted to two classical bits. In classical systems the two bits of
information are carried each by the individual subsystem. This can be described by two
propositions, like for example, ”(1) the logical state of the first subsystem is 0” and ”(2) the
logical state of the second subsystem is also 0”, corresponding to the state ”00” for the total
system. In contrast, in the quantum case there are two, fundamentally different possibilities
to distribute the two bits of readable information. The first is analogous to the classical one
and corresponds to product states. Thereby each of the two bits of readable information is
also carried by one of the two qubits. For instance, the state |00 〉 corresponds to the propo-
sitions ”(1) the logical state of the first qubit is 0 in the computational basis” and ”(2) the
logical state of the second qubit is also 0 in the computational basis”. The second encoding
possibility corresponds to entangled states and is not possible for classical bits. In entangled
states of the form Eqn. (1.29) the two bits of readable information are uniformly spread out
on both qubits. This means the system as a whole carries all the information while no infor-
mation is contained in the individual subsystem. Thus, the information is not encoded in the
state of the individual subsystem but in the relations or correlations which the subsystems
possess with respect to each other. This could be formulated for example in two propositions
of the form ”(1) the logical state of both qubits is the same for a measurement �z ⊗ �z” and
”(2) the logical state of both qubits is the same for a measurement �x⊗�x”, what corresponds
to the state3 |φ+ 〉 [39].

These statements can be easily quantified by introducing various concepts. The first was
the von Neumann entropy as a measure of information contained in quantum systems. It can
be regarded as the extension of classical entropy concepts to the field of quantum mechanics.

Definition 1.2.2 (von Neumann entropy) The von Neumann entropy SvN for a quantum

3A third proposition like ”(3) the logical state of both qubits is opposite for a measurement �y ⊗ �y” is
redundant as there is only one unique common eigenvector of �x⊗ �x and �z ⊗ �z with positive eigenvalue for
both operators. Thus (3) follows from (1) and (2).
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state described by the density operator � is given as

SvN(�) ≡ −tr(� logN �) = −
∑
i

λi logN λi,

where N is the dimension of the Hilbert space and λi are the eigenvalues of �.

For practical issues it is sometimes convenient to consider alternatively the so-called linear
entropy as its calculation does not require diagonalization of the density operator.

Definition 1.2.3 (Linear entropy and purity) The linear entropy Slin for a quantum state
described by the density operator � is given as

Slin(�) ≡ N

N − 1
(1− P (�)) ,

where N is the dimension of the Hilbert space and P (�) ≡ tr(�2) the purity of �.

As can be easily verified, for any Bell state |bs 〉 ∈ {|φ± 〉, |ψ± 〉} the entropy of the total
system �bs = |bs 〉〈 bs | is minimal and hence the information maximal,

SvN (�bs) = Slin (�bs) = 0.

In turn, the entropy of each of the two subsystems, given after tracing the other subsystem
�1 = tr2(�bs) and �2 = tr1(�bs), is maximal, what corresponds to no information content

SvN (�1) = SvN (�2) = Slin (�1) = Slin (�2) = 1.

The two propositions about the above example of the product state |00 〉 could be equally
well stated as ”(1) the logical state of the first qubit in the computational basis is 0” and
”(2) the logical state of both qubits is the same for a measurement �z ⊗ �z”. This means
that the amount of information used to describe the correlations of two-qubit product states
equals one, whereas it is in contrast greater than one for entangled states4. Indeed the latter
can be shown to be a necessary and sufficient condition for two-qubit states to violate a Bell
inequality of the form of Eqn. (1.16) [40], and it is even suggested to be a possible definition
of two-qubit entanglement [41]. Yet, the commonly accepted definition is Def. 1.1.1 which is
unambiguous in the case of two qubits.

In view of practical applications it might be desirable to have a criterion, or even a
measure, at hand to decide whether or how strongly a particular state under consideration
is entangled. A criterion which will also be used in this thesis, was provided by Asher Peres
in the year 1996 [42]. It is called positive partial transpose (ppt) and requires the following
definition.

Definition 1.2.4 (Partial transpose) The quantum state of a bipartite system be given in
terms of the density matrix �. The matrix elements of � in a particular basis be 〈mµ |�|nν 〉,
with |m 〉, |n 〉 and |µ 〉, |ν 〉 as basis vectors of the first and second subsystem respectively:

The new matrix �T2 with matrix elements

〈mµ |�T2 |nν 〉 ≡ 〈mν |�|nµ 〉

is called the partial transpose of � (with respect to the second subsystem).
(Analogous definition holds for �T1).

4A similar statement appeared already in the discussion about the violation of local realism in Sec. 1.1.2 in
the form that the outcomes for measurements on entangled states are correlated in more than one basis.
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Peres’ criterion states that

Proposition 1.2.5 (Positive partial transpose) � separable ⇒ �T2 =
∑

i pi �i1 ⊗ �Ti2 and
�T2 ≥ 0.

This means that whenever the partial transpose of a density matrix is found to have negative
eigenvalues, the state is entangled. The reverse is in general not true, besides for the special
case of two qubits (or one qubit and one qutrit5) [43]. The transformation defined by Def. 1.2.4
can be seen as a time reversal on one subsystem [44]. Thus, Prop. 1.2.5 has a physical
interpretation in the sense that separable states do not correlate local time flows. If the time
reversal on just one subsystem leads to a non-physical state of the total system, the time
flows must have been correlated and the state entangled.

In order to go beyond a pure detection of the entanglement contained in a state in terms
of its quantification, some criteria have to be introduced. Several conditions for entanglement
measures exist [45, 46] but the following three ones are indispensable and define so-called
entanglement monotones [47]:

Definition 1.2.6 (Entanglement monotone) � ∈ H be a density operator of two or more
subsystems. The map M : H → R+ is called entanglement monotone if it satisfies the
conditions:

1. M(�) ≥ 0 ∀� ∈ H and M(�) = 0 if � is separable.

2. M(Λlocc�) ≤M(�)

3.
∑

i aiM(�i) ≥M (
∑

i ai�i) , with �i ∈ H, ai ∈ R and
∑

i |ai | = 1.

The first condition is a quite obvious one. If an entanglement measure would not be zero for
separable states, which do by definition not contain any entanglement, it would be no sensible
quantification of entanglement. It might be just surprising that it is not demanded that the
measure is zero if and only if the state is separable. This is, however, for good reason as there
are states which contain a form of entanglement that is not useful for quantum information
applications6 [48, 49]. These states, though being entangled, can have M = 0. (Again this
suggests that there are different types of entanglement, but this is only relevant for more than
two qubits and will be matter of the subsequent section.)

The second condition states that entanglement cannot be increased with local operations
and classical communication (locc). This means, whatever is done to each subsystem locally
(local operations) cannot, even conditioned on the prior or subsequent exchange of classical
information (classical communication), enhance the amount of entanglement in a system
[50, 51]. This seems reasonable with regard to the discussions in Sec. 1.1.2 and particularly in
view of applications in quantum communication tasks where a couple of remote parties share
parts of an entangled state and interact with each other solely by a classical transmission
channel (see Sec. 3.1).

The third condition implies that discarding information should not lead to an increase of
entanglement.

5Analogously to Def. 1.2.1, a qutrit is a three-state quantum system, i.e., it is the minimal quantum physical
system whose non-trivial observables have spectrum three.

6These states are called ”bound”-entangled and are also the ones which do not have a negative partial
transpose. They will not be discussed any further as they have no relevance for the work presented in this
thesis.
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For pure states the von Neumann entropy of the reduced system, i.e., after tracing one
subsystem, is already an entanglement measure [52]. For mixed states it is, however, not
suitable, as it is not clear whether the lack of information in the subsystem results from
entanglement or from lack of purity in the total system. Still, it can be generalized in a way
that it applies also to mixed states. The resulting measure is called entanglement of formation
[51]. An arbitrary state � =

∑
i ai|ϕi 〉〈ϕi | can be decomposed as a convex sum of projectors

on pure states |ϕi 〉. The entanglement of formation EoF is then given as the averaged von
Neumann entropy of the pure states’ reduced density matrices, minimized over all possible
decompositions of �,

EoF (�) ≡ inf
{dec}

∑
i

ai SvN (tr1 (|ϕi 〉〈ϕi |)) . (1.30)

In the defining form of Eqn. (1.30) the measure is not very practicable as the involved opti-
mization is not easy to handle analytically. Fortunately the evaluation of EoF can be reduced
to the determination of a quantity which is for itself an entanglement measure and is called
concurrence [53, 54]. It will be of particular interest in Sec. 3.2.

Definition 1.2.7 (Concurrence) The map C : H → [0, 1] of a two-qubit state � ∈ H is
called concurrence, with

C(�) ≡ max
(

0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

)
where λ1, . . . , λ4 are the eigenvalues of the non-Hermitian operator � (�y ⊗ �y) �∗ (�y ⊗ �y) in
decreasing order and �∗ the complex conjugate of �.

The entanglement of formation is then given as

EoF (C) = h

(
1 +
√

1− C2

2

)
, (1.31)

with h(x) = −x log2 x− (1− x) log2(1− x). The operation involved in Def. 1.2.7 of applying
�y on the complex conjugate maps every qubit on its antipode on the Bloch sphere. Thus,
it shall be termed universal not (unot). For a physical realization of qubits in terms of spin
one-half particles this corresponds again to a time reversal. Consequently, the concurrence
can be seen as the overlap of a state with its (universal) bit-flipped counterpart. It is worth
to note that the universal not when applied on both qubits, though changing the state of
each individual subsystem does not change the correlations which the subsystems posses with
respect to each other (see Fig. 1.3(b)) [55]. As the information contained in a maximally
entangled state is encoded solely in these correlations, but not in the state of the individual
subsystems (see page 16 et seqq.), it does not change under such a transformation leading
to a maximal value for the concurrence. In contrast, for a separable state the information is
exclusively encoded in the states of the individual subsystems. Thus the application of unot
results in the orthogonal state and zero value of concurrence.

In the formulation of the ppt criterion the unot (up to a local unitary7) is applied to
just one of the subsystems. For the case of two qubits, this leads to an inversion of the
state of one qubit and in addition to a inversion of the correlations between the subsystems
(see Fig. 1.3(a)). Hence, it is plausible that the change in the correlations might affect an
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(a) (b)

Figure 1.3: Reflection symmetries of two qubits involved in the determination of entangle-
ment. Small arrows represent Bloch vectors of qubits, double arrows correlations between
qubits. (a) Transformation unot⊗ 1 involved in the ppt criterion. Inversion of the state of
one subsystem changes the correlations between the subsystems. The transformation can be
interpreted as local time reversal on one of the subsystems. As separable states do not corre-
late local time flows they are unaffected by this operation. (b) Transformation unot⊗unot
involved in the determination of the concurrence. Inversion of the states of both subsystems
leaves the correlations between them unchanged. As for entangled states the information is
encoded solely in the correlations but not in the individual subsystems, the total state stays
the same. For separabel states it is the direct opposite.

entangled state while being irrelevant for product states. This is also in accordance with the
statement that the local time flows are not correlated for separable states.

Another entanglement measure which can be equally well applied to pure and mixed sates
is deduced from Prop. 1.2.5 and called logarithmic negativity [56].

Definition 1.2.8 (Logarithmic negativity) The map N : H → [0, 1] of a state � ∈ H of
a bipartite system is called logarithmic negativity, with

N (�) ≡ log2(2 n(�) + 1) and n(�) ≡
∑
i

|λTi | − λTi
2

,

where λTi are the eigenvalues of the partial transpose of �.

As already denoted by the name, it expresses the degree to which the partial transpose of
a state fails to be positive. It will be used for the characterization of experimental states
in Sec. 3.1.4. Although N is not convex, it was recently proven to be non-increasing under
ppt preserving operations, of which locc operations are a subset. Therefore it is a good
entanglement measure [57].

Summarized in a nutshell, for two qubits, the term being entangled is well defined and
several tools for the detection and quantification of entanglement are available. As shall be
seen in the following an understanding of this kind of multi-qubit entanglement is the less
tangible the more qubits are involved.

Three-qubit entanglement

When defining ”entangled” as being non-product it might be, to a particular extent, unclear
what this means for systems composed out of three qubits A, B, C. For such systems different
partitions with respect to factorizing are conceivable: ABC, A − BC, AB − C, AC − B,

7For density operators the transposition equals the complex conjugation.
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A − B − C, where the dash denotes which subsystem is considered as separable from the
others. The first or the last partition are surely entangled or separable, respectively. The
remaining ones are, however, in a way both. Therefore, when dealing with multi-partite
systems it is reasonable to distinguish between full separability [58] and partial separability
[23]:

Definition 1.2.9 (Full separability) � be a density operator describing n systems S1, . . . ,Sn
with Hilbert space H = HS1 ⊗ · · · ⊗HSn. � is called fully separable iff

� =
k∑
i=1

ai �i1 ⊗ · · · ⊗ �in ,

with �il ∈ HSl and k ≤ dim(H)2. (The number of states in the convex combination is thereby
limited by Caratheodory’s bound k [45, 49, 59].)

Definition 1.2.10 (Partial separability) � be a density operator describing n systems
S1, . . . ,Sn with Hilbert space H = HS1 ⊗ · · · ⊗ HSn. � is called separable with respect to a
given partition {I1, . . . , Im}, where Ii are disjoint subsets of the set of indices I = {1, . . . , n},⋃n
l=1 Il = I, iff

� =
∑
i

ai �i1 ⊗ · · · ⊗ �im ,

where �il be defined on
⊗

j HSj and j runs over all elements of Il. (It is also said, � is
m-separable with respect to partition {I1, . . . , Im}).

A state of n systems which is neither fully nor partially separable is called genuine n-partite
entangled. Consequently, for three qubits a coarse, minimal distinction of states would be
according to three-partite entangled, bi-separable and separable. This does, however, not
sufficiently cope with the given situation.

A partial ordering of states as more or less entangled, deduced from Def. 1.2.6 by stating
that, (i) two states are equally entangled if they are related by local unitary (lu) operations
[47, 60] and (ii) the entanglement of a state cannot increase under locc, has several distinct
maxima. Thus, obviously different kinds of three-partite entanglement exist. In fact, to label
all the equivalence classes introduced by this partial order needs even a continuous parameter,
i.e., infinitely many kinds of entanglement are distinguished [61]. Fortunately the situation
can be simplified by alternatively stipulating that two states are equivalent if they are related
by stochastic local operations and classical communication (slocc) [18]. In such an ordering,
the conversion between states is still achieved through locc, but not with certainty, rather
with a non-vanishing probability of success. As a result two distinguished kinds of tri-partite
entanglement remain, the Greenberger, Horne, Zeilinger (ghz)- and w-class, which are named
after their two representatives states [62]:

|ghz 〉 =
1√
2

(|000 〉+ |111 〉) (1.32)

|w 〉 =
1√
3

(|001 〉+ |010 〉+ |100 〉) . (1.33)

Each pure state of three qubits, as long as it is not (partially/fully) separabel, can be
transformed either in the one or the other form, depending to which class it belongs. The
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(a) (b)

Figure 1.4: Different equivalence classes of three-qubit states with respect to slocc. (a)
Equivalence under slocc induces a partial order on the space of three qubit pure states. In
contrast to the two-qubit case just a distinction between fully separable or entangled is not
adequate. Even a classification according to separable (A − B − C), bi-separable (A − BC,
AB − C, AC − B) and entangled (ABC) is not sufficient as there are two distinct types
of three qubit entanglement (GHZ, W ). (b) Schematic representation of the sets of mixed
three-qubit states. The sets are nested according to their degree of entanglement, starting
from the set of separable states (A−B−C) and ending at the two different sets of tri-partite
entangled states W and GHZ. Mixed states of a particular set are given in terms of a convex
combination of pure states of the respective set, including all embedded subsets.

partial order induced by slocc is displayed as a whole in Fig. 1.4(a). In contrast, for two
qubits the classification according to slocc coincides with the distinction between separable
and entangled and the only form of two-qubit entanglement is the one represented by one of
the four Bell states (Eqn. (1.29)) [50]. Although w- and ghz-states cannot be transformed
into each other by means of slocc, the set of pure w-states has measure zero among the
set of all pure three-qubit states, and each w-state can be infinitely well approximated by
a ghz-state. This is, however, different for mixed states in a generalization of the slocc
classification [63]. In such a generalization the set of separable states {A− B − C} contains
all states that can be decomposed as a convex combination of pure separable states. All states
that can be expressed as a convex combination of separable or any kind of bi-separable states
form the set of bi-separable mixed states {A−BC, AB−C, AC−B}. Convex combinations
of states from {A−B−C}, {A−BC, AB−C, AC−B}, and pure w-states constitute the set
of mixed w-states W , and GHZ is the set of all physical three-qubit states (see Fig. 1.4(b)).
All sets are convex and compact and the set W \ {A − BC, AB − C, AC − B} is not of
measure zero anymore.

Given a three-qubit state it might be desirable to decide to which of the slocc classes
it belongs. For pure states �ABC = |χ 〉〈χ | this can be achieved by the determination of a
quantity which is deduced from the concurrence and called tangle [64]. The tangle τ analyzes
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in which way the entanglement is distributed among the subsystems A, B and C,

τ (�ABC) ≡ C2
A−BC (�ABC)− C2 (trC(�ABC))− C2 (trB(�ABC)) . (1.34)

Thereby CA−BC (�ABC) = 2
√

det(trBC(�ABC)) specifies the entanglement (measured by the
concurrence) between subsystem A and the joint subsystem BC which is treated as a single
object. The remaining terms in Eqn. (1.34) denote the entanglement between the pairs of
qubits, A − B and A − C. Thus, the value of the tangle, which does not depend on the
chosen partition, measures the degree to which entanglement is contained solely in individual
pairs of qubits. Vanishing tangle at non-zero concurrence between all pairs of qubits indicates
w-class states, whereas states with non-zero tangle belong to the ghz-class. This illustrates
nicely that these two classes exhibit indeed two different kinds of three-partite entanglement
and what the difference exactly is. In a w-state, Eqn. (1.33), the three-qubit entanglement is
established by entanglement between all pairs (τ = 0), whereas in a ghz-state, Eqn. (1.32), the
entanglement is totally ”smeared” among all constituents (τ = 1). An important consequence
of this fact in practice is that a ghz-state becomes completely disentangled if one qubit is
lost. In contrast w-states retain still bi-partite entanglement after tracing over one of the
qubits.

A generalization of the tangle to mixed states is not straight forward and will not be
pursued any further in this thesis (one attempt in this direction might be found in [65, 66]).
Instead, another very useful tool for the characterization of qubit entanglement shall shortly
be recapitulated in the following, as it will be of importance for the evaluation of experimental
data: entanglement witnesses [43, 67].

The concept of entanglement witnesses is based on the previously mentioned topological
structure of the set of mixed states and its partition in subsets with respect to the slocc
equivalence of its elements. It is known from the Hahn-Banach theorem that, laxly stated,
for a set which is convex and compact, and a point which is not an element of the set, there
exists a hyperplane separating the point from the set. Such a hyperplane in the state space
of three qubits can be defined, in complete analogy to three-dimensional Euclidian space, as
the set of all points � for which tr(� �) = 0, where � is a Hermitian operator8. Accordingly,
points to the left or the right of the hyperplane have positive or negative expectation value
for �, respectively. If the hyperplane defined by the operator � lies between an entangled
state �ent and the set of separabel states, the operator � witnesses the entanglement of �ent:

Definition 1.2.11 (Entanglement witness) A Hermitian operator � is called entangle-
ment witness for the state �ent iff

tr(� �ent) < 0 and tr(� �) ≥ 0 for all separable �.

Proposition 1.2.12 A state � is entangled iff there exists an entanglement witness for �.

In case that the expectation value of a witness operator, measured in an experiment, is
negative, the state under investigation is entangled. Unfortunately the reverse is not true,
that means that a witness provides only a sufficient but not necessary condition to test for
entanglement. If a state is not detected to be entangled it might be that it is indeed not

8In this analogy � corresponds to the normal vector of a plane in Euclidean space and tr(.) resembles the
usual scalar product in R3.
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Figure 1.5: Entanglement witnesses. An entanglement
witness � defines a hyperplane, tr(� �) = 0, in the con-
vex set of mixed qubit states. All states lying right or
left of the plane have positive or negative expectation
value for the operator �, respectively. Thus, depending
on the location of the hyperplane, a negative expectation
value of the operator indicates that a state is entangled
(tr(� �ent) < 0), tri-partite entangled (tr(�bi−sep �w) <
0) or ghz-type entangled (tr(�ghz �ghz) < 0).

entangled, or that the witness was not properly chosen. Choosing a witness optimally is in
practice a non-trivial task as it requires a kind of a priori knowledge about the state for which
the operator should be constructed. Intuitively it is obvious to require the hyperplane, defined
by the witness operator, to be tangential to the set from which a particular state should be
separated in order to detect as many states as possible [68, 69].

The structure of state space suggests furthermore that witnesses cannot only be used to
distinguish separabel from entangled, but also tri-partite entangled from bi-separable and
ghz- from w-class states. To this end the conditions in Def. 1.2.11 have to be accordingly
modified:

tr(�bi−sep �w) < 0 and tr(�bi−sep �) ≥ 0 ∀� ∈ {A−BC,AB − C,AC −B} (1.35)

would detect a state �w as being not bi-separable and

tr(�ghz �ghz) < 0 and tr(�ghz �) ≥ 0 ∀� ∈W (1.36)

witnesses ghz-type entanglement for a state �ghz ∈ GHZ, see Fig. 1.5. One particular explicit
form of these two witnesses would be [63]:

�bi−sep = 1
2 1
⊗3 −|ghz 〉〈ghz | or �bi−sep = 2

3 1
⊗3 −|w 〉〈w | (1.37)

and
�ghz = 3

4 1
⊗3 −|ghz 〉〈ghz |. (1.38)

In general, a possible way to construct a witness operator that detects entanglement in the
vicinity of a pure state |ψ 〉 of d qubits is always

� = α 1⊗d −|ψ 〉〈ψ |, with α = max
|φ〉∈D

|〈 φ |ψ 〉|2, (1.39)

where |φ 〉 are states of the set D against which should be separated (see e.g. [70]).
There is an interesting connection between entanglement witnesses and the ppt-criterion

(Prop. 1.2.5) which is worth to be noted. Prop. 1.2.5 is a special case that can be deduced
from a more general theorem which was proven in [43] and reads:
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Proposition 1.2.13 � be a density operator acting on Ha ⊗ Hb. Then � is bi-separable iff
for any positive (but not completely positive) map9 ΛHb

(1Ha ⊗ ΛHb) � ≥ 0.

Obviously transposition T is a positive map, thus the partial transposition (Def. 1.2.4) is of
the form (1 ⊗ Λ) and Prop. 1.2.5 follows from Prop. 1.2.13. As any positive map for two
qubits (or one qubit and one qutrit) can be written as a sum of a completely positive map
and a completely positive map times transposition [71, 72], Prop. 1.2.5 provides a sufficient
and necessary condition in these cases (cp. page 18).

The correspondence between Prop. 1.2.13 and witnesses is established by the so-called
Choi-Jamio lkowski isomorphism [73, 74],

� = (1H ⊗ ΛH)�, (1.40)

where � = |ψ 〉〈ψ | denotes a pure projector onto |ψ 〉 = 1√
d

∑d−1
i=0 | i 〉 ⊗ | i 〉 with d = dim(H)

and | i 〉 basis vectors in H. Thus, a witness operator can be expressed in terms of positive
maps and Prop. 1.2.12 as a whole is equivalent to Prop. 1.2.13. However, a particular witness
is not equivalent to an associated positive map. The latter proves a stronger condition as
it expresses an operator inequality whereas the former relates to a scalar expression. This
is already relevant for the simple case of two qubits where the transposition map detects all
entangled states (in the sense of ppt), while the corresponding witness10 does not detect any
symmetric pure state to be entangled [23]. In view of the intuitive geometric picture this can
be understood in the sense that infinitely many tangents would be necessary to characterize
the convex set completely, as long as it is not a polytope. Still, for practical purposes the
witnesses are more suitable, as it is in general hard to test that the condition in Prop. 1.2.13
holds for any positive map.

Another interesting connection, which was pointed out first by Barbara Terhal [67] and
which will be of particular importance in Chap. 4, is the one between witnesses and Bell
inequalities. Though the latter make no assumptions on the structure of some Hilbert space
of an investigated system, but solely on the obtainable statistics of measurement results and
their correlations, they are a kind of non-optimal witness; at least from a quantum information
point of view. The operator measured in the chsh inequality is of the form (cp. Eqn. (1.17))

�chsh = �⊗�+�⊗�′ +�
′ ⊗�−�′ ⊗�′, (1.41)

from which a corresponding witness operator can be easily constructed,

�chsh = 2 (1⊗ 1)−�chsh. (1.42)

It is obvious that, for every state �chsh violating the chsh inequality, the operator �chsh

is indeed a witness, as tr(�chsh �chsh) < 0 and tr(�chsh �) > 0 for all separable states �.
However, as already mentioned, the witness is not optimal as it is tangential to the set of

9A positive map is a linear map that takes positive operators to positive operators. A positive map is
completely positive if any extension to a larger Hilbert space H of arbitrary dimension, (1H ⊗ Λ) is a positive
map. Clearly, for completely positive maps the condition would be true for all � and thus not reasonable to
test for separability.

10This witness is given in terms of the swap operator � =
∑
i,j | i 〉〈 j |⊗|j 〉〈 i | which exchanges the subsystems

(cp. e.g. [58]).
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all states obeying a local realistic description, but not to the set of separable states which
is a subset thereof. Indeed, there are states which are entangled but do not violate a Bell
inequality [58].

The concept of entanglement witnesses appears generally in various contexts and its in-
vestigation and further development is an ongoing and very active field of research (see e.g.
[75–78]). The latter fact is for good reason, as, from an experimental point of view, entan-
glement witnesses are one of the most important tools for the characterization, not only of
three-, but also of multi-qubit entangled states.

Multi-qubit entanglement

The preceding paragraphs showed that in contrast to two qubits, for three qubits it is impor-
tant to ask not only whether or how strongly but also in which way a state is entangled. The
latter question, giving rise to very few possible answers for three qubits, turns out to face an
unlimited amount of answers in the case of four qubits.

This means that for four qubits infinitely many, instead of only six (see Fig. 1.4), slocc
classes can be distinguished. In the year 2002 Frank Verstraete et al. [19] were able to group
these classes into nine slocc families of pure states, corresponding to nine different ways
of entangling four qubits. Eight of them concern the distribution of two- and three-qubit
entanglement among four subsystems (analogous to the w-class in the three qubit case) and
one family is distinguished in a particular respect which shall be shortly discussed in the
following. This family, which will be matter of experimental studies in Sec. 2.2 and Chap. 5,
is of the form

Gabcd = a+d
2 (|0000 〉+ |1111 〉) + a−d

2 (|0011 〉+ |1100 〉)
+b+c

2 (|0101 〉+ |1010 〉) + b−c
2 (|0110 〉+ |1001 〉) , (1.43)

where a, b, c and d are complex parameters with non-negative real part. Each choice of
these parameters represents an slocc class on its own, but the states of each class share
a common property: All local density operators obtained by tracing all but one qubit have
maximal entropy, means zero information content. In the case of two qubits this property is
characteristic for (maximally) entangled states (cp. page 17) and for three qubits it is the
ghz state who exhibits this feature and is usually considered to have the ”highest” three-
qubit entanglement (see page 21 et seqq.). Indeed, in [19] it is shown that states from Gabcd
maximize several entanglement monotones and are therefore considered to have maximal
four-qubit entanglement11. This might also be the reason why most of the four-qubit states,
studied so far and featuring in several applications of quantum information, belong to this
class.

Very recently an alternative and complementary classification of slocc-families for four
qubits was provided in a publication by Lamata et al. [20, 21]. In their inductive approach
the classification of, in general, N -qubit states is based upon the classification of (N − 1)-
qubit states which is assumed to be known afore. Deviating from [19] the authors come to the
conclusion that four qubits can be entangled in eight different ways, but claim their method
to be more along the ”philosophy” of the seminal work ([18]) done for the classification of
three qubit states.

11Naturally these statements do not apply to the very special choices of a, b, c, d for which Gabcd equals
|bs 〉 ⊗ |bs 〉.
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Without forming any opinion about the two alternative classification schemes, – an ad-
vantage of the latter is surely its possible generalization to arbitrary qubit numbers –, the
former will be referred to within this work for purely practical reasons that shall become clear
in Sec. 2.2.

Common to all the above mentioned attempts of establishing a systematic order of multi-
qubit entanglement is the classification of states according to their invariance with respect to
local operations. This corresponds to dividing the states’ Hilbert space into orbits generated
by the respective transformation group and finding a representation for the states that sepa-
rates local and non-local parameters with respect to the action of the local operations. The
difficulty in the transition to higher qubit numbers can be thereby nicely revealed:

An arbitrary state of a fixed number of qubits is described by a set of complex (or real) pa-
rameters equal the dimension of the Hilbert space. Some of these parameters, – the invariants
under the local transformations –, specify the equivalence class to which the state belongs.
The remaining ones describe where the state is situated within the class; they correspond to
the dimension of the orbit and do change under the local operations [61]. As the dimension
of the orbits grows polynomially in the number of qubits, while the dimension of the state
space, as is known, increases exponentially, almost all parameters have non-local significance
for large qubit numbers. The qualitative scaling dependence is irrespective of the type of local
operation, (though the quantitative is not). In the example of N qubits the state is described
by 2(2N − 1) real parameters and an slocc operation which is an element of the special liner
group SL(2,C) is specified by six real parameters12. Thus, the set of equivalence classes under
slocc depends at least on 2(2N −1)−6N parameters [18]. This clarifies why a finite number
of slocc classes is still possible in the case of three qubits, whereas infinitely many classes,
labeled by a set of continuous parameters are obtained for N = 4. Furthermore, analogous
considerations demonstrate that lu operations, which are elements of U(2) (or SU(2)) and
defined by four (or three) parameters, are not sufficient even for the characterization of only
three qubits by a finite set of equivalence classes.

1.2.3 Processing of information

So far the formal notions of separable and entangled states of qubits were established. The
following paragraphs are devoted to the generation of states and the processing of the infor-
mation carried by them.

Whenever a computer performs a computation, it modifies a given input information
according to definite rules, what will finally yield a desired output information. From a
physical point of view, this computation is associated with the time evolution of the initial
(input) state of a system, to a final state which is to be read out. When extending these
concepts from the classical to the quantum domain, it seems sensible to associate the time
evolution with a unitary process transforming the quantum state of the computer. In analogy
to classical computers where the transformations are mediated by logical gates within the
design of a circuit, unitary operations acting on qubits can be thought of as quantum gates.
It can be shown that an arbitrary unitary operation on any finite number of qubits can be
decomposed as a product of one- and two-qubit transformations. In turn, any of the latter
can be expressed by compositions of single-qubit gates and one distinguished two-qubit gate,

12In [18] it was proved that two states are equivalent under slocc if an invertible local operator � relating
them exists. So, det(�) 6= 0, and it can be fixed to be det(�) = 1, as the state transformed by c� would only
differ by the constant complex factor c; so � ∈ SL(2,C).
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the so-called controlled not (cnot) [79–81]. This means, the cnot = 1
2(1 ⊗ 1 + 1 ⊗ �x +

�z ⊗ 1 − �z ⊗ �x) together with the set of single-qubit operations is universal with respect
to computation. Therefore its action and the one of other related two- and one-qubit gates
shall be shortly discussed.

The cnot gate has two input qubits, one labeled as the control, the other as the target
qubit. Conditioned on the logical state of the control qubit, the state of the target qubit will
be either flipped or not. The action of the gate on the computational basis states is given as

cnot =


|00 〉 → |00 〉
|01 〉 → |01 〉
|10 〉 → |11 〉
|11 〉 → |10 〉

,


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (1.44)

where the first qubit holds the role of the control, the second of the target qubit. Three of
the gate’s symbols commonly used in quantum circuits are displayed in Fig. 1.6(e). Due to
the flip operation on the second qubit, the cnot is also sometimes referred to as ”controlled
x-gate”, as �x exchanges the two computational basis states (see Fig. 1.6(a), 1.6(e) right, and
Eqn. (1.19)). From another point of view, the cnot is the pendant of the classical exclusive
or (xor) gate, since the logical state of the control qubit is added modulo two to the state of
the target qubit. This fact is in particular symbolically expressed in Fig. 1.6(e) center. The
most important application of the cnot gate is to (dis)entangle qubits. Whenever the state
of the control qubit is a superposition of the computational basis states the output of the gate
will be an entangled state (and vice versa). For instance, if the superposition is generated by
the had gate (see Fig. 1.6(c) and Eqn. (1.28)), the following circuit transforms between the
Bell- and the product basis of two qubits (cp. Eqn. (1.29)):

|0 〉 h •
1√
2
(|00 〉+ |11 〉)

|0 〉 ��������


cnot · (had⊗ 1)|00 〉 = cnot 1√

2
(|0 〉+ |1 〉)|0 〉 = cnot 1√

2
(|00 〉+ |10 〉)

= 1√
2
(|00 〉+ |11 〉) = |φ+ 〉,

(1.45)

and analogous for |01 〉 
 |ψ+ 〉, |10 〉 
 |φ− 〉 and |11 〉 
 |ψ− 〉. This is, of course, not
restricted to the case of two qubits. Very recently it was shown that any three qubit state,
particularly any entangled state, can be prepared from a product state by using at most three
cnot gates [82]. Thereby the Hilbert space of pure three-qubit states is divided in orbits,
each spanned by a different number of applications of (non-local) cnot gates (in contrast to
the previous section where the orbits were generated by local operations, cp. page 27). In
this way four classes of states are derived. The canonical form of the ghz state (Eqn. (1.32))
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is in the one whose elements can be obtained by two cnot applications. A possible circuit is

|0 〉 h •

|0 〉 �������� • 1√
2
(|000 〉+ |111 〉)

|0 〉 ��������


(1⊗ cnot) · (cnot⊗ 1) · (had⊗ 1⊗ 1) |000 〉 = . . .

. . . = 1√
2
(|000 〉+ |111 〉) = |ghz 〉.

(1.46)

In turn, starting already from the ghz state any other class can be reached within two cnot
operations. Remarkably, any pure three-qubit state can thus be transformed into any other
by at most four cnot gates.

The generation of the three-qubit w state, with a product state as origin, is a little bit
more complicated, as it requires special single qubit rotations (see Fig. 1.6(d)) and three cnot
gates [83],

|0 〉 r1 x • x

|0 〉 �������� • �������� 1√
3
(|001 〉+ |010 〉+ |100 〉)

|0 〉 r2 �������� r−1
2 •


(1⊗ cnot) · (1⊗ 1⊗ r−1

2 ) · (�x ⊗ cnot) · (cnot⊗ r2) · (�x ⊗ 1⊗ 1) · (r1 ⊗ 1⊗ 1)|000 〉 = . . .

. . . = 1√
3
(|001 〉+ |010 〉+ |100 〉) = |w 〉,

(1.47)

where r1 = 1√
3

(√
2 −1

1
√

2

)
, r2 =

(
cos(π8 ) − sin(π8 )
sin(π8 ) cos(π8 )

)
and cnot ≡ swap ·cnot · swap is a

swapped cnot gate in which the roles of control and target qubit are exchanged (see Fig. 1.6(g)).
The thereby introduced operation swap = 1

2(1⊗ 1 + �x ⊗ �x + �y ⊗ �y + �z ⊗ �z) is another
two qubit gate, which is often useful on its own as it exchanges two qubits

swap =


|00 〉 → |00 〉
|01 〉 → |10 〉
|10 〉 → |01 〉
|11 〉 → |11 〉

,


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (1.48)

In a slightly different notation it appeared in the context of entanglement witnesses for two
qubits on page 25 and footnote 10. Yet, the swap operation can be basically expressed as a
sequence of three cnot gates (see Fig. 1.6(f)).

Last but not least, a further two-qubit gate which is closely related to the cnot, and
whose applications constitute in fact a significant part of the work in this thesis (see Sec. 2.1
and Chap. 3), is the cphase gate. As the name already suggests it involves as well a control
and a target qubit: Depending on the logical state of the control qubit the cphase = 1

2(1⊗
1 + 1⊗ �z + �z ⊗ 1− �z ⊗ �z) applies a relative phase shift of π in the computational basis
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α|0 〉+ β|1 〉 x α|1 〉+ β|0 〉

(a)

α|0 〉+ β|1 〉 z α|0 〉 − β|1 〉

(b)

α|0 〉+ β|1 〉 h α | 0 〉+| 1 〉√
2

+ β | 0 〉−| 1 〉√
2

(c)

α|0 〉+ β|1 〉 r α cos(ϕ)| 0 〉+sin(ϕ)| 1 〉√
2

+ β cos(ϕ)| 0 〉−sin(ϕ)| 1 〉√
2

(d)

|c 〉
cnot

• • |c 〉
≡ ≡

| t 〉 �������� x | t⊕ c 〉

(e)

|a 〉
swap

• �������� • × |b 〉
≡ ≡

|b 〉 �������� • �������� × |a 〉

(f)

| t 〉
cnot

× • × �������� | t⊕ c 〉
≡ ≡

|c 〉 × �������� × • |c 〉

(g)

|c 〉
cphase

• • |c 〉
≡ ≡

| tin 〉 h �������� h z | tout 〉

_ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _

(h)

Figure 1.6: Quantum circuit symbols of important single- and two-qubit gates. (a) The �x
operation applies a bit flip in the computational basis on the input, whereas (b) the �z gate
introduces a relative phase of π between the computational basis states. (c) The Hadamard
gate, as a superposition of both operations generates an equally weighted superposition of
the computational basis states. It can be also seen as a basis transformation between the �x-
and �z-basis. (d) The one-qubit rotation gate rotates the state of the input in the xz-plane
of the Bloch sphere by an angle ϕ. (e) The cnot gate flips the state of the target qubit
conditioned on the logical value of the control qubit. Therefore it can be also regarded as
a controlled z-gate (right). From another point of view it represents the pendant to the
classical xor, as the bit value of the control qubit is added modulo two to the one of the
target qubit (center). (f) The swap operation exchanges two qubits. It can be expressed in
terms of three cnot gates (center). (g) In a swapped cnot gate the roles of control and
target qubit are exchanged. (h) The cphase gate applies a relative phase shift of π in the
computational basis components of the state of the target qubit, conditioned on the state
of the control qubit. Therefore it is also sometimes named controlled z-gate (right). The
cphase equals the cnot besides a basis rotation of the target qubit by 45 ◦, mediated e.g.
by a had gate (center).
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states of the target qubit. Therefore it also often refered to as ”controlled z-gate” as �z adds
a π phase shift to the state |1 〉 while leaving |0 〉 unchanged (see Fig. 1.6(h) right). The basis
representation reads

cphase =


|00 〉 → |00 〉
|01 〉 → |01 〉
|10 〉 → |10 〉
|11 〉 → −|11 〉

,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (1.49)

Interestingly, the cphase equals a cnot in which the basis of the target qubit is rotated by
45 ◦, i.e., theses two gates differ only by a had-gate applied to the target qubit (see Fig. 1.6(h)
center)

cphase = (1⊗ had) ·cnot · (1⊗ had). (1.50)

This fact suggests that the cphase gate can be used as well to transform between a product
and an entangled state basis. However, these bases will differ from the canonical ones by the
additional rotation (see Sec. 3.1).

1.3 Photons as qubits

So far, a theoretical framework has been introduced, which is basically needed for the dis-
cussion of the experimental results presented in the subsequent chapters. What is, however,
still missing is a short overview on the actual practical possibilities for implementations of
entangled qubit states in physical systems. This should be made up for in the subsequent
paragraphs before the presentation of the underlying new results of this work starts with the
next chapter.

The definition of a qubit (Def. 1.2.1) suggests that any quantum physical system which
possesses two distinct states can be used for a practical implementation. Still, several other
requirements might seem to be sensible with respect to applications in quantum information
[84]. Naturally, the qubit should be well characterized in the sense that its defining inter-
nal parameters as well as its external coupling to environmental influences and other qubits
are accurately known. The physical system supporting the qubit should be scalable, i.e., it
should have the capacity for more qubits, as a single qubit is hardly useful for any sensible
application. Further, it should be possible to initialize the qubit in a well defined state and
apply to it the previously mentioned set of universal quantum gates. In this connection it is
of course important that the time scale on which the gates act on the qubits is sufficiently
small compared to the time in which the state decoheres; or, to put it the other way round,
the decoherence time of the qubit should be small compared to the gate operation time. Fi-
nally, obtaining results of any computation requires the ability to measure specific qubits.
In particular with respect to communication it is reasonable to have additionally a well con-
trollable interface at hand between stationary qubits, adapted for the localized processing of
information and mobile qubits, suited for the remote transportation of information.

Obviously there is not the ideal qubit, and the used physical system has to be chosen
according to the actual task to be accomplished. Several different realizations already exist
as for example trapped ions, quantum dots, atoms in optical lattices etc., all of them each
in a different stage of development (for a survey see [85]). However, especially for quantum
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communication photons are doubtlessly the preferred choice for many obvious reasons. Basi-
cally all of the above criteria are met by them, still some certainly better than others as shall
become clear in the course of these last paragraphs of the chapter.

1.3.1 Encoding of information in polarization and its manipulation

Due to the algebra presented on page 14 et seqq. the intuitive association with a qubit is a
spin one-half particle. Spin one particles like photons do not seem to be the proper system
at first glance, due to their three level scheme. Yet, photons have the peculiarity to possess
only doubly degenerate eigenvalues for the momentum, and so, to never occur in a spin zero
state. This is closely related to the fact that they do not have a rest mass; consequently
there is no rest frame in which they could exhibit the full symmetry with respect to the
rotation group in three dimensions. The angular momentum along the direction of motion
of a photon propagating in well defined spatial mode, has therefore two values, ±1. With
this restriction, the photon’s spin relates to the polarization of its vector wave function (see,
e.g., [86]). Thus, the photon’s polarization represents a two-state quantum system which is
indeed well described by the spin one-half algebra and suitable for representing a qubit. Such
photonic qubits are used for all the experiments discussed in this work and the following
convention is chosen:

The computational basis states |0 〉 and |1 〉 are encoded in the states |H 〉i and |V 〉i,
denoting the state of a single photon in the spatial mode i with linear horizontal and linear
vertical polarization, respectively. Most of the time the spatial mode will be evident from the
context and hence the subscript be omitted,

|0 〉 ↔ |H 〉, |1 〉 ↔ |V 〉. (1.51)

In agreement with this encoding the eigenstates of �x are given as linear diagonal polarization
states (|± 〉) and the eigenstates of �y as right (|R 〉) and left (|L 〉) circular polarization states.

The polarization of photons can be easily manipulated by so-called linear retarders made
of uniaxial birefringent crystals (see, e.g., [87]). Of particular importance are half-wave plates
(hwps) and quarter-wave plates (qwps) which introduce a relative phase shift of π and π

2 ,
respectively, between the ordinary and extraordinary polarization modes of the crystal. For
an angle of θ between the principal axis and the vector of horizontal polarization the explicit
form of their transformation on the basis vectors is given by [88] (cp. Eqn. (1.27))

hwp(θ) = �(π2 , π, 2θ, 0) =
(

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
, (1.52a)

qwp(θ) = �(−π
4 ,−

π
2 , 2θ, 0) =

(
cos2(θ)− i sin2(θ) (1 + i) cos(θ) sin(θ)

(1 + i) cos(θ) sin(θ) −i cos2(θ) + sin2(θ)

)
(1.52b)

The combination of two qwps and one hwp allows for the implementation of any single-qubit
unitary operation and especially it holds that hwp(0) = �z, hwp(π4 ) = �x hwp(π8 ) = had.
For practical reasons it is sometimes convenient to have a linear retarder with an adjustable
retardation that serves as a variable phase shifter. For this purpose several experiments in
this work use a pair of Yttrium Vanadate (yvo4) crystals. These birefringent crystals are
cut, like wave plates, such that the principal axis lies in a plane parallel to the surface and
they are aligned in a way that horizontal and vertical polarization correspond to the normal
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modes. The axes of two crystals within a pair are oriented perpendicular with respect to each
other to compensate for dispersion effects. If a crystal is rotated around its axis, the optical
thickness, and so the retardation can be changed (for details, see [89] page 41 et seqq.).

In general, from an experimental point of view, the implementation of single-qubit gates
for photonic qubits is not a challenge. As photons have zero charge they scarcely interact
with their environment and, moreover, they do not have any linear self-interaction13, as for
example electrons. Therefore photons exhibit exceptional long decoherence times compared
to any time experimentally required for the gate operations. This fact, though being a
virtue concerning single-qubit operations, turns out to be a serious vice with regard to two-
qubit gates. It is easy to imagine that any controlled gate operation, like the cnot, must
be based on some kind of interaction between the involved qubits. In order to solve this
problem, non-linear effects in solid states could be used in principle, but in practice they
are unfortunately often not available at the required strength. It is possible to realize any
discrete unitary operation that relates a finite number of input and output modes with linear
optics only [90]. However, linear optical elements cannot make photons interact, but only
interfere. Consequently, the realized unitary operation is separable in the sense that it can
be decomposed in operations acting on each qubit individually. This means the ”interaction”
provided by linear optics is not sufficient to implement a two-qubit gate as, e.g., the cnot in
a deterministic manner for the polarization qubits used in this thesis [91]. This, at first, fatal
result with respect to linear optics quantum computation (loqc) was mitigated in a seminal
work by Emanuel Knill, Raymond Laflamme and Gerard Milburn (klm) [6]. They introduce
the required non-linearity in the form of ancillary modes, auxiliary entangled states, photon
counting and conditional detection. The latter means that particular events are selected or
actions performed, conditioned on the detection of photons in distinguishable modes. Using
this approach all linear optics quantum logic (loql) can be made near deterministic, i.e.,
its probability of failure can be made arbitrarily small, with increasing resources. Although
it seems that this solution would just shift the problem of performing a computation to
the one of creating the auxiliary resource states, it can be shown that even if these states
can be generated only probabilistically this does not affect the overall computation. (A
tutorial introduction to quantum computation with linear optics realizations can be found
for instance in [92].) The experiments presented in this thesis use as well the technique of
conditional detection and interferometric linear optics setups. Still, the optical networks are
probabilistic, as building them strictly in the spirit of klm would require an unrealistic and
not manageable amount of resources with current state of the art technology. The input
states are generated by the process of spdc what is subject of the following section.

1.3.2 Generation of photons

As stated above, though photons do not have a linear self-interaction in general, non-linear
effects can occur in a solid state. If an electromagnetic field interacts with a dielectric medium,
it generates electric dipole moments whose macroscopic sum results in the polarization density
~P . In an anisotropic crystal, i.e., in a crystal in which the relation between ~P and the incident
electromagnetic field ~E depends on the direction of the latter, the components Pi of the

13Self-interaction means an interaction between two particles of the same kind.
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polarization are given in the form [87],

Pi = ε0
∑
j

χ
(1)
ij Ej + 2

∑
jk

χ
(2)
ijkEjEk + 4

∑
jkl

χ
(3)
ijklEjEkEl + . . . , (1.53)

where i, j, k, l = 1, 2, 3 and ε0 is the permittivity of the vacuum; χ(1)
ij is the susceptibility tensor

of the medium and χ
(2)
ijk, χ

(3)
ijkl its pendants for non-linear effects of second and third order,

respectively. The contribution of the second order term in Eqn. (1.53) is typically ten orders
of magnitude lower than the one of the linear term. Therefore it can be usually neglected for
week fields. In contrast, for a strong pump field with frequency ωp it leads to the generation
of two new fields of frequency ωs and ωi. In terms of photons, i.e., in the language of second
quantization, this corresponds to the spontaneous conversion of a pump photon with energy
~ωp and momentum ~~kp into two photons with energies ~ωs, ~ωi and momenta ~~ks, ~~ki. These
are usually referred to as signal and idler photon. This process resembles the phenomenon of
three-wave mixing or parametric amplification known from classical electrodynamics. There,
two fields of evanescent intensity are amplified by the presence of a strong pump field in a
non-linear medium. However, the spontaneous conversion, the conversion without the prior
presence of a weak field, is purely quantum. Its mathematical treatment can be found in
standard literature like, e.g., [93].

In the conversion process energy and momentum have to be conserved [94],

ωp = ωs + ωi (1.54a)
~kp = ~ks + ~ki. (1.54b)

For a uniaxial non-linear crystal two types of spdc are distinguished according to the polar-
ization of the down converted photons:

Type I: Signal and idler are ordinarily polarized with respect to the principal axis of the
crystal.

Type II: Signal and idler are orthogonally polarized, one ordinarily, the other extraordinar-
ily.

In both cases, the pump photons are extraordinarily polarized, which means the polarization
vector lies in the plane spanned by the principal axis of the crystal and the wave vector of the
pump photon; ordinarily means the polarization vector is normal to this plane. Throughout
this thesis only the second type of spdc will be relevant.

Due to Eqns. 1.54a and 1.54b the pairwise generated photons are strongly correlated with
respect to their energy, momentum and also polarization. The latter can be exploited to
directly obtain polarization-entangled states from the spdc as shall be seen later on [95]. In
all experiments presented in the work at hand, the down conversion photons are intended to
be processed in linear optics networks which might comprise interference. Consequently, the
photonic qubits should ideally not differ in any other degree of freedom than their spatial mode
and polarization. Therefore, a proper experimental arrangement ensures that only photons
with degenerate solutions for Eqn. (1.54a) are fed into the network, i.e., only photons which
have a spectral distribution around the same central wavelength.

Eqn. (1.54b) implies that the spdc emission is conic and symmetric around the pump
beam [96]. The orthogonality in the polarization leads, however, to emission cones which are
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(a) (b)

Figure 1.7: Type ii degenerate spontaneous parametric down conversion. A uniaxial non-
linear crystal bbo is pumped by uv pulses. With a small but non-vanishing probability the
pump photons undergo a conversion process into two photons of half the wavelength. Due to
energy and momentum conservation these photons are orthogonally polarized and emitted
onto two cones. (a) In the collinear case the cones touch each other along a line. Photons
coupled along this intersection line (spatial mode a) cannot be assigned to one of the two
cones. Thus no information is available about their polarization, a fact that is essential to
obtain entanglement. (b) In the non-collinear case the ones cross and intersect along two lines
defining two spatial modes a and b. Photons emitted into these two modes cannot be assigned
to one of the cones. After proper compensation of walk-off effects caused by birefringence of
the bbo the photons are found to be in a polarization-entangled Bell state.

not concentric (see Fig. 1.7). The opening angle of each cone as well as the angle between
the cone axes depends on the angle enclosed by the pump wave vector and the principal axis
of the crystal. According to the relative orientation of the cones with respect to each other
two cases of type ii spdc are distinguished which shall be discussed in more detail in the
following paragraphs: The non-collinear case, in which the cones intersect (Fig. 1.7(b)) and
the collinear case in which the cones just touch each other (Fig. 1.7(a)) [97, 98].

Collinear spontaneous parametric down conversion

For a specific angle between the wave vector of the pump beam and the principal axis of the
crystal, the down conversion emission cones are tangent to one another along a line which is
defined by the pump beam direction (see Fig. 1.7(a)). The state of the photons which are
emitted in the spatial mode a defined by this line is best described in terms of the bosonic
creation and annihilation operators, a†, a , acting on the vacuum | 〉,

Z exp
(
−i
√

2αa†Ha†V

)
| 〉. (1.55)

Thereby, Z is a normalization constant, α depends on parameters of the crystal and is ap-
proximately proportional to the pump beam intensity. Furthermore it holds that

[a†i ,a
†
j ] = 0 = [ai,aj ], [ai,a

†
j ] = δij , with i, j ∈ {H,V }, (1.56)
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and a†i |n i 〉 =
√
n+ 1|(n+ 1) i 〉a creates, ai|n i 〉 =

√
n|(n− 1) i 〉a annihilates a horizontally

or vertically polarized photon in the spatial mode a. Expanding Eqn. (1.55) results in

Z

1− i
√

2αa†Ha†V︸ ︷︷ ︸
2 photons

−α2 (a†Ha†V )2︸ ︷︷ ︸
4 photons

+ i
√

2
3 α

3 (a†Ha†V )3︸ ︷︷ ︸
6 photons

+ . . .

 | 〉, (1.57)

and demonstrates nicely what happens in the down conversion process: In zero order the pump
beam passes the crystal without any conversion taking place. In first order a pair of photons
is created in the state |H,V 〉a what happens with probability 2Z2α2 . In second and third
order 4 and 6 photons, in the states |2H, 2V 〉a and |3H, 3V 〉a are created with probabilities
4Z2α4 and 8Z2α6, respectively, and so forth. Usually, for a continuous wave (cw) pump the
latter probabilities are so small that the higher order events can be neglected. However, for
very high pump field intensities, as they occur, e.g., in short laser pulses the second and third
order contributions can be relevant and used for the experimental generation of multi-photon
states; see for instance [99].

Non-collinear spontaneous parametric down conversion

When, starting from the collinear configuration, the angle between the pump wave vector
and the principal axis of the crystal is increased, the down conversion emission cones tilt
towards the pump beam direction and intersect each other along two lines (see Fig. 1.7(b)).
These intersection lines define two spatial modes a and b. If the photons which are emitted
along these crossing modes do not differ in any other degree of freedom than their spatial
mode and polarization, a polarization entangled state can be directly obtained from the spdc
process [95]. The reason is, that for each of these photons the spatial mode does not reveal
any information about the cone to which the photon belongs and hence does not offer any
polarization information [100],

Z exp
(
−iα (a†Hb†V + a†V b†H

)
| 〉

= Z

1− iα (a†Hb†V + a†V b†H)︸ ︷︷ ︸
2 photons

− α2

2 (a†Hb†V + a†V b†H)2︸ ︷︷ ︸
4 photons

+ . . .

 | 〉. (1.58)

In first order this results in the Bell state

|ψ+ 〉 =
1√
2

(|HaVb 〉+ |VaHb 〉) (1.59)

emitted with probability 2Z2α2 in the two modes a and b. The second order term leads with
probability 3Z2α4 to an emission of four photons in the following superposition of photon
number states

1√
3

(|2Ha, 2Vb 〉+ |2Va, 2Hb 〉+ |Ha, Va, Hb, Vb 〉) . (1.60)

It is worth to be noted that, due to bosonic bunching, the terms where two photons of
identical polarization are emitted in the same spatial mode have higher amplitude, what
means that this state is not just a product of two pairs of the form of Eqn. (1.59). The above
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description is, however, only valid if the uncertainty about the temporal origin of each of the
photons is smaller than their coherence time. In order to ensure this condition, the spectral
bandwidth of the selected photons has to be smaller than that of the pumping field [101].
Alternatively, the state of Eqn. (1.60) is observed when the photons are detected within a
time window which is smaller than the inverse of the bandwidth of the radiation [11]. These
conditions are not trivial and can be hard to achieve in practice, particularly for the usage of
a cw pump laser, because of its typically narrow spectral bandwidth [102]. For high enough
intensities also in the cw case the second order emission can become relevant, but leads
usually to the incoherent emission of two independent pairs (see e.g. [103]). Such double
pair emissions might cause problems in form of unwanted noise for quantum information
applications working with single photon pairs like, e.g., quantum cryptography [5].

For short pump pulses, like the ones used in the experiments presented in this work, the
state of Eqn. (1.60) can be obtained by filtering the down conversion emission to a reasonable
bandwidth (see next section). ”Reasonable” in this context refers to the fact that every kind
of filtering comprises in practice a trade-off between quality of the obtained state and observed
count rate14 [104].

1.3.3 Building blocks of typical setups

The previous considerations suggest that every setup of a linear optics quantum information
experiment can be divided into three building blocks: A photon source providing the qubits,
a linear optics network processing the information, and finally, a detection system registering
the qubits at the output of the network. These typical parts, as they were used in the
experiments presented later, shall be shortly discussed in the following.

Photon source

As already stated before, all experiments described in this thesis use as photon source solely
spdc of type ii in the collinear and non-collinear configuration. The process is pumped by
femtosecond uv pulses at a central wavelength of 390 nm and an average mean power between
600 and 800 mW leading to a down conversion emission in the near infrared (ir) at around
780 nm. The short pulses for the pump combine high peak intensities with short creation
time windows of the down converted photons; features, which are both highly desired in
multi-photon experiments to achieve a non-vanishing, coherent emission in the second order.
The uv pump is obtained from the second harmonic generation (shg) of femtosecond ir
pulses in a 3 mm long Lithium Borate (lbo) crystal. These ir pulses have a pulse length of
approximately 130 fs, an average mean power of 2.1 W at a wavelength of 780 nm and are
generated by a commercial mode-locked Titanium doped Sapphire (ti:sa) laser (Tsunamir,
Spectra-Physicsr) at a repetition rate of 82 MHz. The ti:sa is pumped by a cw solid-state
(diode pumped, frequency doubled Neodymium doped Yttrium Vanadate (nd:yvo4)) laser
(Millenniar, Spectra-Physicsr) with an output power of 10 W at 532 nm.

After the lbo crystal the uv emission is shaped by two cylindrical lenses to obtain a
circular beam profile in the focus. A couple of reflections at dichroic mirrors which are highly
reflective for uv and highly transmissive for ir serve to filter residual ir light in the uv beam

14Naturally, also for long pump pulses, or maybe even nearly cw pump beams, a state of the form of
Eqn. (1.60) could be theoretically observed by accordingly strong filtering. However, practically no photon
emission would be left in such a case.
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prior to the spdc. The focus of the uv beam, whose diameter is chosen to be 200 µm for
the non-collinear and 100 µm for the collinear case, is located at the down conversion crystal,
which is a 2 mm long bbo crystal cut for collinear shg. For the collinear configuration,
also dichroic mirrors are used to separate the ir down conversion emission from the residual
uv pump light. In both configurations walk-off effects caused by the birefringence of the
down conversion crystal are compensated by a combination of a hwp, switching horizontal
and vertical polarization, and a 1 mm bbo crystal. The spatial mode(s) specified by the
intersection line(s) of the down conversion emission cones is (are) fixed and exactly defined
by coupling the photons into single mode fibres [105]. Coarse spectral filtering is achieved by
spatially selecting the degenerate spdc emission, while narrow band interference filters with
a bandwidth of typically 2 or 3 nm define precisely the final spectral range of the photonic
qubits.

The broad spectral band width of the short pump pulses, though being essential to obtain
coherence in the second order emission, is also disadvantageous in some respects. Usually,
due to Eqn. (1.54) for a narrow band or cw pump there is a strict relation between the
emission angle of the down converted photons (with respect to the pump direction) and
their wavelength [106]. This leads to a dependence of the spectral from the angular width
coupled by the single mode fibres, which can be used for spectral filtering, and to optimize the
photon collection efficiency [105]. As a consequence of the broad band width of pump pulses,
comprising not a single but a whole range of pump wave vectors, Eqn. (1.54) is relaxed and
the relation between the emission direction and the wavelength washed out. Therefore the
angular range defined by the coupling optics together with the single mode fiber alone is not
sufficient for a spectral selection of the down conversion photons, and the use of additional
interference filters is indispensable. The latter, though being not a problem per se, leads
together with the lack of angular-spectral correlation in the emission to a noticeable decrease
of the photon pair collection efficiency15.

Another effect caused by the usage of very short pump pulses, is that signal and idler
emission have different spectral width [107, 108]. This leads on the one hand to a polarization
dependency of the pair collection efficiency by the same reasons as described above, and on
the other hand to a partial distinguishability of the photons within a pair which involves
problems, particularly when these photons are processed in optical networks that include
interference [109, 110].

Linear optics networks

The design of the linear optics network used in a particular experiment depends very strongly
on the state to be observed or the task to be accomplished. Two network examples and their
applications are discussed in Chap. 2 and the further course of this thesis. Therefore their
treatment shall be kept very short in this place.

In general, their advantage is that linear optical elements, such as beam splitters and
phase shifters are easy to handle experimentally. The major drawback is, as was already
mentioned in Sec. 1.3.1, that they function probabilistically.

For instance, starting from Eqn. (1.60), two beam splitters, one placed in each mode a
and b (and two phase shifters), are sufficient to obtain genuine four-photon entangled states

15The filters are typically centered around the degenerate wavelength. Thus it is easy to imagine that for
an emission which originates from the conversion of a pump photon with a wavelength slightly off the central
one, one photon of the pair is collected by the optics while the other is cut by the filter.
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Figure 1.8: Polarization analysis (pa). Every observ-
able �θ,ϕ can be measured by the use of a pbs preceded
by hwp and qwp. The pbs transmits horizontally polar-
ized photons while reflecting vertically polarized photons.
The wave plates have to be set such that they implement
the operation �

−1
θ,ϕ transforming between the eigenstates

of �θ,ϕ and �z. Detecting a photon with the apd in the
transmitted or reflected output mode of the pbs corre-
sponds then to �

±
θ,ϕ, i.e., to projecting the state of the

photon onto the positive or negative eigenvector of �θ,ϕ,
respectively.

directly from spdc [100, 111, 112] which are useful for many quantum information applications
[113–115] (see also Sec. 2.2). However, the states can be observed only under the condition
that after the beam splitter one photon is found in each of the output modes prior to the
detection. This happens only with a certain probability.

Detection system

The detection system in all experiments presented in this work consists of passively quenched
Silicon apds16 operated in Geiger mode with typical detection efficiencies in the near ir of 38%
to 48%. The detectors are preceded in each mode by a polarization analysis (pa) consisting
of a hwp and a qwp followed by a pbs. The latter transmits horizontal polarization while
reflecting vertical polarization. By properly setting the angle of the wave plates, any two
points, lain diametric on the Bloch sphere, can be analyzed. For example, putting the hwp
at an angle of π8 rotates the polarization of a photon being initially in one of the eigenstates of
�x, |+ 〉 or |− 〉 to |H 〉 or |V 〉, respectively. For this particular setting, finding a photon after
the hwp and the pbs in the transmitted (reflected) mode, means that the photon has been in
the state |+ 〉 (|− 〉) before the pa. Analogously, setting the qwp to an angle of π4 corresponds
to the analysis of |R 〉 and |L 〉, the eigenstates of �y (cp. Eqn. (1.19) and Eqn. (1.52)). Any
general operator �θ,ϕ (cp. Eqn. (1.25)) can be measured this way by accordingly adjusting the
angular setting of the hwp and qwp. More precisely, the hwp and qwp have to implement
the transformation �−1

θ,ϕ that transforms the eigenvectors of �θ,ϕ into the ones of �z,

�z = �
−1
θ,ϕ ·�θ,ϕ ·�θ,ϕ, with (1.61)

�θ,ϕ =
(
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(
θ
2

)
sin
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θ
2

)
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− exp (iϕ) cos
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2
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and �
−1
θ,ϕ = �
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− exp (−iϕ) cos

(
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) ) . (1.62b)

Detecting the photon in the transmitted mode of the pbs corresponds then to the projection
�

+
θ,ϕ (cp. Eqn. (1.26)), while a detection in the reflected mode projects according to �−θ,ϕ. For

a photon in the polarization state �, the expectation value

tr(� �θ,ϕ) = tr
(
� (�+

θ,ϕ − �
−
θ,ϕ)
)

= tr(��+
θ,ϕ)− tr(��−θ,ϕ) = ℘+ − ℘− (1.63)

16The diodes were purchased from PerkinElmerr.
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is consequently given by the difference of the probabilities ℘+ and ℘− to find the photon
in the transmitted and reflected output mode of the pbs, respectively. These probabilities
can experimentally be approximated by the corresponding relative frequencies obtained from
statistically sampling detector ”clicks” during a fixed measurement time (for further details
and error considerations see App. A). However, in order to determine the relative frequencies
correctly, the detection efficiencies of the two detectors behind the pbs have to be measured
independently as they happen to be different. Accordingly, prior to any further data evalua-
tion the raw count rates are corrected by the gauged relative efficiencies of the detectors for
the approximation of ℘+ and ℘−.

For the measurement of multi-qubit observables a pa is placed in each output mode of
the linear optics network. The conditional detection requires the registration of coincidence
events, i.e., the ”simultaneous” detection of two, three or more photons within a given time
window. To this end the electronic signal of each apd is fed into an ultra-fast coincidence
logic which is capable to register any possible coincidence event for up to eight input signals
[116]. The time window, within which the signals are considered to be coincident, is adjusted
to be less than 12 ns to ensure that photons generated in subsequent pump pulses cannot
lead to a coincidence event.

Advantages and challenges

Before proceeding with the next chapter the most important advantages and experimental
challenges of setups conceived in the way explained before shall be summarized.

The main hurdle which causes diverse problems during all the experiments of the type
described before concerns the probabilistic nature of each of the three building blocks. First,
of all the photon generation is probabilistic and not very efficient; typical values for the
creation probabilities 2α2 (see page 36 et seqq.) are 0.008 and 0.034 for the non-collinear
and collinear spdc process, respectively. The usage of higher pump intensities provides only
a limited remedy in this respect as the ”signal-to-noise” ratio is getting worse. This has
to be understood in the following way: For every experiment aiming at the generation of
n photons, all higher orders of spdc with an emission of more than n photons can lead to
faulty n-photon noise events due to non-perfect efficiencies in the detection system17. Second,
the linear optics networks, as long as they are not built along the lines of klm which would
require an enormous overhead of resources, work only with a certain probability. This makes
cascading of several logical circuits on larger scales impossible. Third and last, the detection
system is not perfect. This is a limiting factor for going to higher qubit numbers as the
probability for a coincidence detection decreases exponentially with the number of photons.

All these facts lead to an increasing measurement time in order to approximate any mea-
sured expectation value (Eqn. (1.63)) with a sensibel error. Yet, as the alignment of every
setup does not remain unchanged for an arbitrary amount of time the development of stable
linear optics setups and efficient measurement procedures is highly desirable; an ambition
that will be faced also at some places in the following chapters.

An important advantage of photonic qubits is that they show exceptional long coherence
times and can be easily and fast transported over larger distances by glass fibres or directly
through free space. Further, they can be conveniently manipulated by linear optical elements.
The required technical effort is relatively small compared to other experiments based on, for

17That means n+ x photons are emitted out of which only n are detected. These detected n photons need
not necessarily have to have the same polarization state as the photons of a ”real” n-photon emission.
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example, atomic or semi-conductor systems which involve the usage of ultra-high vacuum
or cryogenic apparatus. The ongoing and fast developing technical progress on the source-
and detection-side will help to, at least partly, overcome the above problems. Even if near-
deterministic linear optics setups are not experimentally feasible with current state-of-the-art
technology, their probabilistic functioning is still very useful in many applications in which
only a limited number of logic operations is required. This is going to be demonstrated in
the following.
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Chapter 2

Linear optics setups as tools for
quantum information

Besides an overview of the basic notions and concepts of quantum information, the previous
chapter showed that linear optics networks are important ingredients in photonic quantum
information processing.

This chapter introduces two new networks which will be used for several applications in
the course of this thesis.

The first is an all linear optics cphase gate [117, 118] (see also [119, 120]) whose novel
design is a simplification of former approaches with respect to experimental stability. As
the gate itself and the methods used for its characterization are described very detailed
in [121], this chapter just recapitulates the main results for reasons of completeness. This
comprises in particular the explanation of the gate’s functionality and the characterization
of its performance by quantum state tomography. From the latter, a matrix is derived which
describes the experimentally realized process and which will be used for simulations in Chap. 3.

The second network which is presented in this chapter is a particular setup which allows
the observation of a whole family of states (see Sec. 1.2.2) [122]. This family is discussed,
and the experimental results for the observation of some particular interesting members are
presented.

2.1 A simple linear optics controlled phase gate

In the preceding chapter it was stated that the cnot gate, together with single qubit op-
erations, is universal for quantum computation in the sense that it provides a basis for the
decomposition of any unitary transformation acting on a finite number of qubits. As the
cphase gate differs from the cnot solely by an additional single qubit rotation this uni-
versality holds equally well for the phase gate (see Sec. 1.2.3). Thus the cphase gate is an
essential tool in many quantum information applications and its experimental implementation
is of high importance. For the reasons discussed in Sec. 1.2.3 the realization of large linear
optics quantum networks along the lines of klm is not feasible with current state of the art
technology. However, as long as, for a given task, the action of a limited number of logic
operations is sufficient, and thus a probabilistic functioning tolerable, simple solutions for the
realization of two qubit logic gates exist.

Recently, different schemes were introduced [14–17] which use a combination of first- and
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Figure 2.1: Controlled phase gate
(cphase). The phase is introduced by
the second order interference of two in-
put modes a and b on a polarization
dependent beam splitter (pdbs0) which
has transmission for horizontal polariza-
tion T 0

H = 1 and for vertical polarization
T 0
V = 1

3 . To obtain equal output ampli-
tudes for any input state, polarization
dependent beam splitters with reversed
splitting ratio pdbsa,b are placed in each
mode after pdbs0. The gate operation
is applied in case of a coincidence detec-
tion between the pa in modes a and b.

second-order interference to obtain the cphase action with 1
9 probability. Yet, since first-order

interference requires stability of the setup on the order of less than the photons’ wavelength, for
multi-photon experiments more simple and stable implementations are desirable, as discussed
at the end of the previous chapter.

In the following, an alternative setup is presented, which uses only a single two-photon
interference at a polarization dependent beam splitter. The stability requirements are thereby
relaxed to the coherence length of the detected photons (≈ 150 µm) and can easily be fulfilled
without any active stabilization of the involved optical path lengths. This enables the usage
of this gate in several quantum information applications as will be shown later on.

2.1.1 The setup

The theoretical description of the action of the gate was introduced in Sec. 1.2.3. In order
to implement the controlled phase shift with linear optics, second order interference on a
polarization dependent beam splitter (pdbs) is employed. The layout of the experimental
setup is shown in Fig. 2.1. Two input modes a and b are overlapped at pdbs0 which has
perfect transmission for horizontal polarization, T 0

H = 1, while reflecting vertical polarization
with probability1 R0

V = 2
3 . The cphase action is performed under the condition that one

photon is found in each output of the pdbs0 leading to a coincidence detection between one
detector of the pa in mode a and one in mode b. Prior to the pa, beam splitters with the
reversed splitting ratio, pdbsa and pdbsb, are put in each mode to ensure equal amplitudes for
every possible combination of input states by attenuating horizontal polarization, T a,bH = 1

3 .
As every operation is characterized by its action on the basis states, it is sufficient to consider
the effect of the cphase gate on the computational basis. This shall be done in detail in the
following to better understand how the interference leads to the desired transformation. To
this end, the beam splitters are best described by their action on the bosonic creation and

1All types of beam splitters are considered to be rather loss-free, i.e., the transmission of the pdbs for
vertical polarization TV = 1−RV = 1

3
.
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annihilation operators,

pdbs0 :



a†H → a†H

a†V →
√

1
3a
†
V + i

√
2
3b
†
V

b†H → b†H

b†V →
√

1
3b
†
V + i

√
2
3a
†
V

(2.1a)

pdbsa :

{
a†H →

√
1
3a
†
H + i

√
2
3c
†
H

a†V → a†V

(2.1b)

pdbsb :

{
b†H →

√
1
3b
†
H + i

√
2
3d
†
H

b†V → b†V

, (2.1c)

where c and d are auxiliary loss modes which are not of any further importance.
For an initial input of two horizontally polarized photons, the output of the gate, after

neglecting contributions with two photons in the same mode, is given by

a†Hb†H
pdbs0−→ a†Hb†H

pdbsa,b−→
√

1
3
a†H

√
1
3
b†H =

√
1
9
a†Hb†H . (2.2)

It equals the input besides an overall amplitude expressing that a coincidence event occurs
with probability 1

9 . No interference takes place in this case. The perfect transmission for
horizonal polarization ensures that the output mode of each photon provides unambiguous
information about its input mode. The same is true for the input of one horizontally and one
vertically polarized photon. As the horizontally polarized photon is transmitted at pdbs0, a
coincidence event is detected only if the vertically polarized photon is transmitted as well

a†Hb†V
pdbs0−→ a†H

√
1
3
b†V

pdbsa,b−→
√

1
3
a†H

√
1
3
b†V =

√
1
9
a†Hb†V , (2.3a)

a†V b†H
pdbs0−→

√
1
3
a†V b†H

pdbsa,b−→
√

1
3
a†V

√
1
3
b†H =

√
1
9
a†V b†H , (2.3b)

which happens again with probability 1
9 . The decisive difference appears for two vertically

polarized photons entering the gate. Then, two possibilities, namely both photons being
transmitted and both being reflected, can lead to a coincidence detection. If the photons
are not distinguishable in any other degree of freedom, the output mode of each photon
contains no information about the input mode where the photon was coming from and both
possibilities interfere,

a†V b†V
pdbs0−→

√
1
3
a†V

√
1
3
b†V + i

√
2
3
a†V i

√
2
3
b†V

pdbsa,b−→ 1
3
a†V b†V −

2
3
a†V b†V = −

√
1
9
a†V b†V . (2.4)

As can be seen, this interference causes the desired phase shift of π when both qubits are
in the logical state |1 〉 =̂ |V 〉. The overall success probability for this to happen is 1

9 . As
explained in Sec. 1.3.1, the probabilistic nature of the setup is a consequence of the usage of
purely linear optical elements.
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2.1.2 A model for gate characterization

Working with real components naturally implies deviations from the ideal theoretical gate
operation. The main source of error in the scheme is deficient interference of the photons at
the pdbs0. As can be seen from Eqn. (2.4), if the photons do not interfere, the probability to
obtain a coincidence event is enhanced for the input a†V b†V . In this case not the amplitudes
but the probabilities for both possibilities add up, resulting in a coincidence probability ℘vv
of

℘vv =
(

1
3

)2

+
(
−2

3

)2

=
5
9
, (2.5)

which is by a factor of five higher than for the other input states.
Thus, non-perfect interference leads to input state dependent noise, a fact that will be

relevant and visible in the experimental data.
A quantitative description thereof can be modeled in the following way: According to

Eqn. (2.2) – Eqn. (2.4), the experimental phase gate operation cphaseexp relying on the
conditional detection of one photon in each mode can be decomposed as a sum of two matrices,
�tt and �rr, which describe the process of transmitting or reflecting both photons,

cphaseexp = �tt +�rr, (2.6)

with

�tt =


1
3 0 0 0
0 1

3 0 0
0 0 1

3 0
0 0 0 1

3

 and �rr =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

3

 . (2.7)

If interference occurs only with a certain probability described by the parameter Q′, these
matrices act partly incoherent on an input state �, and it holds that

cphaseexp �cphase†exp = Q′(�tt +�rr) � (�tt +�rr)†

+ (1−Q′)(�tt ��
†
tt +�rr ��

†
rr). (2.8)

As can be see from Eqn. (2.8) for a non-vanishing incoherent contribution the experimental
process is not trace preserving anymore as the output probability tr(cphaseexp �cphase†exp)
becomes input state dependent. Furthermore, mixing can occur, i.e., pure states are not
mapped onto pure states anymore.

Another fact that causes deviations from a perfect mode of operation is that the real
transmission and reflection coefficients of pdbs0 and pdbsa,b do not match the ideal values.
A detailed calculation assuming them to be variable shows that they have to fulfill a couple
of conditions in order to correctly achieve the cphase action. (A detailed derivation of these
conditions can be found in [121]).

First, the reflectivity of pdbs0 should be zero for both modes,√
R0,a
H = 0 =

√
R0,b
H . (2.9)

Second, for vertically polarization the reflectivity should be twice the transmissivity,√
R0,a
V

√
R0,b
V = 2

√
T 0,a
V

√
T 0,b
V . (2.10)
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Third, in both modes the overall transmission caused by pdbs0 and pdbsa,b together should
be the same for horizontal and vertical polarization,√

T 0,a
H

√
T aH =

√
T 0,a
V

√
T aV and

√
T 0,b
H

√
T bH =

√
T 0,b
V

√
T bV . (2.11)

Under the assumption of a loss-free and symmetric pdbs0 these conditions lead to the trans-
mission and reflection coefficients described in the previous section.

2.1.3 Experimental results

In the following, the experimentally realized gate shall be characterized by so-called quantum
process tomography (qpt) [123–125]. In general, any linear process can be characterized
by performing qpt. Thereby, the process is represented by a superoperator �̂, which is
decomposed in a linear combination of a basis of unitary transformations �i, with

�̂(�in) = �out =
∑
ij

χij�i�in�
†
j , (2.12)

where the matrix χ completely describes the process. In order to obtain all components χij ,
the normalized output density matrices �kout for a tomographic set of, usually separable, input
states {�kin} are measured.

Here, the tomographic set is chosen to be the set of the 16 states {| lm 〉〈 lm | } with
l,m ∈ {H,V,+, L}. These states are prepared by feeding the first order emission of type
ii non-collinear spdc into the phase gate and adjusting the photon’s polarization through
additional polarizers in the input modes a and b. The resulting output density matrices are
reconstructed by quantum state tomography (qst) [22, 121, 126]. In qst a density matrix
is decomposed in a sum of local (Pauli) operators which can be measured in the pa. The
explicit way the qst is performed in the experiments presented here can be found in [121].
Due to the non-trace preserving character of the experimental gate, Eqn. (2.12) has to be
adjusted such that

�kout =
�̂(�kin)

tr
(
�̂(�kin)

) ⇒ �̂(�kin) = tr
(
�̂(�kin)

)
�kout, (2.13)

to account for the fact that every output state �kout occurs with probability tr
(
�̂(�kin)

)
. These

probabilities are estimated from the diagonal entries of all measured output density matrices
and χij can be evaluated via Eqn. (2.12) and Eqn. (2.13). The result, χexp, is shown in
Fig. 2.2(b)2. For better comparison, the qpt matrix of the ideal cphase gate, χth, is shown
in Fig. 2.2(a). In the representation the �i are taken as the Pauli operators with

�1 = 1⊗1, �2 = 1⊗�x, �3 = −i 1⊗�y, �4 = 1⊗�z, �5 = �x⊗1, . . . , �16 = �z⊗�z, (2.14)

and ideally

cphaseexp =
1
6

(1⊗ 1 + 1⊗ �z + �z ⊗ 1− �z ⊗ �z)

=
1
6

(�1 + �4 + �13 − �16) . (2.15)

2Only the real parts are shown since the imaginary parts are with an average of 0.000± 0.002 close to zero.
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(a) χth (b) χexp

(c) χfit

Figure 2.2: qpt of the cphase gate.
In qpt, a process is represented by a
superoperator that is decomposed in a
linear sum of a basis of unitary opera-
tors �i. The coefficients χij of this de-
composition form a matrix which char-
acterizes the realized process. Here, lo-
cal Pauli operators are chosen as basis.
(a) The matrix χ of a ideal cphase pro-
cess. (b) Measured qpt matrix for the
experimentally realized gate. The ma-
trix can be reconstructed from the out-
put density matrices of 16 different input
product states. (c) Fit of the experimen-
tal data by a theoretical model including
experimentally accessible parameters.

Comparing Fig. 2.2(a) and Fig. 2.2(b) reveals that the characteristic peaks of the theoretical
matrix are reproduced in the experimental data. However, in the latter the off-diagonal
elements are lowered indicating a lack of coherence in the process. A quantitative measure
for the match of the two matrices is the process fidelity,

Fp =
tr(χthχexp)

tr(χth)tr(χexp)
, (2.16)

which yields Fp = 0.816. A problem of χexp, which is known to happen occasionally in qpt, is
that it has non-physical negative eigenvalues due to Poissonian counting statistics. Usually,
to circumvent this flaw, a maximum likelihood approach is used, in which a physical matrix
is fitted to the experimental data. Yet, as the process is not unknown, it shall be described
by a theoretical model including the experimentally accessible parameters introduced in the
previous section. For simplicity, all transmissivities as well as reflectivities are assumed to be
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Figure 2.3: hom interference measure-
ment. For an input of two vertically po-
larized photons the optical path length
is varied in mode a. For a difference
in the path length that is significantly
bigger than the coherence length of the
photons no interference occurs as the
photons are distinguishable by the time
of arrival at the detectors. If the op-
tical path lengths in both modes are
equal the photons interfere and the co-
incidence count rate should ideally drop
by a factor of 5.

equal for both modes and
√
R0
H

!= 0. Consequently, a superoperator containing Q′ and the
remaining reflection and transmission coefficients as free parameters is fitted to χexp resulting
in χfit displayed in Fig. 2.2(c). The process fidelity for the fit is Fp = 0.846, a value that
is comparable with the one for χexp. The noise occurring in χexp for the unexpected entries
is not reproduced by χfit as it was not modeled. In order to judge how well the fit actually
agrees with the experimental data, the values of the fitted parameters can be compared with
their independently measured ones. This is the big advantage of using physically accessible
parameters in the model compared to the standard maximum likelihood technique.

For experimentally quantifying the indistinguishability of the photons arriving at pdbs0

and for the determination of Q′, a Hong, Ou, Mandel (hom) interference experiment is per-
formed [127]. Prior to the detection the photons are spectrally selected by interference filters
with a Gaussian transmission profile of width ∆λ = 2 nm. Thus, in good approximation the
photons’ complex degree of temporal coherence can be assumed to be Gaussian as well, and
the number of detected coincidences Nc is given as

Nc = C((T 0
H/V )2 + (R0

H/V )2)

(
1−Q′

2T 0
H/VR

0
H/V

(T 0
H/V )2 + (R0

H/V )2
exp

(
−x− x0

2∆2

))
. (2.17)

Here, x− x0 is the difference in the optical path length, x0 the point for which the paths are
equal, and C((T 0

H/V )2 + (R0
H/V )2) is the number of coincidences for a path length difference

that significantly exceeds the coherence length ∆ of the photons. Ideally (Q′ = 1), for
x−x0 = 0 the countrate for V V coincidences should drop by a factor of 5 (cp. also Eqn. (2.4)
and Eqn. (2.5)).

Fig. 2.3 shows a measurement of this typical dip in the coincidence countrate versus
the change in the optical path length of mode a. A fit of the data using Eqn. (2.17) with
C((T 0

H/V )2 + (R0
H/V )2), x0, ∆, Q′ as parameters and assuming the ideal values for T 0

H,V and
R0
H,V allows the estimation of the interference quality to beQ′ = 0.910±0.009. In comparison,

the fit of χexp yields a value of Q′ = 0.904 which is in good agreement.
The fitting procedure of χexp provides also estimations for the real values of the trans-

mission and reflection coefficients. A ratio of R0
V /T

0
V = 2.035 is found which agrees well with

the value of 2.019± 0.003 directly measured during the alignment of pdbs0 (see [128]). The
required equality for the overall transmission of pdbs0 and pdbsa,b for horizontal and vertical

polarization is well reproduced in mode a,
√
T 0,a
H

√
T aH = 1.00

√
T 0,a
V

√
T aV , whereas for mode b
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a deviation,
√
T 0,b
H

√
T bH = 1.16

√
T 0,b
V

√
T bV , occurs whose origin cannot be clearly identified.

However, the value is consistent with the probability ℘HV = tr
(
�̂(|HV 〉〈HV |)

)
= 0.136

derived from the diagonal entries of the measured output density matrices. Although the
characteristics of pdbs0 and pdbsa,b are not ideal, a more detailed study further varying the
parameters of χfit proves that the main source of errors in the experimental gate is indeed
the partial distinguishability of the photons leading to a lack of coherence in the interference
[121].

Recapitulatory can be stated, that the fitted superoperator reproduces well the experi-
mentally realized gate. This property makes it a useful tool for the estimation of the gate’s
performance in diverse applications. Some of them are presented in Chap. 3.

2.2 One setup for the observation of a whole family of states

The previous section introduced a linear optics setup which implements a two-qubit logic
gate. Usually in linear optics quantum information processing the used linear optics network
is especially tailored for the state to be observed. Here, a new scheme is presented which
enables the observation of a whole family of states in a single setup by the tuning of one
experimental parameter. The setup relies on the interference of the second order emission
of type ii non-collinear spdc at a polarizing beam splitter. Prior to the interference the
polarization of the photons in one mode is rotated by a hwp. Depending on its angular
setting any weighted superposition of a ghz state and a product of two Bell states can
be observed. Thus, the output of the network parameterized by the weighting describes a
family of states which is a particulary interesting subgroup of the generic family of states
introduced in Eqn. (1.43). As already mentioned in Sec. 1.2.2, the members of this generic
class exhibit many useful properties and play an important role in several applications of
quantum information. Consequently, the possibility to generate a multitude of such states
within a single experimental arrangement is of great advantage as it makes the supply of
many different state sources needless.

In the following the linear optics setup is described and the explicit form of the family of
output states is derived. After a discussion of general properties, common to the whole family,
particular interesting members are discussed in detail. The experimental results of their
observation are presented followed by a short discussion of the properties of each individual
state with regard to applications. The explicit demonstration of their employment for a
special task is postponed to Chap. 5 where the states are shown to be useful for the solution
of a multi-agent quantum game.

2.2.1 The theoretical concept and the class of states

As stated above, the starting point for the observation of the states is the second order
emission of non-collinear type ii spdc yielding four photons in two spatial modes a and c (cp.
Eqn. (1.60)). These photons are overlapped on a pbs and afterwards symmetrically split up
into four spatial modes, a, b, c, d, by two polarization independent beam splitters (bss). Prior
to the second order interference at the pbs the polarization of two of the photons is rotated
by a hwp in mode c (see Fig. 2.4). Under the condition of detecting one photon in the pa of
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each spatial mode the following state is observed,

|Ψ(α) 〉 = α|ghz 〉abcd +
√

1− α2 (|ψ+ 〉ab ⊗ |ψ+ 〉cd) , (2.18)

with
|ghz 〉 ≡ 1√

2
(|HHHH 〉+ |V V V V 〉) , (2.19)

and α ∈ [−1,−
√

2
3 ]∪ [0, 1]. This shall be derived in detail in the following by considering the

action of each optical element. To this end, again the transformation of the bosonic creation
and annihilation operators is used.

The initial state fed into the network reads

| in 〉 =
1

2
√

3

(
a† 2
H c† 2

V + 2a†Ha†V c†Hc†V + a† 2
V c† 2

H

)
| 〉. (2.20)

It is transformed by the hwp(γ) in mode c into the intermediate state

|mid 〉1 =
1

2
√

3

(
a† 2
H

(
sin(2 γ) c†H − cos(2 γ) c†V

)2

+ 2a†H a†V

(
cos(2 γ) c†H + sin(2 γ) c†V

) (
sin(2 γ) c†H − cos(2 γ) c†V

)
+a† 2

V

(
cos(2 γ) c†H + sin(2 γ) c†V

)2
)
| 〉, (2.21)

and the modes subsequently interfere at the pbs,

pbs :


a†H → a†H
a†V → ic†V
c†H → c†H
c†V → ia†V

. (2.22)

The resulting state behind the pbs will contain terms with more or less than two photons in
one mode. However, as the registration of these contributions is ruled out by the conditional
detection, they are not considered any further. Instead, the terms with exactly two photons
in each of the two output modes of the pbs are given as

|mid 〉2 =
1

2
√

3

(
sin2(2 γ)

(
a† 2
H c† 2

H + a† 2
V c† 2

V

)
+ 2 cos(4 γ)a†Ha†V c†Hc†V

)
| 〉. (2.23)

This state is further processed by symmetrically splitting the photons with two beam splitters,
bsa, bsc, into four modes according to

bsa :

a†H →
1√
2

(
a†H + ib†H

)
a†V →

1√
2

(
a†V + ib†V

) (2.24a)

bsc :

c†H →
1√
2

(
c†H + id †H

)
c†V →

1√
2

(
c†V + id †V

)
.

(2.24b)
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Figure 2.4: Setup for the observation of a whole family of states. The second order emission
of non-collinear type ii spdc, yielding two horizontally and two vertically polarized photons
in spatial modes a and c is overlapped at a pbs. Prior to the overlap the polarization of
the photons in mode c is rotated by a hwp. After the interference at the pbs, the photons
are symmetrically split in four spatial modes a, b, c, d. Under the condition of detecting one
photon in the pa in each output mode the desired states are observed. The family of states
is parameterized by the angular setting of the hwp. Relative phases between horizontal and
vertical polarization of the photons can be adjusted by pairs of birefringent yvo4 crystals.

Under the condition that the photons distribute at the bss such that one is found in each
spatial mode the final desired output state is

|out 〉 = − 1
4
√

3

(
2 sin2(2 γ)

(
a†Hb†Hc†Hd †H + a†V b†V c†V d †V

)
+ cos(4 γ)

(
a†Hb†V c†Hd †V + a†Hb†V c†V d †H + a†V b†Hc†Hd †V + a†V b†Hc†V d †H

))
| 〉. (2.25)

This state is not normalized expressing the fact that the linear optics network works only
with a certain probability. Taking this into account, it can be concluded that the setup leads
to the observation of the (normalized) state3

|Ψ(γ) 〉 =
2 sin2(2 γ)√

5− 4 cos(4 γ) + 3 cos(8 γ)
(|HHHH 〉+ |V V V V 〉)

+
cos(4 γ)√

5− 4 cos(4 γ) + 3 cos(8 γ)
(|HVHV 〉+ |HV V H 〉+ |V HHV 〉+ |V HV H 〉) (2.26)

with probability

℘Ψ(γ) = 〈 out |out 〉 =
1
48
(
5− 4 cos(4 γ) + 3 cos(8 γ)

)
. (2.27)

3The global phase of −1 can be omitted.
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Figure 2.5: Probability that the pho-
tons leave the network one in each out-
put mode, which is the condition to ob-
serve the state |Ψ(α) 〉. The probability
℘Ψ(γ) for this to happen depends on the
angular setting γ of the hwp in front of
the pbs. It reaches a maximum of 0.25
for γ = 45 ◦ and a minimum of ≈ 0.03
for γ ≈ 17.63 ◦.

A plot of ℘Ψ(γ) is shown in Fig. 2.5. The probability that one photon is found in each
output mode of the network depends obviously on γ, i.e., some states are produced more
efficiently than others. It reaches a maximum of 0.25 for γ = 45 ◦ and a minimum of ≈ 0.03
for γ ≈ 17.63 ◦.

Comparing Eqn. (2.26) and Eqn. (2.18) reveals the relation between the angle γ and the
amplitude α,

|α | = 2
√

2 sin2(2 γ)√
5− 4 cos(4 γ) + 3 cos(8 γ)

and sgn(α) =

{
+1, for 0 ≤ γ ≤ π

8

−1, for π
8 < γ ≤ π

4

(2.28)

for γ ∈ [0, π4 ]. Thus, by rotating the hwp prior to the interference at the pbs indeed the
subgroup of Gabcd (see Eqn. (1.43)) denoted by Eqn. (2.18) can be observed. Precisely, this
subgroup is defined by

a = d =
2 sin2(2 γ)√

5− 4 cos(4 γ) + 3 cos(8 γ)
(2.29a)

b =

∣∣∣∣∣ 2 cos(4 γ)√
5− 4 cos(4 γ) + 3 cos(8 γ)

∣∣∣∣∣ (2.29b)

c = 0. (2.29c)

As a, b, c, d are by definition complex numbers with non-negative real part, the minus sign
occurring in the function of Eqn. (2.29b) for γ > π

8 has to be absorbed in local unitaries.
For some reasons which will become clear later on, it is desirable to modify the setup in

a way that it yields the state

|Ψ′(α) 〉 = α|ghz′ 〉abcd +
√

1− α2 (|ψ+ 〉ab ⊗ |ψ+ 〉cd) , (2.30)

with
|ghz′ 〉 ≡ 1√

2
(|HHV V 〉+ |V V HH 〉) . (2.31)

|Ψ′(α) 〉 and |Ψ(α) 〉 are, however, equal up to a local unitary operation. They differ in a bit
flip, i.e., �x, on qubits a and b (or c and d) which can be implemented by inserting an additional
hwp at an angle of π

4 in mode a (or c) right behind the pbs. As this additional element is not
essential for the principal functioning of the linear optical network it was omitted in the above
considerations. Accounted for, it would alter Eqn. (2.23) and Eqn. (2.25) just by exchanging
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B−4 (1− α2): iixx, iiyy, xxii, yyii

B−3 (2α2 − 1): iizz, zzii

B−2 (α
√

2− 2α2): ixix, ixxi, iyiy, iyyi, xiix, xixi, yiiy, yiyi

B−1 (−α2): iziz, izzi, ziiz, zizi

B0 (1): iiii, xxxx, yyyy, zzzz

B+1 (α2): xyxy, xyyx, yxxy, yxyx

B+2 (−α
√

2− 2α2): xzxz, xzzx, yzyz, yzzy, zxxz, zxzx, zyyz, zyzy

B+3 (1− 2α2): xxyy, yyxx

B+4 (α2 − 1): xxzz, yyzz, zzxx, zzyy

Table 2.1: Correlations of |Ψ′(α) 〉. The family of states |Ψ′(α) 〉 has at most 40 non-zero
values of Tijkl out of which 21 describe real four-qubit correlations. The correlations are all
polynomials of α, and according to the explicit dependence, they form blocks, Bi.

a†H for a†V and vice versa. Naturally, |Ψ′(α) 〉 must form the same subgroup of Gabcd with
identical conditions for a, b, c, d in Eqn. (2.29a) – Eqn. (2.29c). States of the structure of
|Ψ′(α) 〉 are experimentally observed in the following, while |Ψ(α) 〉 is used in the experiment
described in Chap. 5.

Before proceeding with the presentation of the experimental results, some general proper-
ties of this subgroup with respect to measurement correlations shall be discussed in the next
section. The properties are not influenced in a relevant way by the local bit flips, but will be
indicated if necessary.

2.2.2 Interesting states in terms of correlations

The states represented by the form of Eqn. (2.30) (and Eqn. (2.18)) can be conveniently
characterized by their correlation tensor Tijkl, with

|Ψ′(α) 〉〈Ψ′(α) | = 1
16

∑
ijkl

Tijkl(�i ⊗ �j ⊗ �k ⊗ �l), (2.32)

where i, j, k, l ∈ {0, x, y, z}, �0 ≡ 1 and

Tijkl ≡ tr
(
|Ψ′(α) 〉〈Ψ′(α) | · (�i ⊗ �j ⊗ �k ⊗ �l)

)
. (2.33)

Straight forward calculation shows that Tijkl has at maximum 40 non-zero entries out of
which 21 do not contain �0 and thus describe real four-qubit correlations. The entries are
all polynomial in α and summarized in Tab. 2.1. Here and in the following, Tijkl or the
corresponding measurement settings will be often shortly denoted as ”ijkl”, such that, e.g.,
ixyz =̂ T0xyz. As can be seen the correlations are grouped in blocks, Bi, each of which exhibits
the same dependence on α. These blocks become slightly reshuffled when considering |Ψ(α) 〉
instead of |Ψ′(α) 〉. The unitary transformation (1 ⊗ 1 ⊗ �x ⊗ �x) relating these two states
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leads to a minus sign (see Eqn. (1.21)) for particular terms when applied to the correlation
operators, (1⊗ 1⊗ �x ⊗ �x)† · (σi ⊗ σj ⊗ σk ⊗ σl) · (1⊗ 1⊗ �x ⊗ �x),

(α
√

2− 2α2): iyiy, iyyi, yiiy, yiyi −→ −(α
√

2− 2α2)

(−α2): iziz, izzi, ziiz, zizi −→ +(α2)

(α2): xyxy, xyyx, yxxy, yxyx −→ −(α2)

(−α
√

2− 2α2): xzxz, xzzx, zxxz, zxzx −→ +(α
√

2− 2α2).

(2.34)

However, for many applications the absolute value of the correlations is important rather than
their sign. The former is displayed in Fig. 2.6.

For particular values of α the polynomials intersect. The crossing points indicate dis-
tinguished states which have the property that two or more blocks of correlations take the
same value. From this point of view these states can be considered as being interesting
and possibly promising candidates for different applications. Indeed, well known four-qubit
entangled states, such as the ghz state (α = 1) [62] and the state directly obtained from

non-collinear spdc (α =
√

2
3) (see page 36 and [100]), correspond to the crossing points

(|B+2 | = |B+4 |, |B0 | = |B+1 | = |B+3 |) and (|B+3 | = |B+4 |, |B+1 | = |B+2 |). The state
known as the symmetric four-qubit Dicke state with two excitations (α = 1√

3
) belongs to the

intersection points (|B+1 | = |B+3 |, |B+2 | = |B+4 |). It was recently experimentally observed
and turned out to have as well interesting applications in quantum information [99, 121, 129].

The states associated with points (|B+2 | = |B+3 |) for α =
√

1
6

(
3−
√

3
)
, (|B+1 | = |B+4 |) for

α = 1√
2

and (|B+2 | = |B+3 |) for α =
√

1
6

(
3 +
√

3
)

did not make any particular appearance
in quantum information so far, but seem worth to be investigated in more detail. Especially,

the state |Ψ(
√

1
6

(
3−
√

3
)
) 〉 will be of relevance in Chap. 5.

Last, but not least, the points (|B+1 | = |B+2 |, |B0 | = |B+3 | = |B+4 |) for α = 0 denote
a product state of two Bell pairs. This state, though being not four-qubit entangled, plays
an important role (mainly) for quantum communication (see Sec. 3.1.4). Together with the
ghz state it is the only state within the family that is either perfectly (|Tijkl | = 1) or not
at all (|Tijkl | = 0) correlated. In contrast, the states |Ψ′

(
1√
2

)
〉 as well as |Ψ′

(
1√
3

)
〉 and

|Ψ′
(√

2
3

)
〉 have two correlation values between zero and one (|Tijkl | = 1

2 , |Tijkl | = 1√
2

and

|Tijkl | = 1
3 , |Tijkl | = 2

3 , respectively), followed by the states |Ψ′
(√

1
6

(
3±
√

3
))
〉 which have

three (|Tijkl | = 1
6(3±

√
3), |Tijkl | = 1√

3
).

A more detailed discussion on the general properties of |Ψ′(α) 〉 (and |Ψ(α) 〉) with respect
to qubit permutation symmetry and the residual states after the measurement or the loss of
qubits is outside the scope of this thesis, but will be carried out elsewhere. The work at
hand aims at the demonstration of the functionality of the previously described linear optics
network and the proof of its capability to serve as one source for the observation of many
different states. To this end, the next section presents the experimental results obtained for
the distinguished values of α.
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1 —
|α2 | —

|−α
√

2− 2α2 | —
|1− 2α2 | —
|α2 − 1 | —

Figure 2.6: Dependence on α of the ab-
solute values of four-qubit correlations
|Tijkl |, i, j, k, l ∈ {x, y, z}. The cross-
ing points indicate interesting states for
which several blocks of correlations take
the same absolute value.

2.2.3 Experiment

Characterizing observed sates

For the purpose of estimating how well each state can be obtained by the network, its fidelity
is determined. The fidelity F is a distance measure between two states �1 and �2 [130],

F ≡
(

tr
(√√

�1 · �2 ·
√
�1

))2

. (2.35)

In this thesis, the state �1 is usually considered as the theoretical state that should ideally
be obtained, whereas the state �2 is the one that is actually observed in the experiment. As
the former is in general pure, in contrast to the latter which is usually mixed, Eqn. (2.35)
simplifies to

F = tr (�1 · �2) = 〈 ρ |�2|ρ 〉, (2.36)

with �1 = |ρ 〉〈 ρ |. That means, the fidelity expresses the probability that the observed state
is projected onto the ideal one.

In order to see how the fidelity can be determined in practice, it is useful to express
an experimentally observed state �αexp in terms of the correlation operators, analogous to
Eqn. (2.32),

�αexp =
1
16

∑
ijkl

cijkl(�i ⊗ �j ⊗ �k ⊗ �l), (2.37)

where cijkl ≡ tr
(
�αexp · (�i ⊗ �j ⊗ �k ⊗ �l)

)
. Consequently, the fidelity is given as

F = 〈Ψ′(α) |�αexp|Ψ′(α) 〉 =
1
16

∑
ijkl

cijkl 〈Ψ′(α) |(�i ⊗ �j ⊗ �k ⊗ �l)|Ψ′(α) 〉︸ ︷︷ ︸
=Tijkl

(cp. Eqn. (2.32))

. (2.38)

While Tijkl can be calculated, cijkl need to be derived from measurements. Although the
latter constitutes in general a set of up to 256 values, it follows from Eqn. (2.38) that (in
the case of |Ψ′(α) 〉 and |Ψ(α) 〉) at most 40 of them (for which Tijkl 6= 0) are needed for the
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• measured ghz terms
• measured Bell terms
— fitted curve
· · · ideal curve

Figure 2.7: Alignment measurement
for the hwp. Measured probability
to detect the photons in a state cor-
responding to the typical ghz or Bell
terms (see text) depending on the an-
gular setting γ of the hwp.

evaluation of the fidelity. Due to the special correlation structure of |Ψ′(α) 〉4 it turns out
that even a measurement of up to 21 four-qubit correlations is already sufficient (see App. A).

Alignment

The measurement of the correlations requires some basic alignment of the experimental setup.
This concerns primarily proper adjustment of the spdc source, angular calibration of the hwp
in front of the pbs as well as the temporal and spatial mode overlap of the photons arriving at
the pbs. Furthermore, the polarizing and non-polarizing beam splitters introduce unwanted
relative phases between horizontal and vertical polarization which need to be compensated.
The latter is achieved by pairs of yvo4 crystals (see Fig. 2.4) whose orientation is usually
set once prior to the whole series of measurements. In contrast, the mode overlap needs to
be adjusted (or at least checked) for each setting of α anew, as it is subject to misalignment
within a period of typically a few days.

The angular calibration of the hwp is done in a separate setup but tested again within
the network. For this purpose the typical ghz and Bell terms are measured for varying γ. A
measurement of(

tr(|HHV V 〉〈HHV V | · �αexp) + tr(|V V HH 〉〈V V HH | · �αexp)
)

and

(
tr(|HVHV 〉〈HVHV | · �αexp) + tr(|HV V H 〉〈HV V H | · �αexp)

+tr(|V HHV 〉〈V HHV | · �αexp) + tr(|V HV H 〉〈V HV H | · �αexp)
)

is shown in Fig. 2.7. A fit of the data with the theoretically expected dependence allows the
estimation of a possible angular offset and its subsequent correction. The resulting uncertainty
in the angular setting is approximately ±0.5 ◦.

The spdc source is aligned to produce in first order emission photon pairs in the state
|ψ+ 〉. Correlation measurements of these pairs yield typical values around 0.93 in the basis
�x ⊗ �x and 0.98 in the basis �z ⊗ �z.

The spatial and temporal indistinguishability of the photons is quantified by a hom inter-
ference experiment similar to the one described in Sec. 2.1. While varying the optical path

4The correlation tensor of |Ψ′(α) 〉 and |Ψ(α) 〉 has the peculiar structure that all two-qubit correlations can
be obtained from the corresponding four-qubit correlations with the detection system described in Sec. 1.3.3
on page 39.
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Figure 2.8: hom interference mea-
surement. Two-photon coincidences be-
tween mode a and c are recorded while
the optical path length is varied in
mode a. Which coincidence event shows
the characteristic dip in the count rate
depends on the angular setting γ of
the hwp. For γ = 45 ◦ the pho-
tons are observed in the state |φ− 〉
or 1

2|HH 〉〈HH | +
1
2|V V 〉〈V V | if they

are indistinguishable or perfectly distin-
guishable, respectively. Thus, for a mea-
surement of �x⊗�x the event ++ shows
the characteristic drop in the rate.

length in mode a all possible coincidence events between modes a, b and c, d are recorded.
Which event shows the characteristic drop in the count rate depends on the angular setting
of the hwp in front of the pbs. For example for γ = π

4 the state after the pbs is given as,

|mid 〉 =
1√
2

(
a†H,t1c

†
H,t2
− a†V,t2c

†
V,t1

)
| 〉, (2.39)

where t1,2 denote an additional mode like, e.g., the photon’s time of arrival. The state is
a pure Bell state (|mid 〉 = |φ− 〉) for t1 = t2 and turns more and more into an incoherent
mixture of two horizontally and two vertically polarized photons for continuously increasing
difference between t1 and t2. This manifests in an increasing coincidence rate for the events
++ and −− once the state is analyzed in the basis �x ⊗ �x,

|mid 〉 =
1

2
√

2

(
a†+,t1c

†
+,t2

+ a†+,t1c
†
−,t2 + a†−,t1c

†
+,t2

+ a†−,t1c
†
−,t2

−a†+,t2c
†
+,t1

+ a†+,t2c
†
−,t1 + a†−,t2c

†
+,t1
− a†−,t2c

†
−,t1

)
| 〉. (2.40)

The result of such a measurement is shown in Fig. 2.8 for a ++ coincidence detection between
mode a and c. The quality of the mode overlap can be evaluated to be Q = 0.95± 0.01 (cp.
page 49). Here and in all the measurements described in the following, spectral selection of
the photons is achieved by interference filters (not shown in Fig. 2.4) with a bandwidth of
3 nm in modes a and c in front of the pbs.

Results

A product of two Bell pairs: α = 0. The first crossing point in the absolute values of
the correlations, α = 0, corresponds to a product of two Bell pairs,

|Ψ′(0) 〉 = |ψ+ 〉 ⊗ |ψ+ 〉 =
1
2

(|HVHV 〉+ |HV V H 〉+ |V HHV 〉+ |V HV H 〉). (2.41)

In this instance, the hwp in mode c has to be set to 0 ◦ as can be seen from Eqn. (2.28).
Thereby, no second order interference takes place, but the photons are ”sorted” at the pbs
such that two photons with orthogonal polarization leave each of its output ports. The
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entanglement in each pair is obtained after the symmetric splitting of the photons in the four
final output modes at the bs prior to the pa.

The state |Ψ′(0) 〉 is not four-qubit entangled and has 16 non-zero correlations out of
which nine represent four-qubit correlations (see App. B.1.1). A measurement of these nine
correlations yields a fidelity of the output state �(α=0) of F(α=0) = 0.874±0.013. The same data
set allows further the evaluation of the fidelity of each pair to be Fab = tr((�⊗1⊗1) �(α=0)) =
0.931± 0.012 and Fcd = tr((1⊗ 1⊗ �) �(α=0)) = 0.934± 0.012 with

� = |ψ+ 〉〈ψ+ | = 1
4

(1⊗ 1 + �x ⊗ �x + �y ⊗ �y − �z ⊗ �z). (2.42)

The fidelity of the whole state is approximately the product of the pair fidelities. This needs
not to be fulfilled in general, but is true for pure states. The entanglement of each pair can
be successfully verified using a two-qubit witness [75, 76],

� =
1
4

(1⊗ 1− �x ⊗ �x − �y ⊗ �y + �z ⊗ �z), (2.43)

with Wab = tr((� ⊗ 1 ⊗ 1) �(α=0)) = −0.431 ± 0.009 and Wcd = tr((1 ⊗ 1 ⊗�) �(α=0)) =
−0.434± 0.009; ideally 〈ψ+ |�|ψ+ 〉 = −0.5.

As the state |Ψ′(0) 〉 is a product state of two two-qubit states, it can be as well ob-
served using two independent spdc sources, each emitting the state |ψ+ 〉 (see, e.g. [131] and
Chap. 3). For some reasons this approach might be preferable in particular applications. The
quality of the states obtained from both setups is, however, comparable.

Still unknown: α =
√

1
6(3−

√
3). The state corresponding to the next crossing point

for α =
√

1
6(3−

√
3) was (to the author’s knowledge) not mentioned so far in the quantum

information literature,

|Ψ′(
√

1
6(3−

√
3)) 〉 ≡ |Sa 〉 =

√
1
6

(3−
√

3)|ghz 〉+

√
1
6

(3 +
√

3)(|ψ+ 〉 ⊗ |ψ+ 〉)

=
1
2

(√
1− 1√

3
(|HHV V 〉+ |V V HH 〉) (2.44)

+

√
1
6

(3 +
√

3)(|HVHV 〉+ |HV V H 〉+ |V HHV 〉+ |V HV H 〉)

)
.

It will, however, appear in Chap. 5 in the context of multi-agent quantum games. As can
be seen from Tab. 2.1 and Fig. 2.6 it has 40 non-zero correlations out of which 21 refer to
four-qubit correlations. In contrast to the product of two Bell pairs these correlations are not
perfect (see App. B.1.2), besides in the four standard bases iiii,xxxx,yyyy, zzzz.

In the setup the state is obtained for an angle setting of the hwp of γ ≈ 13.68 ◦. The
fidelity of the experimentally observed state �

(α=
√

1
6

(3−
√

3))
is determined from a measurement

of the state’s 21 correlations to be F
(α=

√
1
6

(3−
√

3))
= 0.755±0.014. The results are summarized

in Tab. B.4.
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The symmetric four-qubit Dicke state: α = 1√
3
. The next crossing point for α = 1√

3
corresponds to a state that is well known, the symmetric four-qubit Dicke state with two
excitations,

|Ψ′( 1√
3
) 〉 ≡ |D(2)

4 〉 =

√
1
3
|ghz 〉+

√
2
3

(|ψ+ 〉 ⊗ |ψ+ 〉)

=
1√
6

(|HHV V 〉+ |V V HH 〉 (2.45)

+ |HVHV 〉+ |HV V H 〉+ |V HHV 〉+ |V HV H 〉) .

Generally, a symmetric N -qubit Dicke state [132, 133] with M excitations is the equally
weighted superposition of all permutations of N -qubit product states with M logical 1s and
(N − M) logical 0s, here denoted by |D(M)

N 〉. The Dicke states naturally appear as the
common eigenstates of the total spin-squared and the spin z-component operators (where z is
assumed to be the quantization direction) in spin one-half particle systems. Besides the state
studied here, another well known example for a Dicke state is the N -qubit W state |WN 〉 (in
the present notation |D(1)

N 〉) [134]. While other symmetric Dicke states have maximum overall
spin, D(2)

4 is the eigenstate which has minimum spin component along the quantization axis; a
fact that leads to a set of interesting properties [99, 121, 129]. For instance, choosing a proper
basis, the Dicke state allows to obtain either a three-qubit w state or a ghz class state by a
simple projective measurement on any of its qubits [135, 136]. This is remarkable as these
resulting states cannot be transformed into each other by means of slocc (see Sec. 1.2.2).
Furthermore, D(2)

4 can be used as a resource for quantum information applications such
as Telecloning [113], Open destination teleportation [137], and certain quantum versions of
classical games [138].

The angular setting to obtain the Dicke state in the setup is γ = 15 ◦. A measurement of
its 21 four-qubit correlations yields a fidelity of F(α= 1√

3
) = 0.709 ± 0.013. Using the generic

witness of the Dicke state �
D

(2)
4

with tr(�
D

(2)
4

�
(α= 1√

3
)
) = 2

3 − F(α= 1√
3

), this fidelity is high

enough to conclude that the experimentally observed state �(α= 1√
3

) is four-qubit entangled

[139].

Due to the special structure of the state, there exists an alternative setup for the obser-
vation of D(2)

4 : As all terms in Eqn. (2.45) are equally weighted, the Dicke state can be seen
as the superposition of the six possibilities to distribute two horizontally and two vertically
polarized photons into four modes. Accordingly, the second order emission of collinear spdc
can be used to create four indistinguishable photons with appropriate polarizations in one
spatial mode and distribute them with polarization independent bss symmetrically onto four
modes. As this type of setup does not involve interference it leads to a better state quality.
Therefore, in applications which use the Dicke state only, this experimental configuration is
preferable. It will also be used in Chap. 4.
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Figure 2.9: Pictorial representation
of the plane in state space which is
spanned by |ghz 〉 and |ψ+ 〉 ⊗ |ψ+ 〉.
All states which can be obtained with
the setup described in this section lie
within this plane. Explicitly shown are
the state vectors of the states for the
distinguished values of α. All state vec-
tors with α > 0 are symmetric around
|Sb 〉 which lies central between |ghz 〉
and |ψ+ 〉 ⊗ |ψ+ 〉.

Still unknown: α = 1√
2
. The corresponding state of the crossing point for α = 1√

2
is the

intermediate state of the ghz and the product of two Bell pairs,

|Ψ′( 1√
2
) 〉 ≡ |Sb 〉 =

1√
2
|ghz 〉+

1√
2

(|ψ+ 〉 ⊗ |ψ+ 〉)

=
1
2

(
|HHV V 〉+ |V V HH 〉 (2.46)

+
1√
2

(|HVHV 〉+ |HV V H 〉+ |V HHV 〉+ |V HV H 〉)
)
.

In the plane of state space spanned by |ghz 〉 and the product |ψ+ 〉 ⊗ |ψ+ 〉 it lies halfway
between these states. This plane and the state vectors for different values of α are depicted
in Fig. 2.9.

The correlation tensor of |Sb 〉 has 36 non-zero terms, out of which 19 concern four-
qubit correlations. A measurement of these correlations with γ ≈ 16.38 ◦ yields a fidelity for
the experimentally observed state �(α= 1√

2
) of F(α= 1√

2
) = 0.677 ± 0.013. In this instance, a

statement about the four-qubit entanglement of the state is not possible.

Psi-four: α =
√

2
3 . The crossing point for α =

√
2
3 corresponds to a state which has the

reversed weighting compared to the Dicke state,

|Ψ′(
√

2
3) 〉 ≡ |Ψ±4 〉 =

√
2
3
|ghz 〉 ±

√
1
3

(|ψ+ 〉 ⊗ |ψ+ 〉)

=
1√
3

(
|HHV V 〉+ |V V HH 〉 (2.47)

± 1
2

(|HVHV 〉+ |HV V H 〉+ |V HHV 〉+ |V HV H 〉)
)
.

It is also well known and was first discussed as a four-photon entangled state that can be
directly obtained from non-collinear spdc [100]. To this end the overlap at the pbs is in
principle not necessary and splitting the photons of the second order emission symmetrically
in four output modes by two bss is sufficient [111, 112]. Two lu equivalent versions of this
state5, |Ψ+

4 〉 and |Ψ−4 〉, can be found in literature and both can be observed in the present
5It holds, e.g., that |Ψ+

4 〉 = (�z ⊗ �z ⊗ 1⊗ 1) · |Ψ−4 〉.
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(a) xxxx (b) yyyy

(c) zzzz

Figure 2.10: Histograms of the four-
photon coincidence statistics of |Ψ−4 〉 for
different measurement settings. Slots at
the ordinate indicate different events for
a particular basis setting: e.g. 0011 for
basis zzzz means detection of photons
in the state |HHV V 〉. (a) Correlation
measurement for xxxx. (b) Correlation
measurement for yyyy. (c) Correlation
measurement for zzzz.

setup for γ ≈ 17.63 ◦ and γ = 45 ◦, respectively. These states have special properties which
make them useful for a couple of quantum information applications. For instance, the state
|Ψ−4 〉 is a four-qubit entangled state which is invariant under any local unitary operation
acting in the same way on each qubit. Therefore, it plays an important role in decoherence
free communication [114]. Other applications, for the states |Ψ±4 〉 are, e.g., Telecloning [113]
or four-party secret sharing [115, 140].

Like D(2)
4 , the state |Ψ±4 〉 has also 40 non-zero terms of Tijkl out of which 21 describe

four-qubit correlations. Even the absolute values |Tijkl | are the same, but for different sets
of {ijkl}. The results of a typical correlation measurement are shown for the state |Ψ−4 〉
in Fig. 2.10 as they demonstrate the invariance property of the state with respect to some
local unitary transformations. As just mentioned, if the applied operation is the same for
each qubit, like a basis transformation between xxxx, yyyy and zzzz, the state remains
unchanged. This can be seen in Fig. 2.10(a) – Fig. 2.10(c) which exhibit the same term
structure for each basis.

The evaluation of all 21 correlations yields a fidelity of the experimental state �−
(α=

√
2
3

)

to the theoretical |Ψ−4 〉 of F−
(α= 2

3
)

= 0.904 ± 0.014 and of �+

(α=
√

2
3

)
to |Ψ+

4 〉 of F+
(α= 2

3
)

=

0.651±0.019. These values differ significantly for both states. The reason is that the states are
observed for different values of γ and that the state quality, in turn, depends on this angular
setting. This is a particular feature of the used setup which will be discussed afterwards (see
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Sec. 2.2.4).
With the generic witness operator presented in [70], �

D
(2)
4

with tr(�
D

(2)
4

�
(α=
√

2
3 )

) =
3
4 − F

(α=
√

2
3

)
, at least one of the states, �−

(α=
√

2
3

)
, can be proven to be four-qubit entangled.

For real applications, considering the difference in the state quality, it is sensible to use
the setting γ = 45 ◦ and an additional hwp at an angle of 0 ◦ behind the pbs in order to
obtain the state |Ψ+

4 〉.

Still unknown: α =
√

1
6(3 +

√
3). Similar to the state |Ψ±4 〉 which has reversed weight-

ing than the Dicke state, the state which corresponds to the next crossing point for α =√
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)
,

has reversed weighting than the state |Sa 〉 and both lie centered around |Sb 〉 (see Fig. 2.9).
Consequently, |Sc 〉 has the same number of non-zero correlations as |Sa 〉 with the same
absolute values of Tijkl but for a different set of {ijkl}.

A measurement of these correlations results in a fidelity of the experimentally observed
state �

(α=
√

1
6

(3+
√

3))
to the theoretical state |Sc 〉 of F

(α=
√

1
6

(3+
√

3))
= 0.663± 0.014.

GHZ: α = 1. Probably the most famous state of the family |Ψ′(α) 〉 is the ghz state, lying
at the crossing point for α = 1,

|Ψ′(1) 〉 = |ghz 〉

=
1√
2

(|HHV V 〉+ |V V HH 〉). (2.49)

It was already experimentally observed, not only with photonic qubits [141], and plays a
central role in many quantum information applications [142–144].

Similar to the product of two Bell pairs, the ghz state has also 16 non-zero terms of Tijkl
out of which nine correspond to four-qubit correlations, and all are perfect, i.e., |Tijkl | = 1.
However, in contrast to |ψ+ 〉 ⊗ |ψ+ 〉, the ghz state is four-qubit entangled.

In the setup the state is observed for the setting γ = 22.5 ◦. As can be seen from Eqn. (2.21)
and Eqn. (2.23), for this angular setting of the hwp the terms which are typical for the Bell
pairs interfere destructively at the overlap. The remaining terms describe a superposition of
the instances in which two photons of identical polarization leave the same output mode of
the pbs.

A measurement of the nine correlations yields a fidelity of the experimentally observed
state �(α=1) of F(α=1) = 0.750 ± 0.013. This value is well above the threshold of F = 0.5 to
detect the experimental state to be four-qubit entangled with the generic ghz witness [145].
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Figure 2.11: Experimentally measured
fidelities F versus angular setting γ of
the hwp. The fidelity of each state de-
pends strongly on γ. This is not caused
by misalignment of the setup but can be
qualitatively attributed to different ef-
fects. A lack of perfect interference at
the pbs caused by a remaining degree of
distinguishability of the photons affects
the state quality to a different degree for
different γ.

(a) (b)

Figure 2.12: Calculation of the resulting fidelities for different experimental imperfections.
(a) Resulting fidelity including noise from third order spdc emission (—) and for an angular
offset in the alignment of the hwp in front of the pbs of 1 ◦ (—). (b) Resulting fidelity for
incoherent second order spdc emission (—), for distinguishable signal and idler photons (—)
and for insufficient spatial mode overlap at the pbs (—).

2.2.4 Discussion of the results

The previously presented measurements of the states’ fidelities show clearly that the linear
optics network allows the observation of the family |Ψ′(α) 〉. The results are summarized in
Fig. 2.11, where the fidelities F are plotted versus the angle γ of the hwp. It is noticeable
that the obtained fidelities for the different states depend obviously on the setting of γ. In
the case of |Ψ±4 〉 the difference in the fidelities is significant (as the respective values for γ are
different), although the two states are equivalent with respect to lu. As the alignment of the
mode overlap at the pbs, quantified and checked by repeated hom interference measurements
(see page 57), as well as the alignment of the spdc source was comparable for the whole series
of measurements, this feature cannot be explained by misalignment of the setup and must
therefore be intrinsic to the network.

There are a couple of reasons which lead to this fact. First of all the effective noise
originating from higher order emissions of the photon source (see page 40) is dependent
on γ. A calculation of the resulting fidelity including third order emissions is shown in
Fig. 2.12(a) (blue curve). It reaches a minimum of around 0.92 for γ ≈ 18.36 ◦. Second, an
offset error in the alignment of the hwp in front of the pbs (as discussed on page 57) causes
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an angular dependent impairment of the fidelities. The result is displayed in Fig. 2.12(a)
(red curve) for an offset of 1 ◦. As can be seen the effect is moderate and degrades the
fidelity maximally by about 0.02 for γ ≈ 17.69 ◦ Third, the various reasons for a given degree
of distinguishability of the photons, and thus imperfect interference, have differently strong
impact on different states. For example, assuming that there is, for what ever reason, some
timing information left concerning the generation of the photons, the second order spdc
emission is, to a certain extent, described by two distinguishable pairs, rather than by a
coherent four-photon emission (see page 36). Fed into the network, this would not affect the
observation of the state |ψ+ 〉 ⊗ |ψ+ 〉 (see page 58 et seqq.), while being fatal for the one of
other states containing four-photon entanglement. The fidelity for a completely incoherent
emission is depicted in Fig. 2.12(b) (red curve). Here a minimum of around 0.18 is reached
for γ ≈ 19.39 ◦. An almost opposite behavior is expected for the following scenario: The
second order emission be coherent, but the signal and idler photons be distinguishable by,
e.g., their spectral width what is typical for spdc with ultra short pump pulses (see page 38).
This strongly affects the state |ψ+ 〉⊗|ψ+ 〉, whereas it has no significance for the observation
of |Ψ−4 〉. The latter is a peculiar incident occurring in the network for γ = 45 ◦. For this
particular angle setting the photons are ”sorted” at the pbs such that the spectral information
factors from the polarization information. As a result, the spectrum has no influence on the
entanglement of the state. This was first discovered and also experimentally studied by
Kurtsiefer et al. [146]. A calculation of the resulting fidelity for perfectly distinguishable
photons is also displayed in Fig. 2.12(b) (green curve). The minimum of approximately 0.09
is reached for γ ≈ 16.94 ◦. Another impairment of the fidelity which concerns |Ψ−4 〉 as well
as |ψ+ 〉 ⊗ |ψ+ 〉 and exhibits a modulation for median values of γ occurs for insufficient
spatial mode overlap. A calculation thereof is shown in Fig. 2.12(b) (blue curve) for perfectly
distinguishable photons. The strength of this effect can be approximately estimated from the
hom interference measurement (see page 57). Assuming that the difference in the optical
path length can be adjusted to be zero, the reduction of the quality factor Q by about 0.05
can be attributed to spatial mode mismatch.6

As can be seen, all effects seem to have their major significance for median values of
γ. This observation is in agreement with the course of the measured fidelities plotted in
Fig. 2.11. A parameterized superposition of the fidelity curves for the different effects is used
to fit the data shown in Fig. 2.11. As it is difficult to separate the above described effects
experimentally from each other and to estimate how strongly each of them actually contributes
to the distribution of the measured fidelities, this fit has to be treated with care. It has to be
seen as a qualitative rather than a quantitative explanation for the angular dependence of the
fidelities. Furthermore, the different reasons for a partial distinguishability of the photons do
not need to be independent and might partially account for each other.

However, very recent measurements with an increased spectral indistinguishability of the
photons by the use of different interference filters7 yield an improvement of the fidelities of
up to 0.1. With a fidelity range of 0.75 to 0.93 (instead of 0.66 to 0.90) the improvement
concerns predominantly the median values of γ and thus damps the angular dependence.

6 For an angular setting of γ = 45 ◦ a possible spectral distinguishability of the photons has no effect on
the dip visibility for the same reasons as discussed previously for |Ψ−4 〉.

7The new filters have a transmission profile close to a rectangular distribution instead of a Gaussian one.
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2.3 Conclusion

This chapter has presented two new linear optics networks. The first was a cphase gate which
belongs to the set of universal quantum logic gates necessary for quantum computation. The
design of the gate is particularly interesting for applications in multi-photon experiments as
it constitutes an improvement of former realizations with respect to stability and reliability.
This is achieved by replacing (phase-dependent) single-photon interferometers for different
polarizations by a polarization-dependent (but phase-independent) two-photon interference.
The performance of the experimental gate was characterized by quantum process tomography
in combination with a theoretical model based on experimental parameters of the setup. Close
examination of the results shows that the main deviation from optimal gate operation is due
to a remaining degree of distinguishability of the photons causing imperfect interference. Still,
as shall be demonstrated in the next Chapter, the gate is a useful tool in various applications.

The second network, fed with the second order emission of non-collinear type ii spdc,
represents a tunable source of a whole family of states. This is a significant achievement
as up to now the observation of a particular state required an individually tailored setup.
With the previously described network many different states can be obtained within the same
arrangement by the tuning of an easily accessible experimental parameter. Furthermore these
states form a subgroup of an important generic family of four-qubit entangled states. The
performance of the setup was characterized by selected fidelity measurements for distinguished
states of the subgroup. These states can be obtained with fidelities which are comparable with
the ones achieved in alternative, state tailored setups. The dependence of the state quality
on the tuning parameter in case of imperfect interference is still suboptimal. However, this
effect can be reduced by further technical improvements and first steps in this direction are
promising. The applicability of the setup will be demonstrated in Chap. 5 where the obtained
states are used for the implementation of a multi-agent quantum game.



Chapter 3

Applications of a controlled phase
gate

In Chap. 2 a scheme for a simple linear optics phase gate was introduced. This chapter deals
with the applications of this gate for different quantum information tasks. The setup is the
same for all the applications described herein. However, the evaluation of the obtained data
is done from different perspectives corresponding to the various applications. As explained in
Sec. 1.2.3, a cphase gate can be used to transform between an entangled state and a product
state basis. From this point of view it can be applied to entangle or disentangle states. The
following two sections deal with the latter: there the gate is used to perform a complete Bell
state analysis. The last section of this chapter is devoted to the entangling capabilities of
the gate. In this respect it will be shown that a four-photon cluster state can be observed by
entangling photons from two Bell pairs.

3.1 Teleportation and entanglement swapping with complete
Bell state analysis

The processing of quantum information is inevitably connected with its transportation. As
long as quantum channels are available, i.e., channels capable of carrying qubits, the latter
task seems not to be a major problem. The situation changes, however, if exclusively classical
channels, i.e., channels able to convey only classical bits, can be used. They are obviously not
sufficient, as the information needed to describe the qubit’s state is infinite (see Sec. 1.2.1).
Thus, a classical approach of a local state measurement followed by an remote state prepa-
ration cannot be used to ”transfer” an unknown quantum state from one location to another
via the exchange of classical information.

However, quantum teleportation provides a method to faithfully transmit (”teleport”)
quantum information via a classical channel by exploiting entanglement as a resource [10].
The term ”teleportation” was coined by Bennett et al. as in the protocol, which was pro-
posed by them, a potential sender does neither need to know the state to be transmitted nor
the location of an intended, arbitrarily remote receiver. The case in which the state to be
teleported is not simply unknown, but not determined at all as it is itself part of an entangled
state is called entanglement swapping [11]. As a result of the protocol, two qubits which have
never interacted in the past become entangled. From this point of view it can thus be seen as
the teleportation of entanglement. Both protocols, though being interesting on their own, are
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Figure 3.1: Circuit diagram for
quantum teleportation. The cir-
cuit ”teleports” an arbitrary un-
known quantum state |χ 〉 from
Alice’s side to Bob’s. Besides a
shared maximally entangled state
as resource it requires the ex-
change of classical information.

fundamental building blocks in many other quantum information and communication appli-
cations (see, e.g., [147–151]). Thus, their experimental implementation is of vital importance.
In the following the two protocols shall be shortly recapitulated.

3.1.1 The protocols

Teleportation

Alice and Bob be two parties who are connected by a classical communication channel. Alice
possess a qubit whose state |χ 〉 she wants to transmit to Bob. There be no quantum channel
available between them at this moment. Yet, it is assumed that they share a maximally
entangled two-qubit state, i.e., Alice and Bob possess each one of the qubits. For convenience
this state be |φ+ 〉. The sharing of the state might have happened in earlier times when the
parties met or howsoever. Alice and Bob can use the entanglement contained in the state as
a resource to transmit quantum information by just sending classical bits. To this end, in the
first step of the protocol, Alice needs to couple the state she intends to transmit to her part
of the entangled pair. Precisely, she has to perform a projective von Neumann measurement
on these two qubits in the Bell basis. This can be accomplished by the application of a cnot
gate followed by a had operation on |χ 〉 and subsequent measurement of both qubits in the
computational basis, see Circ. 1.45. In the second step of the protocol she communicates the
result m1 for the first qubit and the result m2 for the second qubit to Bob via the classical
channel. Depending on these two bits of classical information, Bob applies one of four unitary
operations, (�m1

x ·�m2
z ), on his part of the shared state. As a result of this third and last step

he obtains the quantum state to be transmitted. The corresponding quantum circuit is shown
in Fig. 3.1. The proof for this circuit to work is easily given by straight forward calculation
(see, e.g., [35]).

At this stage there are two things which are important to note:
The protocol does neither violate causality nor the so-called no-cloning theorem. The

name ”teleportation” might suggest an instantaneous state transfer, but this is easily seen to
be wrong. In order to recover Alice’s original state Bob must know the measurement result
to properly apply one of the four transformations. Without this information, which can reach
him maximally at the speed of light, the qubit he possesses is in a completely mixed state
and thus contains zero information. Consequently, the quantum state is not instantaneously
transferred.

What is generally known today as the ”no-cloning theorem” is the observation that the
linearity of quantum mechanics forbids the cloning or copying of an unknown quantum state
[152, 153]. The fact that the teleportation protocol does not break with this law is ensured by
the Bell projection measurement. Alice, by projecting the state to be teleported and her half



3.1 Teleportation and entanglement swapping 69

of the shared Bell pair into a common maximally entangled state, destroys all the information
about the qubit on her side (see Sec. 1.2.2). Otherwise, if this measurement is not perfect,
in the sense that Alice does not project onto a maximally entangled state and thus retains
partial information on the initial state, Bob will not be able to recover the full information
on his side.

Naturally, the Bell projection measurement can be equally well accomplished by the usage
of a cphase instead of a cnot gate. This leads to minor differences which shall be shortly
discussed as the experiments presented later use the cphase. The equivalent quantum circuit
in this case is given as,

|χ 〉
Alice

• h NM

m1

•
�x ⊗ �x

Alice
z h NM


m2

•
|φ+ 〉

Bob
h xm2 zm1 |χ 〉.
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(3.1)

The two had gates on Alice’s side followed by a measurement in the computational basis can
be interpreted as a measurement in the basis �x ⊗ �x. Together with the preceding cphase
gate this corresponds also to a Bell projection measurement, however in a different Bell basis.
The cphase transforms between the following product and entangled basis states,

|++ 〉
cphase−−−−⇀↽−−−−

1√
2

(|0+ 〉+ |1−〉) ≡ | φ̃+ 〉 (3.2a)

|+−〉
cphase−−−−⇀↽−−−−

1√
2

(|0−〉+ |1+ 〉) ≡ | ψ̃+ 〉 (3.2b)

|−+ 〉
cphase−−−−⇀↽−−−−

1√
2

(|0+ 〉 − |1−〉) ≡ | φ̃− 〉 (3.2c)

|−− 〉
cphase−−−−⇀↽−−−−

1√
2

(|0−〉 − |1+ 〉) ≡ | ψ̃− 〉 (3.2d)

As this Bell basis differs from the standard one in a had rotation on the second qubit, Bob
has to compensate for this difference in order to retrieve the original input state |χ 〉. This
means, additionally to one of the four unitary operations (1, �x, �z, �x · �z = i�y), he applies
a had gate on his qubit (cp. Circ. 3.1). The rest of the teleportation protocol runs exactly
in the same way as described before.

Entanglement swapping

In the teleportation protocol the state to be teleported, though it might be arbitrary and
unknown to Alice, is well defined. This is not the case if the input qubit itself is part of an
entangled state. If the above described protocol is run analogously under such circumstances
it is usually referred to as entanglement swapping [11]. The name was coined by Żukowski
et al. as in this instance two particles can be entangled which do not share any common
past. The entanglement is, so to say, ”swapped” from one pair of qubits to another. The
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corresponding quantum circuit is very similar to Circ. 3.1 and given as,

a
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(3.3)

The starting point is given in form of two Bell states (for convenience they be both |φ+ 〉) with
the qubits labeled by a, b, c, d. Rewriting this input state immediately reveals the concept
of the protocol,

|φ+ 〉ab|φ+ 〉cd =
1
2

(
| φ̃+ 〉ad| φ̃+ 〉bc + | ψ̃+ 〉ad| ψ̃+ 〉bc + | φ̃− 〉ad| φ̃− 〉bc + | ψ̃− 〉ad| ψ̃− 〉bc

)
. (3.4)

As can be seen, a projective measurement of qubits b and c in the Bell basis, projects qubits
a and d likewise in a Bell state. In which Bell state the latter are projected depends on
the outcome of the measurement on the former. To account for this, the corresponding
local operations on qubit d are applied conditioned on the results m1 and m2. Hence, the
output state of qubits a and d equals the input state of qubits a, b or c, d, respectively. If
it is, however, just important to entangle qubits a and d, the conditioned operations are not
necessary and can be skipped. As a result qubits a, d will be in anyone of the four Bell states.

3.1.2 The implementation

As can be learned from the above discussion, the essential step involved in both protocols is
the Bell projection measurement, which requires two-qubit logic gates. Hence, teleportation
could be demonstrated already with a number of different systems, where the gate operations
are possible [154–157]. However, while photons doubtlessly are the most proper quantum
system for communication tasks, the implementation of two photon quantum gates is not
straight forward as there is no photon-photon interaction with reasonable coupling strength
(see Sec. 1.3). There are deterministic schemes realizing the gate operation which rely on
entanglement in additional degrees of freedom, but they are not suited for teleportation [158].
Therefore, beginning with initial experiments [131, 159], two photon interference [160, 161]
was employed to identify up to two of the four Bell states and, recently, a probabilistic
identification of three Bell states using positive operator-valued measure (povm)1 operators
was demonstrated [162, 163]. Quantum teleportation of a photon polarization state with
complete Bell state analysis was also demonstrated using non-linear effects [164], though
with vanishingly small probability. To perform similar experiments with linear optics gates
was up to now not possible as the existing solutions [14–17] were not stable enough to be
applied within multi-photon setups. This has changed, however, with the development of the
simplified cphase gate described in Sec. 2.1. In the following, it will be shown that and how
this gate can be used in a teleportation and entanglement swapping protocol.

1A povm is a set of Hermitian positive-semidefinite operators {�i} which is complete, i.e.,
∑
i �i = 1. It

constitutes the most general formulation of a measurement.



3.1 Teleportation and entanglement swapping 71

Figure 3.2: Setup for quantum telepor-
tation and entanglement swapping. The
required photon states are provided by
a non-collinear spdc of type ii, which
is operated in a double pass configura-
tion. This enables photon pair emission
into four modes a, b and c, d along the
forward and backward direction of the
pump beam. For the teleportation pro-
tocol the backward emission is used as
heralded single photon source with mode
d as trigger. The polarization state of
the photon in mode c is set by a polarizer
in front of the coupling and teleported to
mode a.

In the experiment the input states are generated by non-collinear spdc of type ii (see
Sec. 1.3.2) in which the bbo crystal is pumped in a double pass configuration. That means
after passing the crystal the beam is reflected back by a uv-mirror in a distance of about
3 cm to enable spdc also into a second pair of beams. Thus, pairs of photons are emitted
along the forward and the backward direction of the pump beam, respectively. The photons
propagating along the characteristic intersection lines of the emission cones are coupled into
single mode fibers defining the four spatial modes a, b, c, d, (see Fig. 3.2). The modes b
and c are coupled as input to the cphase gate. Spectral selection is achieved with narrow
bandwidth interference filters (spectral width ∆λ = 2 nm in the cphase gate and ∆λ = 3 nm
in modes a and d) before detection. The setup stays stable over several days with typical
detection rates of about 180 fourfold coincidence counts per hour.

3.1.3 Experimental results for teleportation

The goal of quantum teleportation in this setup is to transfer the most general polarization
state |χ 〉c = α|H 〉c + β|V 〉c with arbitrary amplitudes α, β of the photon in mode c onto
the photon in mode a. This requires a maximally entangled Bell state in modes a and b,
as well as the complete Bell state projection measurement between the photons in mode b
and c. The Bell state is obtained by proper alignment of the photon pair originating from
the forward down conversion which is adjusted to yield state |φ+ 〉. The photon which will
carry the state |χ 〉c is provided by the backward emission of the down conversion which is
operated as a heralded single photon source [165–167] with the photon in mode d initializing
the trigger. The polarization state |χ 〉c is prepared by a polarizer in front of the fiber coupler
in mode c and proper alignment of the fibre’s polarization controller.

Teleported states

Four different input states |H 〉, |V 〉, |+ 〉, |R 〉 are chosen to be teleported. For each of them
a single qubit tomography of the corresponding output state is carried out in mode a. This
yields the density matrices �k, (k ∈ {H,V,+, R}), of the experimentally teleported states and
allows the calculation of the fidelities, Fk = 〈 k |�m1,m2 �k�

†
m1,m2 |k 〉 to the input states. The

unitary operations, �m1,m2 = �m1
z · �m2

x ·had, are not physically implemented but applied
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(a) <e(�H) (b) =m(�H) (c) <e(�V ) (d) =m(�V )

(e) <e(�+) (f) =m(�+) (g) <e(�R) (h) =m(�R)

Figure 3.3: Experimentally determined density matrices of various teleported states. For
each input state the data at the output was averaged over the four possible detections in the
cphase gate. Prior to the averaging, the proper unitary transformation was applied to the
data. (a) Real part and (b) imaginary part of the output density matrix for teleportation of
|H 〉. In this instance, lack of quality in the output state is primarily caused by imperfect input
states. (c) Real part and (d) imaginary part of the output density matrix for teleportation
of |V 〉. This state is expected to be teleported worst as its quality is impaired at most for
incoherent cphase operation. This is observable in the comparably high |H 〉〈H | noise. (e)
Real part and (f) imaginary part of the output density matrix for teleportation of |+ 〉 and (g)
real part and (h) imaginary part of the output density matrix for teleportation of |R 〉. These
two states are supposed to be teleported approximately with the same quality. This is not
exactly the case in the experiment due to additional imperfections besides lack of coherence
in the gate and lack of quality of the input states.

to the data during the evaluation process. After averaging for each state over the different
projection outcomes, m1, m2, this results in FH = 0.93 ± 0.02, FV = 0.75 ± 0.05, F+ =
0.79± 0.02, FR = 0.84± 0.03. The real- and imaginary parts of �k are graphically displayed
in Fig. 3.3(a) – Fig. 3.3(h). As can be seen, the quality of the output states differs for the
various input states. This can be understood by considering the influence of imperfect gate
operation. In Sec. 2.1 it was concluded that for the experimental gate the main source of
errors is a lack of coherence. Taking that into account, it is obvious that the teleportation
works best for the state |H 〉, as in this instance no interference is required. In contrast, from
this point of view the output state for the input |V 〉 is expected to be the worst. The states
|+ 〉 and |R 〉 should be teleported approximately at the same quality on average. However,
for the state |+ 〉 the fidelity of the output state depends on the result of the projection in the
cphase gate. It is worse for m1 = 0 and better for m1 = 1. A calculation using Eqn. (2.8)
with Q′ = 0.90 is shown in Tab. 3.1(a). For comparison the measured results are summarized
in Tab. 3.1(b). As can be seen, the measured fidelities exhibit roughly the expected behavior.
Still, they are significantly worse than calculated. This is due to the fact that, naturally in
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the experiment other effects occur in addition to the lack of coherence. Tab. 3.1(a) shows in
square brackets the results of the output state fidelities for a calculation which uses the qpt
matrix χfit and allows for imperfect input states �a,b ⊗ �c of the form

�a,b = f1|φ+ 〉〈φ+ |+ 1− f1

4
1⊗2 (3.5a)

�c = f2|k 〉〈 k |+
1− f2

2
1, (3.5b)

with f1 = 0.93 and f2 = 0.95. Comparing these values again with the experimental ones points
up that the loss in quality for |H 〉 is indeed not impaired by lack of coherence but mainly
determined by impurity of the input states. For |R 〉 obviously both effects are relevant. The
model is not capable of explaining why the measured fidelities for every state, not only for
|+ 〉, fluctuate for the different projections in the cphase gate. This must be due to noise
effects which are not accounted for in χfit. These effects seem to be also responsible for the
worse than expected fidelity of |V 〉 and |+ 〉.

Despite all imperfections, it is important to note that the average fidelities are all well
above the optimal classical limit2 of 2

3 .

Quantum process tomography

The four input states, |H 〉, |V 〉, |+ 〉, |R 〉, represent a tomographic set out of which a tele-
portation process tomography can be evaluated. Similarly as described for the cphase gate
(see Sec. 2.1.3), such a tomography yields a matrixMij which characterizes the performance
of the teleportation process according to

�̂(|k 〉〈 k |) = �k =
∑
ij

Mij �i|k 〉〈 k |�†j . (3.6)

For the linear decomposition of the superoperator, �̂, the basis of unitary transformations �i
is here chosen to be

�1 = 1, �2 = �x, �3 = −i�y, �4 = �z. (3.7)

The experimentally measured matrix Mexp is shown in Fig. 3.4. In this representation an
ideal teleportation (Mth) corresponds to the identity operation. Thus the height of the
(�1, �1)-entry of Mexp directly gives the process fidelity,

Fp = tr(MthMexp), (3.8)

which is the overlap between the experimentally obtained and the theoretically expected
matrix. It measures the quality of the implemented teleportation process and reaches in the
experiment a value of Fp = 0.75. The limiting factor of the process fidelity is the fidelity of
the state which is teleported worst. Following the discussions of the previous section this is
the state |V 〉 for which the output state fidelity reaches an average value comparable to Fp.

The inherent quantum features of the teleportation process are best seen by performing
entanglement swapping. In the experiment described before, the teleportation of a polarized

2The best fidelity which can be achieved by a local measurement of the state and a remote preparation
after the exchange of classical information is 2

3
for a single qubit averaged over all possible input states. For a

comprehensive explanation see, e.g., [168].
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(a) Calculated fidelities of the teleported output states

state
Fidelity for different projection results: m1, m2 Average

0, 0 0, 1 1, 0 1, 1 fidelity

|H 〉 1.00 [ 0.93 ] 1.00 [ 0.93 ] 1.00 [ 0.93 ] 1.00 [ 0.93 ] 1.00 [ 0.93 ]
|V 〉 0.83 [ 0.81 ] 0.83 [ 0.81 ] 0.83 [ 0.81 ] 0.83 [ 0.81 ] 0.83 [ 0.81 ]
|+ 〉 0.83 [ 0.77 ] 1.00 [ 0.94 ] 0.83 [ 0.77 ] 1.00 [ 0.94 ] 0.915 [ 0.855 ]
|R 〉 0.91 [ 0.85 ] 0.91 [ 0.85 ] 0.91 [ 0.85 ] 0.91 [ 0.85 ] 0.91 [ 0.85 ]

(b) Measured fidelities of the teleported output states

state
Fidelity for different projection results: m1, m2 Average

0, 0 0, 1 1, 0 1, 1 fidelity

|H 〉 0.92± 0.05 0.94± 0.04 0.95± 0.04 0.93± 0.05 0.93± 0.02
|V 〉 0.77± 0.06 0.80± 0.06 0.71± 0.07 0.71± 0.06 0.75± 0.05
|+ 〉 0.74± 0.04 0.96± 0.02 0.66± 0.05 0.86± 0.04 0.79± 0.02
|R 〉 0.81± 0.05 0.85± 0.05 0.88± 0.04 0.81± 0.05 0.84± 0.03

Table 3.1: Table of the teleportation output states’ fidelity for the different input states
depending on the result of the Bell state projection measurement in the cphase gate. (a)
Calculated fidelities of the output states using the cphase model of Eqn. (2.8) and assuming
a quality parameter Q′ = 0.90. Values in square brackets are for a similar calculation using
the cphase qpt matrix χfit and allowing additionally for imperfect input states. The state
|H 〉 is expected to be teleported best as it is not influenced by Q′. In contrast the state |V 〉
is maximally affected by Q′ and therefore teleported worst. Except for the state |+ 〉, the
output fidelities are not dependent on the results of the Bell state projection. (b) Measured
fidelities of the teleported output states. In the experiment the fidelities depend on the results
of the Bell projection measurement. This effect cannot be explained by lack of coherence in
the cphase gate or admixture of white noise in the input states.



3.1 Teleportation and entanglement swapping 75

(a) <e(Mexp) (b) =m(Mexp)

Figure 3.4: (a) Real part and (b) imaginary part of the experimentally reconstructed
quantum process tomography matrix for the teleportation process. An ideal teleportation
corresponds to the identity. Thus, the height of the (�1,�1) entry directly gives the process
fidelity Fp which is a measure for the performance of the protocol. It is bounded by the
fidelity of the state which is teleported worst and reaches here Fp = 0.75.

photon does not succeed always, e.g., due to experimental restrictions like limited detection
efficiencies etc. Hence it could be argued that the observed teleportation fidelities are a result
of statistical averaging over many measurements. Such arguments can be directly refuted for
entanglement swapping. Here, the teleported photon is part of an entangled pair, in that sense
it is not polarized. Therefore, the outcome of a measurement on this photon considered apart
is completely random. Thus, if the observed teleportation results for individual one-photon
output states were attributed to statistical averaging, the analogue experimental procedure
would unavoidably lead to a random result for the correlation measurements on two-photon
output states. In the following, however, it will be proven that indeed quantum correlations
can be observed. This confirms the entanglement contained in the swapped photon pair and
proves that teleportation succeeds for every single instance.

3.1.4 Experimental results for entanglement swapping

In order to perform entanglement swapping, the spdc is operated to emit photon pairs in the
forward and in the backward direction, respectively; each in the state |φ+ 〉. After complete
alignment procedure the pairs emitted in the forward (backward) direction exhibit polariza-
tion correlation visibilities of approximately 0.98 (0.98) in the computational basis, �z ⊗ �z,
and 0.94 (0.95) in the conjugate diagonal basis, �x ⊗ �x. As before, the Bell projection mea-
surement between the photons in modes b and c is accomplished by the use of the cphase
gate. Like previously described, by projecting photons from these two modes onto a Bell
state, the photons from mode a and d will be left likewise in a maximally entangled state.
Which Bell state they form depends in turn on the result of the Bell state measurement in
modes b and c (see Eqn. (3.4)).
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Results for the output states

In order to determine how close the experimentally obtained states are to the expected ones
and whether they are indeed entangled, a two-qubit state tomography is performed for the
photons detected in modes a and d. This allows the reconstruction of the experimental states’
density matrices �l, (l ∈ {φ̃+, ψ̃+, φ̃−, ψ̃−}), which are displayed in Fig. 3.5. The measure-

(a) �
φ̃+ (b) �

ψ̃+

(c) �
φ̃−

(d) �
ψ̃−

Figure 3.5: Real parts of the measured density matrices of the output states for the entan-
glement swapping protocol. (a) For projection of the photons in mode b and c onto |++ 〉,
the photons in mode a and d are expected to be in the state | φ̃+ 〉. (b) Analogously for a
projection onto |+−〉, the photons in modes a and c are found in the state | ψ̃+ 〉. (c) The
state | φ̃− 〉 corresponds to projection onto the state |−+ 〉. (d) For a projection onto |−− 〉,
the state | ψ̃− 〉 should be obtained. .

ment time for each of the nine basis settings of the tomography amounts to approximately
420 min. From the acquired data the states’ fidelity Fl, as well as their logarithmic negativity
N (see Def. 1.2.8) can be calculated. The results are summarized in Tab. 3.2. As can be seen
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Figure 3.6: Fidelity Fl of the swapped
output states depending on the ratio of
white noise, (1 − f), contained in the
input states. Even for perfect (f =
1) input states, Fl cannot exceed 0.85
(shaded area). States with Fl ≥ 0.78
violate a Bell inequality (green area).
With a range of 0.73 ≤ Fl ≤ 0.80 (red
area) and an average of Fl = 0.77 (red
line), the fidelity of the experimental
states lies just at this limit.

an entangled state is obtained for each of the four Bell state projections in the cphase gate
with fidelities of up to 0.80 relative to the corresponding expected Bell state. On average the
fidelity is 0.77 for all simultaneously detected Bell states. The maximally possible fidelity to
achieve is bounded by the imperfect gate operation. A simulation based on χfit reveals that
even for a perfect input state, the output state fidelity cannot exceed 0.85. A calculation of
Fl allowing for mixed input states �in of the form

�in = �a,b ⊗ �c,d (3.9)

with

�a,b = �c,d = f |φ+ 〉〈φ+ |+ 1− f
4

1⊗2 (3.10)

is shown in Fig. 3.6. For the assumption Eqn. (3.10) the result is quadratic in f . The
measured average value of Fl = 0.77 corresponds thereby approximately to f = 0.93. In any
case, also for �a,b 6= �c,d, Fl does not depend on the result of the Bell projection measurement
in the cphase gate. The reason for the quality difference between �

φ̃−
and �

ψ̃−
cannot be

explained within this model and must be due to effects which are not accounted for by χfit.
Entangled states with a fidelity larger than (2 + 3

√
2)/8 ≈ 0.78 violate Bell-type inequal-

ities [169]. According to the previous discussions this requires f to be greater than 0.94.
Consequently, with an average fidelity of 0.77, the quality of the measured states is just at
this limit and does not doubtlessly provide evidence for a violation of local realism. Therefore,
in the following, it will be explicitly shown that the violation of a chsh type Bell inequality
(see page 11) is indeed possible.

Bell state observed Fidelity Fl Negativity N

| φ̃+ 〉ad 0.777± 0.031 0.660± 0.051
| ψ̃+ 〉ad 0.776± 0.029 0.666± 0.048
| φ̃− 〉ad 0.736± 0.031 0.582± 0.055
| ψ̃− 〉ad 0.803± 0.027 0.720± 0.042

Table 3.2: Measured fidelities of the swapped states and the corresponding logarithmic
negativity. For each projection in the cphase gate the photons in modes a and d are found
in an entangled state.
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Bell state Correlation coefficient

| φ̃+ 〉ad S+ =−2.20± 0.17
| ψ̃+ 〉ad S+ = 2.13± 0.15
| φ̃− 〉ad S−= 2.12± 0.16
| ψ̃− 〉ad S−=−2.12± 0.18

Table 3.3: Measured value of the chsh correlation coefficient. The swapped states violate
the bound for local realistic theories by about one standard deviation.

Violation of local realism

Quantum teleportation enables efficient communication of quantum information between re-
mote partners and thus is a core element of future long distance quantum networks. From
that point of view entanglement swapping is particularly useful, provided it yields a swapped
state which is entangled strongly enough such as to exhibit non-local correlations. To check
the non-classical properties of the experimentally observed states, a chsh type Bell inequality
is measured, (see page 11). Using the cphase gate this can be done at the same time for all
four Bell states by measuring the correlation coefficient,

|S± | := |±〈�,�〉 ∓ 〈�,�′〉+ 〈�′,�〉+ 〈�′,�′〉 |. (3.11)

Herein, 〈�,�〉, 〈�,�′〉, 〈�′,�〉 and 〈�′,�′〉 are the expectation values of four local operators

� = �x (3.12a)
�
′ = �z (3.12b)

� = 1√
2
�z + 1√

2
�x (3.12c)

�
′ = 1√

2
�x − 1√

2
�z, (3.12d)

where �, �′ are acting on qubits in mode a and �, �′ on qubits in mode d. This corresponds
to a polarization measurement under four sets of angles; 0 ◦ for�′, −22.5 ◦ for�, −45 ◦ for�
and −67.5 ◦ for�′, respectively.

For local hidden variable models |S± | is bounded from above by 2. In the experiment this
limit can be violated for each of the four Bell states by about one standard deviation. The
results are summarized in Tab. 3.3. As expected from the previous discussions the violation
is tight and, due to the limited measurement time for each of the four cases, the error is
relatively high. However, the average value of 2.14± 0.08 shows a significant violation of the
Bell inequality.

3.1.5 Discussion

The distinction of all four Bell states is not a necessary ingredient in the teleportation and
entanglement swapping protocol. The first realizations indeed used the projection onto a
single Bell-state only, neglecting the other cases. This results in a success probability of 1

4
[131, 159] . The best success probability achieved is 1

2 and is known to be the theoretical
limit when using linear optics without ancillary qubits [91, 160, 161, 170]. Even though in
the scheme presented here no Bell state is neglected, the success probability is limited by the
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efficiency of the gate operation, which is 1
9 , and therefore lower than in the other schemes.

Still, the beauty in the application of the cphase gate is the possibility to detect all four
Bell states in a setup just as simple as the (single-state) Bell state projection of the initial
demonstration of quantum teleportation [159].

Moreover, for quantum teleportation and entanglement swapping, the detection of all four
Bell states could be mimicked with a setup that distinguishes only a restricted number by
randomly switching between the detected set of states. However, it has to be emphasized that
this approach effectively causes only a statistical mixture of all four Bell states. In contrast,
in the cphase gate scheme, a coherent Bell state projection is obtained once a single photon
travels in each of the four modes prior to the detection. This is a fundamental difference
and might be crucial for other tasks that rely on the analysis of Bell states or, more general,
the successful application of linear optics gates. In the following, such other tasks will be
presented.

3.2 Experimental direct measure of concurrence for mixed
states

In Chap. 1 several tools for the characterization of entangled states have been introduced.
Depending on the given experimental circumstances each of them has specific advantages and
drawbacks. For instance, while Bell inequalities and entanglement witnesses usually require
a comparably low number of observables to be measured, they are flawed by the fact that
one specific parameter setting is applicable to a rather small set of entangled states. On the
other hand, entanglement measures can be used for any state, but their functional relation to
the state to be characterized is typically non-linear, or even worse, they involve un-physical
operations that cannot be directly experimentally implemented. This means their evaluation
requires the reconstruction of the state’s density matrix by qst which entails a number of
measurements exponentially increasing in the system size. In particular this holds for the
negativity (see Def. 1.2.8) and the concurrence (see Def. 1.2.7), which are the most common
computable entanglement measures.

For the determination of the latter, an alternative path was recently introduced, which
utilizes measurements on multiple identically prepared quantum systems. It was shown that
the concurrence of a bipartite qubit system can be measured directly without prior state
reconstruction by collective measurements on a small number of copies [171, 172]. However,
these measurements are based on the known algebraic solution for the concurrence and require
a rather complex experimental setup. An experimental simplification is achieved for a gener-
alization of the concurrence to systems of arbitrary finite dimensions [173], which, if restricted
to qubits, is equivalent to the original definition [54]. As any mth degree polynomial function
of a density matrix can be measured on an m-fold copy of the state [174], this approach
accounts for the nonlinear dependence of the concurrence on the system state by considering
a twofold copy of the density matrix. This method was first experimentally demonstrated by
Walborn et al. [175]. In this work the authors assume the two copies to be pure states, which
is not only a strong but also unrealistic assumption for any real experiment. In case that the
copies are not pure, the measurement procedure for the direct evaluation of the concurrence
needs to be refined [176]. In the following it will be shown how the cphase gate can be
used to derive a lower bound on the concurrence of the observed states without any further
restrictive assumptions. In order to obtain a correct estimation of the entanglement, not only
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the mixedness of the states but also the imperfections of real gate operation have to be taken
into account.

3.2.1 Theory

The everyday technique to infer information about the state of a quantum system is to measure
observables, represented by Hermitian operators, �, in the Hilbert space H of the quantum
system to be examined. The expectation value 〈ψ |�|ψ 〉 then allows to infer information
about the underlying state |ψ 〉. As mentioned above, the presently discussed measurement
scheme is based on analyzing two identically prepared bipartite quantum systems. Formally,
this implies that expectation values, 〈ψ | ⊗ 〈ψ |�′ |ψ 〉 ⊗ |ψ 〉, are considered with respect to a
twofold direct product of |ψ 〉 with itself. The observable �′ is an operator on the extended
Hilbert space H⊗H.

In such extended Hilbert spaces, there are two different types of states with distinguished
symmetry properties upon permutation. Symmetric states are invariant, whereas antisym-
metric states acquire a minus sign under permutation. For the case of a qubit, the triplet
states |00 〉, 1√

2
(|01 〉 + |10 〉), and |11 〉 form a basis of symmetric states, and the singlet

1√
2
(|01 〉 − |10 〉) is the sole antisymmetric state. These are exactly the eigenstates of the

swap operation (see Eqn. (1.48)) for positive and negative eigenvalue, respectively. For rea-
sons that shall be clear later on, it can be convenient to alternatively choose all the triplet
states in form of the Bell states, |φ± 〉, |ψ+ 〉.

Given the ability to prepare a bipartite quantum system twice in the same fashion, and to
distinguish symmetric from antisymmetric states, the concurrence of an arbitrary pure state
can be measured [51, 54, 173, 177]. It is determined in terms of the probability to find the
components of one subsystem of the duplicate quantum state in an antisymmetric state,

C(ψ) = 2
√
℘−− ≡ 2

√
〈ψ | ⊗ 〈ψ |�−− |ψ 〉 ⊗ |ψ 〉, (3.13)

with �−− ≡ (1⊗ swap⊗ 1) · (�− ⊗ �−) · (1⊗ swap⊗ 1)† and �− ≡|ψ− 〉〈ψ− |. This is what
was experimentally demonstrated in [175].

The intricacy concerning entangled states comes with mixing. For mixed states � the con-
currence is defined via the optimization C(�) = inf

∑
i ℘i C(ψi) over all sets of pure states

|ψi 〉, and probabilities ℘i that are described by the density matrix �, i.e., that satisfy∑
i ℘i |ψi 〉〈ψi | = �. Such optimizations are rather extensive mathematical problems, and

there is no prospect of finding exact general solutions beyond the case of two qubits. In par-
ticular, that means that it is practically impossible to redefine concurrence of mixed states in
terms of a simple measurement prescription.

Still, lower bounds on the concurrence of arbitrary mixed states can be measured within
the presently discussed framework of two identically prepared quantum states. The underlying
idea is based on the fact that two identically prepared pure states form a globally symmetric
object: that is, if the first-subsystem components are observed in a symmetric state, then
also the second-subsystem components will be found in a symmetric state; and, similarly
the observation of an antisymmetric state in the components of one subsystem projects the
components of the other subsystem likewise in an antisymmetric state.

Consequently, the probability to find the components of the two different subsystems in
states with different symmetry provides information on the mixing of the underlying state.
Assuming a pure state, the concurrence is given in terms of the probability ℘−− to find the
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twofold state |ψ 〉⊗|ψ 〉 in locally antisymmetric states, but the larger the mixing is, the larger
the deviation between this quantity and the actual value of the concurrence will be. For very
weakly mixed states, ℘−− alone provides an approximation of the concurrence at the expense
of overestimating its actual value.

For a more reliable estimation, such as a lower bound, the contribution which is due to
mixing has to be subtracted from ℘−−. Indeed, it turns out that the concurrence of an
arbitrary mixed state is bounded from below by 2

√
℘−− − ℘−+, and by 2

√
℘−− − ℘+− [176],

where ℘−+ is the probability to observe the first-subsystem part of �⊗ � in an antisymmetric
state, and simultaneously the second-subsystem part in a symmetric state, and vice versa for
℘+−:

℘−+ ≡ tr(�−+ �⊗ �), (3.14a)
℘+− ≡ tr(�+− �⊗ �), (3.14b)

with �−+ ≡ (1 ⊗ swap ⊗ 1) · (�− ⊗ �+) · (1 ⊗ swap ⊗ 1)†, �+− ≡ (1 ⊗ swap ⊗ 1) · (�+ ⊗
�−) · (1⊗ swap⊗ 1)† and �+ ≡ 1⊗2 −|ψ− 〉〈ψ− |. Here, it was implicitly assumed that ℘−−
is larger than ℘−+ or ℘+−. If this is not the case, then this implies that either the state
is separable, i.e., its concurrence vanishes, or the state is too highly mixed, and the present
bound fails to detect its entanglement.

In the following, the implementation of this measurement procedure using the cphase
gate is discussed. The experiment gives evidence that the lower bound provides an accu-
rate estimate of the actual value of concurrence for states that are getting mixed due to
imperfections of state of the art experiments.

3.2.2 Experimental implementation

The setup for the direct measurement of concurrence is the same as depicted in Fig. 3.2.
The concurrence of the states emitted by the spdc is to be determined. The two spdc
sources are built in exactly the same manner and therefore the emission in the forward and
backward direction can each be considered as providing one copy of the state in question.
The uv mirror reflecting the pump beam in the backward direction is positioned 3 cm behind
the down conversion crystal. The small distance (compared to 40 cm Rayleigh length of
the pump beam) together with a proper tilt of the mirror leads to identical phase-matching
conditions for both spdc emissions. The single mode fiber couplers are aligned to select the
same spectral range of down converted photons for all four modes. As before, the spectra are
basically determined by narrow bandwidth interference filters (∆λ = 3 nm in modes a, d and
∆λ = 2 nm in modes b, c).

The projection measurement onto the symmetric and antisymmetric subspace is accom-
plished by subjecting the components of the subsystems in modes b and c to a complete
Bell state projection measurement. As mentioned before, the symmetric subspace is thereby
spanned by {|φ± 〉, |ψ+ 〉}; and |ψ− 〉 is the only antisymmetric state. The distinction of all
four Bell states at the same time can be achieved by a two qubit logic gate like a cnot or
cphase gate. The usage of the cphase instead of the cnot gate in the present configuration
implies that a Hadamard rotation is additionally applied to one copy of the input state. This
is important to note, as for the direct measurement procedure of concurrence it is essential
to project onto the standard Bell basis and not onto {| φ̃± 〉, | ψ̃± 〉}. Only the former equals
a distinction according to symmetric and antisymmetric. The circuit for the measurement
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Figure 3.7: Circuit diagram for the direct measurement of concurrence. The usage of
the cphase gate for the measurement procedure yields an estimation for C(�ab) C((had ⊗
had) · �cd · (had ⊗ had)†). As the gates h2 and h3 form together the identity, they are not
physically implemented.

procedure is drawn in Fig. 3.7. Comparing Fig. 3.7 with Fig. 1.6(h) shows that the cphase
gate together with the Hadamard gates h1, h3 and h4 implements exactly Circ. 1.45 which
is required for the projection in the standard Bell basis. As the sequence of gates h2 and h3

equals the identity, both gates are not physically realized in the setup. In this configuration,
a measurement of the probabilities ℘−−, ℘+−, ℘−+ yields a lower bound on the product of
the concurrences of both input states according to

C(�ab) C(�′cd) ≥ tr(�ab ⊗ �′cd�i), (3.15)

with �′cd = (had ⊗ had) · �cd · (had ⊗ had)†, �1 = 4 (�− − �+) ⊗ �− = 4 (�−− − �+−) and
�2 = 4�− ⊗ (�− − �+) = 4 (�−− − �−+).

3.2.3 Results

The determination of the probabilities ℘−−, ℘−+, ℘+− requires only three correlation mea-
surements, xzzx, yzzy and zzzz, or if the Hadamard gates are already taken into account,
zxxx, yxxy and xxxz.

For the latter, the detection of photons in modes b and c in the state |−− 〉 corresponds
to a projection onto the antisymmetric subspace. Thus, the share of these events in all
detected coincidences directly gives the probability ℘− to find the one subsystem part in
the antisymmetric subspace. The remaining events where the photons in modes b and c are
measured in the states |++ 〉, |+−〉 and |−+ 〉 lead accordingly to the probability to observe
this subsystem part in the symmetric subspace. Correlation measurements of the form z..x,
y..y and x..z allow the reconstruction of the fidelity of the qubits a and d on any of the four
Bell states in analogy to Eqn. (2.38), (see also Eqn. (2.42)). The fidelity Fψ− to the state
|ψ− 〉 equals thereby the probability to find the other subsystem part in the antisymmetric
subspace, whereas 1− Fψ− gives the probability to observe it in the symmetric subspace.

Finally, the evaluation of the quantities Fψ− and 1−Fψ− for the modes a and d with respect
to the different detection events in modes b and c yields all the conditional probabilities needed
for the calculation of the concurrence according to Eqn. (3.15). For a measurement time of
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approximately 420 min for each setting this results in

℘−− = 0.208± 0.007,
℘−+ = 0.050± 0.006, (3.16)
℘+− = 0.061± 0.012,

what corresponds to

C(�ab) C(�′cd) ≥ 4 (0.208± 0.007− 0.050± 0.006) = 0.632± 0.037
≥ 4 (0.208± 0.007− 0.061± 0.012) = 0.588± 0.055. (3.17)

Assuming �ab = �′cd = �, this implies a concurrence value C(�) ≥ 0.795. For comparison,
with the additional assumption made in [175] of having pure input states it holds that the
probability ℘− of finding the subsystem part b, c in the antisymmetric subspace is identical to
the conditional probability ℘−−. With the obtained data, ℘− = 0.258± 0.005, what in turn
would correspond to a concurrence value of C(�) = 2√℘− = 1.015 ± 0.005. As this value is
bigger than one, it is un-physical and clearly an overestimation. This proves that the above
scheme allowing for impurities of the input states leads indeed to a more reliable and realistic
estimation of the actual entanglement contained in the initial states.

3.2.4 Influence of imperfect gate operation

Another important issue, besides the mixedness of the initial states, which was not taken into
account so far, is the influence of imperfect gate operation. This shall be finally studied in
the following. To this end, numerical simulations are performed using the qpt matrix, χfit,
which was derived in Sec. 2.1.3.

At first, perfectly pure initial states, |φ+ 〉 ⊗ |φ+ 〉, are considered. A simulation of the
measurement based on χfit yields

℘−− = 0.212,
℘−+ = ℘+− = 0.038, (3.18)

which results in C(�ab) C(�′cd) ≥ 0.696 and consequently C(�) ≥ 0.834. As the initial states
are pure, the non-vanishing values for ℘−+ and ℘+− can only be caused by deficient gate
operation. A comparison of Eqn. (3.16) and Eqn. (3.18) even suggests at first glance that
the experimentally determined bound on the concurrence is more influenced by the gate than
by the impurity of the initial states. To better judge how strong the gate influence actually
is, the following calculation is carried out, (see Fig. 3.8(a)). For pairs of given, assumably
measured probabilities {℘−−, ℘+−} and {℘−−, ℘−+}, the minimal bound on the concurrence
for a general input state is calculated which is still consistent with their assumed values. This
means it is searched for an arbitrary state of the form,

� = �1
ab ⊗ �2

cd, (3.19)

which has as low concurrence as possible in either subsystem, but still yields the values
{℘−−, ℘+−} or {℘−−, ℘−+} when subjected to the measurement procedure described before.
Fig. 3.8(b) shows the lower concurrence bound, inf

(
C(�ab) C(�′cd)

)
, derived from {℘−−, ℘+−}

and {℘−−, ℘−+} versus the calculated minimal bound, inf
(
C(�ab) C(�′cd)

)
min

, of an arbi-
trary input state under the constraint to reproduce ℘−− and ℘+− (green stars) or ℘−−
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(a) (b)

Figure 3.8: (a) Simulation scheme to obtain the minimal concurrence value. It is searched
for the least entangled state of the form � = �1

ab ⊗ �2
cd that still reproduces given pairs

of {℘−−, ℘+−} or {℘−−, ℘−+} measured via χfit. (b) Simulated bound of the concurrence.
inf
(
C(�ab) C(�′cd)

)
is derived using the measurement procedure with χfit, inf

(
C(�ab) C(�′cd)

)
min

is the constrained minimum to still reproduce the measured probabilities. (?) Arbitrary
{℘−−, ℘+−}, (�) arbitrary {℘−−, ℘−+}, (•) {℘−− = 0.208, ℘−+ = 0.05} and {℘−− =
0.208, ℘+− = 0.061}, (•) with stronger constraint, such that {℘−− = 0.208, ℘−+ =
0.05, ℘+− = 0.061} is reproduced.

and ℘−+ (red lozenges), respectively. As can be seen, for both cases the measurement
procedure using the cphase gate tends to slightly underestimate the actual concurrence
for high values whereas it provides a marginal overestimation for lower values. Explic-
itly, the least entangled state that still yields the experimentally measured values {℘−− =
0.208, ℘−+ = 0.05} has a concurrence of inf

(
C(�ab) C(�′cd)

)
min

= 0.640, which is slightly
higher than inf

(
C(�ab) C(�′cd)

)
= 4 (℘−− − ℘−+) = 0.632. In contrast, the value for {℘−− =

0.208, ℘+− = 0.061} of inf
(
C(�ab) C(�′cd)

)
min

= 0.568 is a little lower than inf
(
C(�ab) C(�′cd)

)
=

4 (℘−−−℘+−) = 0.588 (black bullets). If the boundary conditions are tightened such that the
input state should reproduce not only the measured values {℘−−, ℘+−} or {℘−−, ℘−+}, but
℘−−, ℘+− and ℘−+, the values inf

(
C(�ab) C(�′cd)

)
= 0.632 and inf

(
C(�ab) C(�′cd)

)
min

= 0.644
for {℘−−, ℘−+} as well as inf

(
C(�ab) C(�′cd)

)
= 0.588 and inf

(
C(�ab) C(�′cd)

)
min

= 0.592 for
{℘−−, ℘+−} (blue bullets) are each in good agreement. In both cases a slight underestima-
tion of the concurrence bound is obtained.

What can be learned from this simulation is that, without any further information about
the input state, it is difficult to separate the influence of the gate operation from the one of
the input state mixedness. If the input state is (nearly) pure, the imperfect gate operation
can cause a significant underestimation of the concurrence. However, in the range of the
measured values, Eqn. (3.16), the used measurement procedure does at least not overestimate
the actual value of the concurrence.

3.2.5 Discussion

To summarize, in this section it was experimentally demonstrated that the cphase gate can
be successfully applied to derive a lower bound on the concurrence of a given state by using
the method described in [176]. In contrast to previous work [175], no additional assumptions
about the purity of the state under investigation have been made. In order to prove that
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the experimentally determined bound is indeed a reliable estimate, the influence of imperfect
gate operation has been investigated. In particular, it was shown that the method does not
overestimate the actual concurrence of the state, but can lead to a underestimation, which is,
however, better than the other way round.

As the method requires only three measurement settings instead of nine for a full qst it
might be advantageous in particular applications.

3.3 Observation of a four-photon Cluster state

In the previous sections the cphase gate was used to implement a complete Bell state projec-
tion measurement. In these applications the gate acts as a disentangling operation mapping
four entangled Bell states onto four detectable product states. In the following last section the
cphase gate is used for entangling qubits. In this context the observation of a four-photon
Cluster state shall be discussed. Thereby the state is obtained by entangling photons of two
Bell pairs. The resulting state and its properties are analyzed in detail in [121, 178]. Here,
the results on the state observation are shortly recapitulated. The focus in the evaluation of
the data is set in the following on the main application of cluster states: the measurement
based quantum computing. Prior to the presentation of its experimental implementation and
the discussion of the obtained results, a short introduction about cluster states and their role
for measurement based computation is given.

3.3.1 The linear four-photon Cluster state

In Sec. 1.2.3 it was explained that in quantum computing the processing of information is
associated with a unitary evolution of states.

Surprisingly, this (unitary) evolution of quantum information can very well go together
with absolutely non-unitary, irreversible and destructive measurement processes – provided
the information is embedded in entangled states [10, 147, 179]. This culminated in the
discovery by Raussendorf and Briegel, suggesting universal computation by an algorithm-
specific sequence of single-qubit measurements in combination with classical feed-forward
transformations on the qubits of a, what they named, cluster state [12, 13]. In all of these
so-called measurement based quantum computation schemes multi-qubit entanglement of the
cluster state, or more generally, of graph states plays a central role [180–184].

A cluster state is an entangled state of many qubits that can be represented by a schematic
presentation of its generation prescription, i.e., a cubic lattice in which the vertices are formed
by two-level quantum systems and the grid lines correspond to next neighbor Ising type
interactions between them, see Fig. 3.9(a). Cluster states |C 〉 are fully described by a set of
eigenvalue equations,

�
i|C 〉 = (−1)ki |C 〉 (3.20)

where the operator �i = �ix
⊗

j∈nn(i) �
j
z corresponds to the application of �x on every qubit

i of the lattice and �z on all its next neighbors (nn) j [185]. Therein, {k} = {ki ∈ {0, 1}} is
an additional parameter that characterizes the particular cluster state.

A simple example of a linear four-qubit cluster state (see Fig. 3.9(b)) with {k} = {0, 0, 0, 0}
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(a) (b) (c) (d)

Figure 3.9: (a) Schematic figure of a cluster state. Vertices represent qubits and grid lines
correspond to next neighbor Ising type interactions between them. (b) Schematic representa-
tion of the linear four-qubit cluster, |Cl4 〉. (c) Generation prescription of the four-qubit linear
cluster. The qubits are initially prepared in the state |+ 〉 and entangled by the application
of a cphase gate. (d) An alternative way for the experimental generation of a four-qubit
cluster state starting from two entangled pairs of qubits. As qubits a, b and c, d are already
entangled, the cphase has to be applied only once. The resulting state |C4 〉 is lu equivalent
to |Cl4 〉.

leads to the following equations,

(�x ⊗ �z ⊗ 1⊗ 1) |C l4 〉 = |C l4 〉 (3.21a)
(�z ⊗ �x ⊗ �z ⊗ 1) |C l4 〉 = |C l4 〉 (3.21b)
(1⊗ �z ⊗ �x ⊗ �z) |C l4 〉 = |C l4 〉 (3.21c)
(1⊗ 1⊗ �z ⊗ �x) |C l4 〉 = |C l4 〉, (3.21d)

which have the unique solution

|C l4 〉 =
1
2

(
|+ 〉a|0 〉b|+ 〉c|0 〉d + |+ 〉a|0 〉b|− 〉c|1 〉d

+ |− 〉a|1 〉b|− 〉c|0 〉d + |− 〉a|1 〉b|+ 〉c|1 〉d
)
. (3.22)

The generic way of initializing such a cluster state is to prepare four qubits in the state |+ 〉
and sequentially apply the cphase in the computational basis between them, see Fig. 3.9(c).
It can be seen from Eqn. (3.22) and Fig. 3.9(c) that for the generation of the linear four-
qubit cluster the cphase gate has to be applied three times, what would be experimentally
demanding using photonic qubits. To circumvent this problem, in the following the state
|C4 〉 is considered, which is local-unitary equivalent to the linear four-qubit cluster,

|C4 〉 =
1
2

(
|0 〉a|0 〉b|0 〉c|0 〉d + |0 〉a|0 〉b|1 〉c|1 〉d

+ |1 〉a|1 〉b|0 〉c|0 〉d − |1 〉a|1 〉b|1 〉c|1 〉d
)
. (3.23)

|C l4 〉 and |C4 〉 are transformed into each other by a had gate, acting on qubits a and d. The
advantage of |C4 〉 is, that it can be generated from the product of two Bell pairs, |φ+ 〉⊗|φ+ 〉,
and a single application of cphase on qubits b and c, see Fig. 3.9(d). This is experimentally
easier to implement and allows furthermore to exploit the entanglement inherent in the photon
pairs produced by spdc.
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(a) zzzz (b) xxzz

(c) zzxx

Figure 3.10: Histograms of the four-
photon coincidence statistics of |C4 〉 for
different measurement settings. Slots at
the ordinate indicate different events for
a particular basis setting: e.g., 0011 for
basis zzzz means detection of photons
in the state |HHV V 〉. (a) Correlation
measurement for the operator �z ⊗ �z ⊗
�z ⊗ �z. (b) Correlation measurement
for the operator �x ⊗ �x ⊗ �z ⊗ �z (c)
Correlation measurement for the opera-
tor �z ⊗ �z ⊗ �x ⊗ �x.

3.3.2 Experimental results

In order to observe the state |C4 〉, the setup described in the previous section in the context
of entanglement swapping (Fig. 3.2) is used. This follows directly the generation prescription
depicted in Fig. 3.9(d). Two photon pairs, each in the state |φ+ 〉, are emitted by the spdc
in the forward and backward direction of the pump beam. One photon of each pair (mode b
and c) is fed as input into the cphase gate. Consequently, under the condition of detecting
one photon in each mode the gate operation is applied and the cluster state is observed.

For its characterization, polarization analysis is performed in all four output modes.
Fig. 3.10 displays the obtained four-fold coincidence counts for correlation measurements
in three different bases, zzzz, xxzz, zzxx. In the computational basis, the typical four-
term structure with peaks at HHHH, HHV V , V V HH, and V V V V is clearly visible. The
V V V V -contribution is enhanced, mainly due to the vertically polarized noise originating
from imperfect interference in the cphase gate (Fig. 3.10(a)). A slight asymmetry in the
transmission amplitudes for vertical polarization in the two modes of the phase gate causes a
raising of the HHV V term. The measurement of the other bases proves the contributions to
be in a coherent superposition. Exemplarily, the four-photon coincidence counts are shown
when the photons in mode a, b (Fig. 3.10(b)), or the photons in mode c, d (Fig. 3.10(c)),
respectively, are measured in the diagonal basis xx. The clear four term structure is present
here as well, however, the imperfect interference results in additional terms of detections with
±±V V (b) or V V ±± (c), respectively. A detailed discussion of the influence on the state
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quality resulting from imperfect gate operation can be found in [121, 184].
In order to evaluate the quality of the experimentally observed state �exp the fidelity

FC4 = 〈C4 |�exp|C4 〉 is determined. In analogy to Eqn. (2.38) this means a measurement
of all non-zero correlations of the cluster state. In case of cluster states, or graph states
in general, these correlations are given in terms of the so-called stabilizer operators [186].
These are all 16 elements of the group that is generated by the operators of the characteristic
eigenvalue equations, Eqn. (3.21). The fidelity equals then the average absolute expectation
value of the stabilizer operators which yields here for the obtained data FC4 = 0.741± 0.013.
This value is greater than 1

2 which is sufficient to prove the experimental state to be genuinely
four-qubit entangled by using the generic witness operator [145].

3.3.3 Measurement based quantum computation

Once the cluster state is obtained it allows to demonstrate the principle of one of its main
applications, namely measurement based quantum computation. To this end, a detailed
explanation of the measurements and the correspondingly implemented computation will be
given. Thereby the notation used in [180] is partly adopted. This allows an interpretation of
the results obtained in Sec. 3.1.4 as four different computations.

In conventional quantum computation the information is encoded in qubits that are pro-
cessed by the application of logical one- and two-qubit gates within a quantum circuit. In
contrast, in a one-way quantum computer the logical qubits on which the computation is
carried out do not need to coincide with the actual physical qubits forming the cluster state.
The processing of the former is achieved by single qubit measurements of the latter according
to an algorithm specific pattern. The cluster state serves thereby as a substrate for any kind
of computation. Indeed, due to its entanglement, the individual physical qubits do not carry
any information and the logical qubits are encoded non-locally in its correlations. Finally,
the result of a computation is found in form of the specific state of particular read-out qubits.
As the entanglement of the cluster state is destroyed by the single-qubit measurements dur-
ing the process of computation, the state can be used only once. Therefore this scheme is
often also referred to as one-way quantum computation in contrast to conventional quantum
computation which is reversible.

With respect to such a computation two types of single qubit measurements need to be
distinguished: Measurements in the computational basis remove or disconnect single qubits
from the cluster resulting in a cluster state of a lower qubit number. Thus, these types of
measurements can be used to shape or structure the cluster. Measurements in the basis
B(α) = {|±α 〉} with |±α 〉 = 1√

2
(|0 〉 ± exp(iα)|1 〉) apply a rotation �z(α) ≡ �(0, α, 0, 0) =

exp(−iα�z
2 ) (cp. Eqn. (1.27)) on the logical qubit followed by a had gate. Together with the

entanglement of the cluster, these measurements implement the logical operations required
for a computation. In the following, the result for each type of measurement is presented.

As an example for the first type of measurement, qubit d is removed from the cluster
resulting in the states

|C3 〉±abc =
1√
2

(|00±〉abc + |11∓〉abc)

=
1√
2

(|φ+ 〉ab|0 〉c ∓ |φ− 〉ab|1 〉c) (3.24)

for the outcomes + or −, respectively. The starting cluster state |C4 〉 differs from |C l4 〉 by a
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(a)

|p 〉 • rαz h

|ψ(α, β) 〉
|p 〉 z rβz h



(b)

Figure 3.11: Scheme for measurement based quantum computation carried out on a four-
qubit Horse-Shoe cluster, |Chs

4 〉. (a) The logical input qubits are encoded in the state of
physical qubits b and c. The computation is performed by projective measurements in the
bases B(α) and B(β). Qubits a and d carry the logical output state, |ψ(α, β) 〉a,d. (b) The
corresponding quantum circuit for the logical qubits. A cphase gate is applied to the initial
state |p 〉 ⊗ |p 〉, followed by the rotations �z(α), �z(β) and a had gate.

had rotation on this qubit, therefore a measurement in the computational basis corresponds
to �x instead of �z.

In the experiment the three-qubit cluster states are observed with fidelities FC+
3

= 0.756±
0.028 and FC−3 = 0.753 ± 0.026. The fidelities are again determined from a measurement of
the corresponding stabilizer operators and the values are significantly greater than 1

2 what
allows to proof genuine three-qubit entanglement of the experimental states [145]. Three
qubit cluster states belong to the ghz-class. Using Eqn. (1.38) the obtained fidelities are just
at the limit to prove this unambiguously.

In order to demonstrate an example of a measurement of the second type, it is convenient
to consider a cluster state which equals the four-qubit linear cluster in its mathematical form,
but which has a slightly different graphical representation, see Fig. 3.11(a). Referring to its
graph it was named ”Horse-Shoe” cluster, |Chs

4 〉 in [180],

|Chs
4 〉 =

1
2

(|H +H+ 〉+ |H − V−〉+ |V + V−〉+ |V −H+ 〉). (3.25)

The Horse-Shoe cluster equals also the state |C 〉 up to a Hadamard transformation on the
photons in modes a and d.

In the simple one-way quantum computation scheme presented here, the logical input
qubits are encoded in the state of the two physical qubits on the left hand side (b and c
in Fig. 3.11(a)) before the entangling operation (phase gate) acts on the qubits that are
connected in the graph, i.e., between the pairs a, b and b, c and c, d. After this initialization,
the computation is performed by application of projective measurements on all qubits apart
from the pair on the right hand side (in Fig. 3.11(a), a and d). The qubits a and d carry the
logical output state at the end of the computation. For a better illustration logical qubits are
denoted for the rest of this section as

| 〉, |p 〉 = 1√
2
(| 〉+ | 〉),

| 〉, |m 〉 = 1√
2
(| 〉 − | 〉), (3.26)

to distinguish them from the physical qubits |0 〉, |1 〉, |+ 〉 and |− 〉.
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So the actual physical computation carried out on the Horse-Shoe cluster reads as follows,

trb,c
(

(1⊗|α 〉〈α | ⊗|β 〉〈β | ⊗ 1) · |Chs
4 〉
)

= |ψ(α, β) 〉a,d, (3.27)

where the result is encoded in the state |ψ(α, β) 〉a,d (see Fig. 3.11(a)). On the level of the
logical qubits this is equivalent to

(had⊗ had) · (�z(α)⊗�z(β)) ·cphase · (|p 〉 ⊗ |p 〉) = |ψ(α, β) 〉, (3.28)

depicted in form of a quantum circuit in Fig. 3.11(b). As the qubits b and c are connected,
a cphase operation acts on the logical input qubits prior to the single qubit rotations. This
demonstrates how the entanglement in the cluster can be used to emulate non-local two-qubit
operations required for universal computations.

In the experiment qubits b and c are measured in the xx basis what corresponds to rota-
tions on the logical qubits according to four sets of angles {α, β} = {0, 0}, {0, π}, {π, 0}, {π, π}.
For the usage of |C4 〉 instead |Chs

4 〉, the output states are obtained up to another Hadamard
transformation, which cancels with the had gate acting in the computation. Thus, the re-
sulting transformation on the logical input state is ((�z(α)⊗�z(β)) ·cphase) leading to

|ψ(0, 0) 〉 = 1√
2
(|p 〉+ |m 〉), (3.29a)

|ψ(0, π) 〉 = 1√
2
(|m 〉+ |p 〉), (3.29b)

|ψ(π, 0) 〉 = 1√
2
(|p 〉 − |m 〉), (3.29c)

|ψ(π, π) 〉 = 1√
2
(|m 〉 − |p 〉). (3.29d)

These are the states | φ̃+ 〉, | ψ̃+ 〉, | φ̃− 〉, | ψ̃− 〉, and as the logical output states in this in-
stance are identical to the physical states of qubits a and d, the experimental result of this
computation is the same as the one presented in Fig. 3.5 and Tab. 3.2.

3.3.4 Discussion

The realized computation scheme corresponds to the one presented in [180] achieving one
output state with a slightly higher fidelity of 0.84 ± 0.03 despite of the lower fidelity of the
cluster state itself. In contrast to [180], here four different single qubit rotations on the logical
qubits have been implemented and the output states are all obtained at comparable quality.
This proves the functionality of the small one-way computation for different computational
settings. A possible next step is the implementation of the scheme in a way that different
input states can be used. This can, however, also be solved by realizing a bigger cluster state
that allows to first transform the logical qubits into the input state as part of the cluster
scheme. Very important is further the feed-forward of measurement results which allows to
make the computation deterministic. This route is followed in the group of Anton Zeilinger
and was applied for the first time in [181].

The successful observation of the four-photon cluster state presented above is another
proof for the applicability of the cphase gate. Together with the results discussed in Sec. 3.1
and Sec. 3.2 it shows that the gate can be used for entangling as well as disentangling qubits
within tasks involving more than just two qubits. This makes the implemented cphase gate
an indispensable tool in future multi-photon quantum information applications.
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3.4 Conclusion

This chapter has presented three multi-photon applications of the cphase gate introduced
in Chap. 2. The first two used the gate for a complete Bell state measurement. In this con-
text for the first time, a teleportation and entanglement swapping protocol was performed
where all four Bell states are distinguished by means of linear optics only. The teleported
polarization states showed fidelities clearly above the classical bound. The quality of the im-
plemented teleportation and the achievement of an efficient quantum channel was confirmed
by reconstruction of the quantum process matrix. Running the entanglement swapping pro-
tocol yielded high fidelities and states which were entangled strong enough to violate a Bell
inequality.

The complete Bell state measurement was further used for a direct measure of concurrence.
The underlying method based on measurements on multiple identically prepared quantum
systems was already demonstrated before, however under the very restrictive and unrealistic
assumption of having pure states. Here, for the first time, a generalization of the method for
mixed states was tested accounting for the imperfections of state-of-the art technology which
is used in current set-ups. Thereby it was particularly important to consider the influence of
non-ideal gate operation. This allowed a realistic lower bound estimation on the concurrence
of the prepared states.

In the last application the cphase gate was used to entangle the photons of two Bell pairs.
This enabled the successful observation of a four photon cluster state with high fidelity. As
the properties of the observed state were analyzed in detail elsewhere, the treatment of the
results in this chapter was focused on a proof-of-principle demonstration of measurement
based quantum computation. The two types of single-qubit measurements commonly applied
in such computation schemes have been demonstrated. This comprised in particular the
entangling operation of two encoded logical qubits.

To summarize, the analysis of data obtained within the same set-up from three differ-
ent perspectives constitutes together an interesting proof that a universal two photon gate
based on linear optics only can be successfully applied in tasks involving more than just two
qubits. This is a further demonstration that meanwhile linear optics gates are no longer
feasible just in principle but have reached a level of functionality and simplicity which allows
their implementation in quantum information applications. If this is combined with recently
developed active feed-forward techniques it might additionally open up new vistas for linear
optics quantum computation.
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Chapter 4

Discriminating multi-partite
entangled states

In Chap. 1 it was mentioned that in the case of more than two qubits it is necessary to
distinguish not only between separable and entangled but also between the different kinds of
multi-partite entanglement. It was shown that witness operators provide a tool to distinguish
the different degrees of separability from each other. Whereas for three qubits witness oper-
ators are still suited to distinguish ghz- from w-type entanglement, there is no instructive
method to do something similar for more than three qubits.

This chapter addresses the problem of experimentally discriminating different types of
four qubit entanglement. For this purpose characteristic Bell operators are introduced which
are shown to be suitable for this task [187]. Finally, it will be demonstrated that, provided
additional information about the state space is available, these characteristic operators can
be chosen without the constraint of excluding local realistic descriptions of the measurement
results.

4.1 The problem of state discrimination

Entanglement is the crucial resource for quantum information processing and as such the
”currency” to pay with in almost all applications. For two-partite quantum states measures
have been developed that uniquely specify the value of this resource. In contrast, for n-partite
states the picture changes significantly. First, it has to be distinguished not only between fully
separable or entangled, but also between genuine n-partite, bi-, and tri- separable entangled
states, etc. (see Sec. 1.2.2). Second, even states with the same level of separability are
different in the sense that they have, for example, different Schmidt rank [188] or that they
cannot be transformed into each other, e.g., by, lu or, more generally, by slocc [18, 19].
From an experimental point of view, classifying states according to the latter property is
very reasonable, as states from one slocc class are suited for the same multi-party quantum
communication applications. Thus, for the usage of multi-partite states it is of importance to
know not only the amount but also the type of entanglement contained in a particular state.
In other words, the value and the type of the ”currency” is what matters.

Tools to detect the entanglement of a state exist, most prominently entanglement wit-
nesses [43]. An alternative method, relying on the correlations between results obtained by
local measurements, are Bell inequalities. Being originally devised to test fundamental issues
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of quantum physics they allow to distinguish entangled from separable two-qubit quantum
systems [67, 189]. Bell inequalities, meanwhile extended to three- and more partite quantum
states [190–195], can thus serve as witness for both entanglement and the violation of local
realism. Recently it was observed that for each graph state all non-vanishing correlations (or
even a restricted number thereof) form a Bell-inequality, which is maximally violated only by
the respective quantum state [196–198]. In particular, the Bell inequality for the four-qubit
cluster state is not violated at all by ghz states [196]. Naturally, several questions arise: Is it
in general possible to apply such Bell inequalities for the discrimination of particular states
from other classes of multi-partite entangled states, if so, can they also be constructed and ap-
plied for non-graph states, and finally, are there other operators that allow to experimentally
discriminate entanglement classes.

In this chapter these problems are addressed starting from Bell inequalities. A way is
presented to construct Bell operators [38, 199] that are characteristic for a particular quantum
state. Thereby the following definitions are used:

Definition 4.1.1 (Bell operator) A Hermitian operator � is called Bell operator if there
exists a constant βlr ∈ R and a state � such that | 〈� 〉avg | ≤ βlr for all local realistic theories
and βlr < tr(� �).
Thereby 〈� 〉avg = E(B) is the weighted mean of measurement results in the local realistic
theory for an observable B which is represented by the operator � in the quantum theory.
This is analogous to Eqn. (1.14) and the considerations on page 12.

Definition 4.1.2 (Characteristic operator) A Hermitian operator � : H → H is called
characteristic for a state |X 〉 ∈ H, iff

�|X 〉 = λX |X 〉, dim(ker(�− λX1H)) = 1 and |λX | = sup({|λ | : λ ∈ sp(�)}),

i.e., iff |X 〉 is non-degenerate eigenvector of � with maximal eigenvalue. Thereby, sp(�)
denotes the spectrum of �.

With respect to experimental applications it is further desirable that the expectation value
of each derived operator can be obtained by a minimal number of measurement settings.
Under certain conditions, the initial requirement that the constructed operators have to be
characteristic and in addition Bell operators can be relaxed, which allows further reduction
of the number of settings. Comparison of the experimentally obtained expectation value
with the maximal expectation values for states from other entanglement classes enables the
distinction of an observed state from other multi-party entangled states.

4.2 Characteristic Bell inequalities – principle idea

In order to construct a Bell operator, the fact is exploited that certain correlations between
measurement results on individual qubits are specific for multi-partite quantum states [194,
195]. As already denoted in Eqn. (2.32) and Eqn. (2.33), all correlations for a state |X 〉
are summarized by the correlation tensor T . In the case of four qubits, Tijkl = 〈X |(�i ⊗
�j ⊗ �k ⊗ �l)|X 〉, with i, j, k, l ∈ {0, x, y, z}, where �0 = 1. To obtain a Bell operator �X
that is characteristic for a state |X 〉, at first it is required that |X 〉 is the eigenstate of �X
with the highest eigenvalue λmax. If, as imposed by Def. 4.1.2, the eigenstate is in addition
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not degenerate, this immediately implies that �X acting on another state, cannot lead to an
expectation value greater or equal λmax.

An operator, which is in general not a Bell operator, but trivially fulfills the condition to
be characteristic for |X 〉, is the projector or fidelity operator �X = |X 〉〈X | (cp. Eqn. (2.32))
and

�X =
1
16

∑
i,j,k,l

Tijkl (�i ⊗ �j ⊗ �k ⊗ �l). (4.1)

For most of the relevant quantum states the major part of the 256 coefficients Tijkl is zero.
Therefore, the number of measurement settings necessary for the evaluation of �X is much
smaller than for a complete state tomography. Here, the non-vanishing terms are considered
as relevant correlations for characterizing the state and taken as a starting point for the
construction of �X . As shall be seen in the following two examples, there are quantum states
for which a small subset of the relevant correlations is enough to construct �X . Once this
is accomplished the upper bound, v?Y , on the expectation values vY = 〈Y |�X |Y 〉 = 〈�X 〉Y
for states |Y 〉 which belong to other classes than |X 〉 can be calculated. Consequently, a
state under investigation with 〈�X 〉Z = vZ cannot be an element of any class of states with
v?Y < vZ .

It has to be noted that 〈�X 〉 induces a particular ordering of states which is neither abso-
lute nor related to some entanglement of the states and, similarly to entanglement witnesses
(see Def. 1.2.11), depends on the operator �X . Yet, �X does not only detect higher or lower
degree of entanglement, but it distinguishes different types of entanglement. In this respect
it can be said that a state with higher 〈�X 〉 is more ”|X 〉-type” entangled. The same is
true for a mixed state � with expectation value v� = tr(�X �) = 〈�X 〉�, in the sense that
it cannot solely be expressed as a mixture of pure states |Yi 〉 with v?Yi < v�, but it has to
contain contributions with a higher ”X-type” entanglement.

Summarizing, the construction of a discrimination operator, which has |X 〉 as non-
degenerate eigenvector with the highest eigenvalue leads to a witness of ”|X 〉-type” entan-
glement. After all, such an operator is neither unique, nor does it necessarily have to be
a Bell operator. However, a Bell operator unconditionally detects the entanglement of the
investigated state, even if the state space is not fully known. For example, witness operators
might detect a state to be entangled though a description of measurement results based on
local realistic models, or for that purpose, based on separable states in higher dimensional
Hilbert spaces, is possible [200]. If the representation of the state is trusted, as will be shown
below, even more efficient operators for state discrimination can be devised.

4.3 Examples with experimental results

The approach introduced above of discriminating entangled states by the usage of character-
istic Bell operators shall be demonstrated in the following. At first the Bell inequality for the
four-qubit cluster state derived in [196] is reviewed. Afterwards, two new Bell inequalities for
two important four-qubit entangled states are set up and experimentally tested.

4.3.1 The four qubit cluster state

In [196], based on a ghz argument for non-locality [62, 190], the authors derive a Bell in-
equality which is optimal for the linear four-qubit cluster state |C l4 〉 (see Sec. 3.3). Adapted
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State under lu under slocc

|C4 〉 1.000 1.000
|ghz 〉 0.500 1.000
|D(2)

4 〉 0.417 1.000
|Ψ4 〉 0.333 0.750
|w 〉 0.625 0.750
|bi-sep 〉 0.500 0.500
|sep 〉 0.250 0.250

Table 4.1: Maximal expectation values of �C4 for several prominent examples of four-qubit
states. The bounds are calculated numerically with respect to lu and slocc operations.

for the cluster state |C4 〉, the corresponding Bell operator reads,

4�C4 = �z ⊗ 1⊗ �x ⊗ �x + �x ⊗ �y ⊗ �x ⊗ �y

+ �x ⊗ �y ⊗ �y ⊗ �x − �z ⊗ 1⊗ �y ⊗ �y, (4.2)

with βlr = 1
2 . It is constructed out of the state’s stabilizers and optimized in the sense that it

has |C4 〉 as eigenstate with the maximal eigenvalue λmax = 1. However it is not characteristic
according to Def. 4.1.2 as the maximal eigenvalues are degenerate, i.e., sp(�C4) = {±1} and
dim(ker(�C4 ∓ 1)) = 2. The corresponding orthogonal eigenvectors are −|C4 〉, (1 ⊗ �x ⊗
�x⊗ �x) · |C4 〉 and (�x⊗ �x⊗ 1⊗ 1) · |C4 〉, (�x⊗ 1⊗ �x⊗ �x) · |C4 〉. Due to this degeneracy
the authors’ claim in [196] that �C4 ”acts as a witness discriminating between |C4 〉, which
violates it [the corresponding Bell inequality] up to the algebraic limit, and |ghz 〉, which
does not violate it at all”, is true only with respect to lu but not with respect to slocc.
For both types of operations, Tab. 4.1 shows the bounds on the expectation value of �C4

acting on some classes of prominent four-qubit states (including a fully separable state, |sep 〉,
any bi-separable state, |bi-sep 〉, as well as the four-partite entangled Dicke state D(2)

4 , the
ghz, w and Cluster (C4) state itself). As can be seen, the ghz as well as the Dicke state
reach the same expectation value with respect to slocc and can thus not be discriminated
against each other. The bounds were obtained by numerical optimization over either lu- or
slocc-transformations, respectively. Thereby an lu operation is considered as an element of
SU(2)1, see Eqn. (1.27), an slocc operation as an element of SL(2,C), see page 27 and the
bi-separable states were taken as |ghz 〉abc ⊗ |+ 〉d, |w 〉abc ⊗ |+ 〉d, |φ+ 〉ab ⊗ |φ+ 〉cd with all
permutations between the qubits.

The expectation value 〈�C4 〉 can be evaluated for the data which was obtained in the
experiment described in Sec. 3.3. The relevant correlation measurements are displayed in
Fig. 4.1. The value 〈�C4 〉exp resulting from this data is 0.683 ± 0.03 which is sufficient,
according to Tab. 4.1, to conclude that the experimentally observed state is not of Ψ4, D(2)

4 ,
ghz or w type with respect to lu. Unfortunately, none of these states can be excluded with
respect to slocc, what shows that the non-degeneracy requirement in Def. 4.1.2 is essential.

1The determinant of the lu operation can be fixed to one (SU(2)). Otherwise (U(2)), the result would only
differ by a constant complex factor which is not relevant.



4.3 Examples with experimental results 97

(a) zzxx (b) xyxy

(c) xyyx (d) zzyy

Figure 4.1: Histograms of the four-photon coincidence statistics of |C4 〉 for different mea-
surement settings. Slots at the ordinate indicate different events for a particular basis setting:
e.g. 0011 for basis zzxx means detection of photons in the state |HH −−〉. (a) Correlation
measurement for the operator �z ⊗ �z ⊗ �x ⊗ �x. (b) Correlation measurement for the oper-
ator �x ⊗ �y ⊗ �x ⊗ �y (c) Correlation measurement for the operator �x ⊗ �y ⊗ �y ⊗ �x. (d)
Correlation measurement for the operator �z ⊗ �z ⊗ �y ⊗ �y.

In the following, two new Bell operators are introduced which are characteristic for two
important states. As will be shown they allow indeed a discrimination of the experimentally
observed state against states of other slocc classes.

4.3.2 The four-qubit singlet state

The first example is the entangled four-qubit singlet state which was already introduced in
Sec. 2.2:

|Ψ−4 〉 = 1√
3
(|0011 〉+ |1100 〉 − 1

2(|0101 〉
+|0110 〉+ |1001 〉+ |1010 〉)). (4.3)

This state is of particular interest as it has several applications in quantum information
[113–115, 140, 201].

As discussed in Sec. 2.2, the fidelity operator for that state, �Ψ4 , contains 40 relevant
correlation operators (�i⊗ �j ⊗ �k ⊗ �l), out of which 21 describe four-qubit correlations (i.e.
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State under lu under slocc

|Ψ4 〉 1.000 1.000
|D(2)

4 〉 0.926 0.926
|ghz 〉 0.805 0.805
|C4 〉 0.515 0.764
|w 〉 0.736 0.758
|bi-sep 〉 0.722 0.749
|sep 〉 0.217 0.217

Table 4.2: Maximal expectation values of �Ψ4 for several prominent examples of four-qubit
states. The bounds are calculated numerically with respect to lu and slocc operations.

do not contain �0). These correlations can be used to determine the fidelity in an experiment.
However, already 10 are enough to construct a characteristic Bell operator for |Ψ4 〉,

6�Ψ4 = �x ⊗ �y ⊗ �y ⊗ �x + �y ⊗ �x ⊗ �y ⊗ �x

− �y ⊗ �y ⊗ �x ⊗ �x + �x ⊗ �z ⊗ �x ⊗ �z

+ �z ⊗ �x ⊗ �x ⊗ �z − �z ⊗ �z ⊗ �x ⊗ �x

+ �z ⊗ �z ⊗ �z ⊗ �z − �y ⊗ �y ⊗ �z ⊗ �z

+ �y ⊗ �z ⊗ �y ⊗ �z + �z ⊗ �y ⊗ �y ⊗ �z, (4.4)

with maximal eigenvalue λmax = 1. With the chosen normalization the limit for any local
realistic theory is obtained by replacing �i by some locally predetermined values Ii = ±1,
leading to the inequality |〈�Ψ4 〉avg| ≤ 2

3 . Table 4.2 shows the bounds on the expectation
value of �Ψ4 acting on the same classes of prominent four-qubit states as before. Thus, this
operator can be applied instead of the fidelity to discriminate an experimentally observed
state with respect to other four-qubit states (even w.r.t. slocc). In particular, with the
bound for an arbitrary bi-separable state, �Ψ4 provides also a sufficient condition to check
for genuine four-partite entanglement.

These results can now be employed for the analysis of the data acquired with the setup
described in Sec. 2.2. The fidelity of the experimental state �Ψ−4

, determined from 21 four-
qubit correlations, is FΨ4 = tr(�Ψ4 �Ψ4) = 0.904 ± 0.014. The analysis of the experimental
state using the Bell operator �Ψ4 requires less than half of the measurement settings and
leads to 〈�Ψ4 〉exp = 0.912 ± 0.024. This value is, according to Table 4.2, sufficient to prove
that the experimental state is genuine four-qubit entangled and cannot be of w-, Cluster-, or
ghz-type in the sense described in Sec. 4.2.

4.3.3 The symmetric dicke state with two excitations

The class of states that can experimentally not be excluded as it has the second largest
expectation value in Table 4.2 is represented by the so-called symmetric four qubit Dicke
state with two excitations (see Sec. 2.2.3),

|D(2)
4 〉 = 1√

6
(|0011 〉+ |0101 〉+ |0110 〉

+|1001 〉+ |1010 〉+ |1100 〉). (4.5)
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(a) xyyx (b) yxyx

(c) yyxx (d) xzxz

(e) zxxz (f) zzxx

(g) zzzz (h) yyzz

(i) yzyz (j) zyyz

Figure 4.2: Statistics of the ten correlation measurements required for the evaluation of the
operator �Ψ4 .
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In turn, for the Dicke state a separate, characteristic Bell operator �
D

(2)
4

can be constructed.

Again, |D(2)
4 〉 has 40 correlation operators with non zero expectation value, out of which 21

describe original four-qubit correlations. Naturally, the exact values of the correlations Tijkl
differ compared to |Ψ4 〉 (cp. App. B.1.3 and App. B.1.5). In the case of |D(2)

4 〉 they are such
that eight of the correlation operators are already sufficient for the construction of �

D
(2)
4

:

6�
D

(2)
4

= − �x ⊗ �z ⊗ �z ⊗ �x − �x ⊗ �z ⊗ �x ⊗ �z

−�x ⊗ �x ⊗ �z ⊗ �z + �x ⊗ �x ⊗ �x ⊗ �x

−�y ⊗ �z ⊗ �z ⊗ �y − �y ⊗ �z ⊗ �y ⊗ �z

−�y ⊗ �y ⊗ �z ⊗ �z + �y ⊗ �y ⊗ �y ⊗ �y, (4.6)

with λmax = 1 for |D(2)
4 〉. This operator has a remarkable structure: It is of the form

�x ⊗�3 + �y ⊗�′3, where �3 and �′3 are three-qubit Mermin inequality operators2 [190],
with

�3 = −�z ⊗ �z ⊗ �x − �z ⊗ �x ⊗ �z − �x ⊗ �z ⊗ �z + �x ⊗ �x ⊗ �x (4.7)

and �′3 analog with �x replaced by �y. Thus, by applying a kind of ghz-argument [62, 202],
the bound for any local realistic theory can be easily determined. To illustrate this, the first
block of �

D
(2)
4

is written in the following form:

i ii iii iv

�x ⊗ �z ⊗ �z ⊗ �x (4.8a)
�x ⊗ �z ⊗ �x ⊗ �z (4.8b)
�x ⊗ �x ⊗ �z ⊗ �z (4.8c)

�x ⊗ �x ⊗ �x ⊗ �x (4.8d)

As the observables �x and �z do not commute (see Eqn. (1.21)) it obviously holds that
for column iii, �z ·�x · �z = −�x and therefore (4.8a) · (4.8b) · (4.8c) = − (4.8d). In contrast,
in any local realistic theory the product of outcomes for the subsequent measurements cor-
responding to operators (4.8a) to (4.8c) has to be equal to the outcome of the measurement
corresponding to operator (4.8d). Applying such arguments for both blocks of Eqn. (4.6)
leads to βlr = 2

3 .
Table 4.3 shows the maximal expectation values of �

D
(2)
4

with the same set of four-qubit
states as before. Considering the structure of �

D
(2)
4

, further omitting correlation operators, for

example one whole block �x⊗�3 (or �y⊗�′3), leaves a four-qubit Mermin-type Bell operator.
The corresponding Bell inequality is still violated by |D(2)

4 〉. However, it is not characteristic
anymore for |D(2)

4 〉 as it is maximally violated by the state |ghz 〉y = 1√
2
(|RRRR 〉±|LLLL 〉)

and the bi-separable state |p ·ghz 〉 = 1√
2
(|+ 〉(|RRR 〉±i|LLL 〉)). It is a particular property

of the Dicke state to have correlations in two planes (x-z- and y-z-plane) of the Bloch sphere,
whereas a ghz state, for instance, is correlated only in one plane (here the x-z-plane). This
quite characteristic feature is reflected in the construction of �

D
(2)
4

.

2Interestingly, the characteristic Bell operator for the symmetric six-qubit Dicke state with three excitations,
|D(3)

6 〉, is of the same structure: �x ⊗�5 + �y ⊗�′5. The bound for local realistic theories in this case is 0.4
and the expectation value for the Dicke state is 1 compared to e.g. 0.85 for any six-qubit ghz state.
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State under lu under slocc

|D(2)
4 〉 1.000 1.000
|Ψ4 〉 0.889 0.889
|ghz 〉 0.833 0.833
|C4 〉 0.500 0.706
|bi-sep 〉 0.667 0.667
|w 〉 0.613 0.619
|sep 〉 0.178 0.178

Table 4.3: Maximal expectation values of�
D

(2)
4

for several prominent examples of four-qubit
states. The bounds are calculated numerically with respect to lu and slocc operations.

The above considerations shall be again demonstrated by their application to real data.
The observation of the state |D(2)

4 〉 was reported in Sec. 2.2.3. However, there is an alternative
linear optics setup which can be used to obtain the Dicke state and which yields a slightly
better state quality as it does not involve two-photon interference. This scheme exploits the
fact that the Dicke state is an equally weighted superposition of all permutations to distribute
two horizontally and two vertically polarized photons onto four spatial modes. Thus, the
starting point is the second order emission of a collinear type-ii spdc process, leading to two
horizontally and two vertically polarized photons in one spatial mode. These four photons are
symmetrically split up into four output modes using three beam splitters with polarization
independent splitting ratio. Under the condition that the photons are indistinguishable up to
their polarization and that one of them is detected in coincidence in each of the four output
modes, the desired state D(2)

4 is observed (see Fig. 4.3). In the experiment, which is described
in detail in [99, 121, 129], the state is obtained with a fidelity of F = 0.844± 0.008 at a count
rate of about 60 fourfold coincidence counts per minute.

In the following the data acquired with this arrangement is used. In order to still increase
the state fidelity by a higher degree of the photons’ indistinguishability, the filter bandwidth
is reduced from 3 nm (as used in [99]) to 2 nm, resulting in F = 0.919± 0.019. For the state’s
experimental analysis with the Bell operator (Eqn. (4.6)) the value 〈�

D
(2)
4

〉exp = 0.896±0.039
is found. The data of the eight required correlation measurements is shown in Fig. 4.4. The
reached value is high enough to conclude that the state is genuine four-qubit entangled and
cannot be, e.g., of w-, Cluster- or ghz-type. Yet, it is again just at the limit to separate
against |Ψ4 〉.

4.4 Non-Bell operators

If there is no doubt about the structure of the state space, that means in this case that it is
spanned by four qubits, other operators can be used equally well instead of the Bell operators.
This can lead to a further reduction of the number of measurement settings. Starting with
�
D

(2)
4

, some of the correlation operators can still be dropped, e.g., the terms (�x⊗�x⊗�x⊗�x)

and (�y ⊗ �y ⊗ �y ⊗ �y). The resulting discrimination operator,

4�
D

(2)
4

= = −�x ⊗ �z ⊗ �z ⊗ �x − �x ⊗ �z ⊗ �x ⊗ �z − �x ⊗ �x ⊗ �z ⊗ �z

−�y ⊗ �z ⊗ �z ⊗ �y − �y ⊗ �z ⊗ �y ⊗ �z − �y ⊗ �y ⊗ �z ⊗ �z, (4.9)
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Figure 4.3: Schematic sketch of the al-
ternative setup for the observation of the
state |D(2)

4 〉. Two horizontally and two
vertically polarized photons are emitted
by the second order emission of collinear
spdc. The photons propagate initially
in one spatial mode but are afterwards
symmetrically split by three polariza-
tion independent bs. Under the condi-
tion of detecting one photon in the pa
of each mode a, b, c, d, the state is ob-
served.

is not a Bell operator anymore (βlr = 3
2), but is still characteristic, i.e., it has |D(2)

4 〉 as
the only eigenstate with maximal eigenvalue λmax = 1. Interestingly, as seen in Tab. 4.4(a),
it introduces a new ordering of states with a bigger separation between |D(2)

4 〉 and |Ψ4 〉.
With 〈�

D
(2)
4

〉exp = 0.904±0.050 it is possible to discriminate against this state with a better
significance. The reordering, which results in the ghz state having now the second highest
eigenvalue, indicates that this operator analyzes the various states from a different point of
view. This is quite plausible as it uses different correlations for the analysis.

An even more radical change in the point of view is possible with the data dropped above,
i.e., (�x ⊗ �x ⊗ �x ⊗ �x) and (�y ⊗ �y ⊗ �y ⊗ �y). Relying on the particular symmetries of
the Dicke state, these measurements allow the evaluation of a discrimination operator, which
was introduced as a spin witness in [203],

6�′
D

(2)
4

=

(
1
2

4∑
i=1

�ix

)2

+

(
1
2

4∑
i=1

�iy

)2

, (4.10)

where, e.g., �3
x/y = 1⊗ 1⊗ �x/y ⊗ 1. Obviously this operator is the sum of the spin squared

along x and y direction. As |D(2)
4 〉 is the only spin eigenstate which has maximal total spin

and, at the same time, minimal spin along z direction (where z be the quantization axis) it
maximizes the eigenvalue of this operator (which is also no Bell operator anymore, βlr = 4

3).
Comparing the observed value 〈�′

D
(2)
4

〉exp = 0.958±0.013 with the bounds for other states

(Tab. 4.4(b)), a discrimination of the experimental state against all states of the respective
classes is possible with only two settings.

Analogous considerations can be applied for the construction of characteristic operators
for other states, where the number of settings scales polynomially with the number of qubits
compared to the exponentially increasing effort for quantum state tomography. Recently,
such operators were introduced also for |Ψ4 〉 [204] and |C4 〉 [145].

The operator for |Ψ4 〉 requires for its evaluation only three measurement settings (xxxx,
yyyy, zzzz) and is of the form

21�Ψ4 = �x +�y +�z, (4.11)

with
�k = �⊗4

k + 3
(
�

1,2
k + �

3,4
k

)
− 3

2

(
�

2,3
k + +�

2,4
k + �

1,3
k + �

1,4
k

)
, (4.12)
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(a) xzzx (b) xzxz

(c) xxzz (d) xxxx

(e) yzzy (f) yzyz

(g) yyzz (h) yyyy

Figure 4.4: Statistics of the eight correlation measurements required for the evaluation of
the operator �

D
(2)
4

.
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(a)

State | 〈�
D

(2)
4

〉 | (slocc) | 〈�′
D

(2)
4

〉 | (slocc)

|D(2)
4 〉 1.000 1.000

|ghz 〉 0.905 0.937
|C4 〉 0.871 0.905
|w 〉 0.869 0.905
|Ψ4 〉 0.869 0.901
|bi-sep 〉 0.750 0.872
|sep 〉 0.192 0.139

(b)

State | 〈�Ψ4 〉 | (slocc)

|Ψ4 〉 1.000
|D(2)

4 〉 0.905
|ghz 〉 0.772
|C4 〉 0.741
|w 〉 0.701
|bi-sep 〉 0.683
|sep 〉 0.619

(c)

State | 〈�C4 〉 | (slocc)

|C4 〉 1.000
|D(2)

4 〉 0.871
|Ψ4 〉 0.750
|ghz 〉 0.750
|w 〉 0.750
|bi-sep 〉 0.750
|sep 〉 0.625

Table 4.4: Maximal expectation values of alternative characteristic operators for (a) |D(2)
4 〉,

(b) |Ψ4 〉 and (c) |C4 〉. The bounds for several prominent examples of four-qubit states are
calculated numerically with respect to slocc operations.
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where, e.g., �1,3
k = �k ⊗ 1 ⊗ �k ⊗ 1 and k ∈ {x, y, z}. It is characteristic for |Ψ4 〉, but not a

Bell operator as, βlr = 13
7 . Tab. 4.4(b) shows the bounds on the expectation value of �Ψ4

for the same set of four-qubit states as before. An experimental evaluation of �Ψ4 using the
data obtained in Sec. 2.2.3 (see Fig. 2.10) yields 〈�Ψ4 〉exp = 0.903± 0.018. Comparing this
value with Tab. 4.4(b) proves that the state is genuinely four-qubit entangled and cannot be
of ghz-, cluster-, or w-type. Unfortunately, the value is just at the limit to discriminate the
experimentally observed state from the Dicke state. Still, the discrimination to all states is
more significant in comparison to the usage of �Ψ4 .

The operator for |C4 〉 is, like �C4 , constructed from the cluster state stabilizer operators.
It is of the form

8�C4 = (�1,2
z +1⊗4) · (1⊗�z⊗�x⊗�x +1⊗4) + (�x⊗�x⊗�z⊗1+1⊗4) · (�3,4

z +1⊗4) (4.13)

and its evaluation requires two measurement settings (zzxx, xxzz). It is characteristic for
|C4 〉 with λmax = 1, but no Bell operator as the limit for any local realistic theory is βlr = 16.
The bounds on the expectation value of �C4 for other states are displayed in Tab. 4.4(c).
Using the operator for the analysis of the cluster state which was observed in the experiment
described in Sec. 3.3, yields 〈�C4 〉exp = 0.825± 0.020. According to Tab. 4.4(c), this value is
not sufficient to discriminate the experimental state from the Dicke state. However, it allows
to prove that the state is four qubit entangled and not of ghz-, Ψ4-, or w-type. In contrast
to the usage of �C4 , this discrimination can be accomplished indeed with respect to slocc
operations.

4.5 Conclusion

In this chapter it was demonstrated that characteristic (Bell-)operators, i.e., operators for
which a particular state only has maximal expectation value, allow to distinguish this state
from the ones out of other classes of multi-partite entangled states. Thereby the properties of
a characteristic operator were defined and shown to be reasonable in the sense that relaxing
the imposed requirements does not lead to the desired result anymore. New operators for two
important four-qubit entangled states were presented. They have been successfully applied to
experimentally distinguish two important four-qubit entangled states from states of several
other slocc classes. It was shown that other, already known witness operators for these
states are also characteristic according to the introduced definition. Used in the experiment,
they allowed the investigation of the observed states from a different perspective.

The simple, though not yet constructive, method to design these discrimination opera-
tors is based on the correlations between local measurement settings that are typical for the
respective quantum state. As the number of measurement settings required for the evalua-
tion of the operators is lower compared to standard analysis tools, like, e.g., qst or fidelity
estimation, the experimental effort is significantly diminished. Demanding the discrimina-
tion operators to be Bell operators can be advantageous in case of limited knowledge about
the state space. Otherwise, employing characteristic symmetries and properties of the state
under investigation can even further reduce the effort to a number of settings which scales
polynomially with the number of qubits. This renders the new method a truly efficient tool
for the characterization of multi-partite entanglement.
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Chapter 5

Experimental implementation of
multi-agent quantum games

In Chap. 2 a linear optics network was introduced that enables the observation of a whole
family of four-qubit entangled states. This chapter deals with the application of this setup
for the first experimental realization of a multi-agent quantum game. The particular game
which is implemented is the four-player quantum Minority game.

After a short introduction to the principles of (quantum) game theory, it is theoretically
shown that for this game, with the family of initial states presented in Sec. 2.2, there is a
symmetric Pareto optimal strategy profile that provides payoffs superior to that obtainable
classically. The excess of the quantum payoff over the classical depends on the fidelity of the
initial state. When the appropriate strategies are applied experimentally, the payoff values
obtained lie well above the classical limit and thus prove the quantum version of the game to
be superior to its classical counterpart.

5.1 Basics of (quantum) game theory

Game theory is a branch of applied mathematics which is used to mathematically describe
the behavior of rational decision making in conflict situations. It has been used in economics,
social sciences and biology to model situations in which decisions of particular individuals
depend upon the choices of others. Meanwhile it found also applications in physics and
computer science.

From a mathematical point of view a game is defined as a set of players, a set of rules
according to which the players can choose their actions, and a set of payoff functions assigning
rewards to the players for the different game outcomes. Thereby the payoff constitutes a
measure for the desirability of a particular outcome of the game for a player. In the simplest
version of a game the players can choose between two strategies and their choice can each be
encoded in a single bit. Being involved with quantum information it seems natural to replace
this classical bit by a qubit [205]. This translation of an originally classically formulated theory
into the quantum realm can offer completely new prospects, just like it happened for quantum
cryptography or quantum computing. As an elaborated introduction into (quantum) game
theory would go beyond the scope of this thesis, the basic features and definitions necessary
for the understanding of the following sections are demonstrated by means of a simple example
involving two players. Probably the most famous is the so-called Prisoners’ Dilemma.
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The name stems from a short story about two prisoners on remand which have the chance
to negotiate their respective time of imprisonment by either choosing to defect or cooperate
during the interrogation. Any elaboration of the story is not of further importance as the
underlying conflict applies anyway to various situation in everyday life. Important, however,
is to note that each player has two strategies to play and is concerned exclusively with
maximizing his own payoff irrespective of the reward of the other. A convenient way of
representing this game is in its normal form, which consists of a matrix including the players,
say A and B, their strategies, c and d, as well as the resulting payoffs ( · , · ):

A: c A: d
B: c (3,3) (0,5)
B: d (5,0) (1,1)

Considering the distribution of the payoff it is obvious that with the aim of maximizing his
own reward, rational choice of each player leads to both playing d, although each player’s
individual payoff would be greater if they both played c. This can be easily understood by
running through the possibilities: Assuming A plays c, the obvious best choice for B is to
play d as in this case he obtains 5 credits instead of only 3. Also in case A chooses d, for B
to play d is the preferred strategy as he is rewarded at least 1 credit instead of 0. The same
holds vice versa for A. The arising conflict can be formulated in an elegant way by defining
the following two terms [206]:

Definition 5.1.1 (Nash equilibrium) A game result from which no player can improve
their payoff by a unilateral change in strategy is called Nash equilibrium ( ne).

Definition 5.1.2 (Pareto optimal) A game result from which no player can improve their
payoff without another player being worse off is called Pareto optimal ( po).

Consequently, the dilemma in the Prisoners’ Dilemma is the fact that the po solution, which
makes everybody ”happy”, is not a ne, i.e., it will not be reached within the game, as the
game tends to end up in the equilibrium solution.

In a quantized version of the game [207] the players’ actions are implemented by unitary
operations on the qubits of a bi-partite (entangled) state. It can be shown that if entanglement
is used, and under certain restrictions to the strategic space [208, 209], the players can escape
the dilemma; a new ne appears in the game which is po.

This was one of the first demonstrations that novel features can emerge if classical games
are extended to the quantum domain. The quantum Prisoners’ Dilemma was recently exper-
imentally realized using quantum computers based on nuclear magnetic resonance [210] and
linear optics [211]. In the following the first experimental implementation of a four-player
quantum game is discussed.

5.2 The quantum Minority game

In this chapter a four-player quantum Minority game (qmg) with the continuous set of four-
partite entangled states presented in Sec. 2.2 is studied theoretically1, and its experimental
proof-of-principal realization is demonstrated.

1The theory was derived by Adrian P. Flitney within the framework of a collaboration with the author and
his co-workers concerning the experimental implementation of multi-agent quantum games.
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The Minority game [212] is a simple multi-player game for studying strategic decision
making within a group of agents. It arose as a multi-agent iterative model of buying and
selling in a market [213–215]. Similar to the Prisoners’ Dilemma, in each play the agents
independently select between one of two options, labeled ”0” and ”1” (”buy” and ”sell”).
Those that choose the minority win and are awarded a payoff of one unit, while the others
loose and receive no payoff. Players utilize knowledge of past successful choices to optimize
their strategy. Quantum versions of the one-shot Minority game have generated interest [216–
220]. They provide a means of studying multi-partite entanglement in a competitive setting
using game theoretic tools, and for small numbers of players are amenable to simulation using
multi-photon entangled states.

The quantization of the Minority game is described as follows. Each of four players is
given one qubit from a known four-partite entangled state. This state is an element of the
subspace spanned by the four-qubit ghz state and a product state of two Bell pairs. The
players are permitted to act on their qubit with any local unitary operation. The choice of
such an operator is the player’s strategy. During this stage coherence is maintained and no
communication between the players is permitted. After the players’ actions, a referee measures
the qubits in the computational basis and awards payoffs using the classical payoff scheme.
In the dominant protocol of quantum games initialized by the quantization of the Prisoners’
Dilemma [207, 216], an entangling gate is used to produce a ghz state from an initial state of
|00 . . . 0 〉. After the players’ actions the inverse operator is applied to the multi-partite state.
For the Minority game this last operator only has the effect of interchanging between states
where the same player(s) win and so can be omitted without changing the expected payoffs.
Although here no longer an initial ghz state is considered, the construction of: initial state →
player operations → measurement in the computational basis is maintained for simplicity, and
to enable a comparison to be carried out with earlier results. This arrangement is consistent
with the generalized quantum game formalisms of Lee and Johnson [221] and Gutoski and
Watrous [222], and is particularly suited for an implementation using entangled photon states
and linear optics quantum logic.

5.3 Theory

A four player qmg was first examined by Benjamin and Hayden [216], and later generalized
to multiple players [217] and to the consideration of decoherence [218]. Formally the qmg is
played by computing the state

�fin = (�⊗�⊗ �⊗�) · �in · (�⊗�⊗ �⊗�)†, (5.1)

where �,�,�,� are the operators representing the strategies of the four players and �in is
some four-qubit input state. For convenience the players shall be named Alice (A), Bob (B),
Charlie (C) and Debra (D). The qubits in �fin are subsequently measured in the computational
basis and payoffs are awarded using the classical payoff matrix. Work to date has concentrated
on the consideration of an initial ghz state. In contrast, here as initial state the family
introduced in Sec. 2.2 is considered,

|ψin 〉 = |Ψ(α) 〉 =
α√
2

(|0000 〉 + |1111 〉)

+
√

1− α2

2
(|01 〉+ |10 〉)⊗ (|01 〉+ |10 〉),

(5.2)
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see Eqn. (2.18). To make allowances for some loss of fidelity in the experimental preparation
of this state the initial state will be a mixed state represented by the density matrix

�in = f |ψin 〉〈ψin |+
1− f

16

∑
ijk`=0,1

| ijk` 〉〈 ijk` |, (5.3)

where f ∈ [0, 1] is a measure of the quality of production of the desired initial state. The
second term in Eqn. (5.3) represents white noise [100]. The players’ strategies are single-qubit
unitary operators that can be parameterized in the form

�(θ, β1, β2) =
(

exp(iβ1) cos
(
θ
2

)
i exp(iβ2) sin

(
θ
2

)
i exp(−iβ2) sin

(
θ
2

)
exp(−iβ1) cos

(
θ
2

) ) , (5.4)

where θ ∈ [0, π], β1, β2 ∈ [−π, π]. In the used construction of the qmg only the difference in
the phases is relevant to the expected payoff, so it suffices to use a restricted set of operators
where β ≡ β1 = −β2.

In the case where α = 1 it is known that a symmetric ne occurs when all players choose
the strategy [216]

�(π2 ,
π
8 ,−

π
8 ) =

1√
2

(
exp(iπ8 ) i exp(−iπ8 )
i exp(iπ8 ) exp(−iπ8 )

)
. (5.5)

Although the value β1 = −β2 = π
8 is not the unique optimum, it is a focal point [223] that

attracts the attention of the players since it is the simplest optimum value, and therefore
there is no great difficulty in arriving at this ne. Given that at most one player of the four
can be in the minority, 1

4 is the greatest average payoff that can be expected. This is realized
with the above strategy when the initial state has maximum fidelity. As f → 0, the payoff
reduces to 1

8 , the optimal payoff in a one-shot classical Minority game, where the players can
do no better than choosing 0 or 1 with equal probability. This is as expected since in the
absence of entanglement the qmg cannot give any advantage over its classical counter part.

A ne in the case of general α can be searched as follows. If there exists θ?, β? such that〈
$D

(
�(θ?, β?,−β?)⊗4

)〉
≥〈

$D

(
�(θ?, β?,−β?)⊗3 ⊗ �(θ, β,−β)

)〉
∀ θ, β,

(5.6)

then �(θ?, β?,−β?) is a symmetric ne strategy2. Thereby $D ≡|0001 〉〈 0001 |+|1110 〉〈 1110 |
denotes the payoff operator to Debra. There is no in principle objection to asymmetric ne
strategy profiles, where the players choose different strategies. However, in practice these
cannot be reliably achieved in the absence of communication between the participants since
it is otherwise impossible for the players to know which of the different strategies to select.
Necessary, but not sufficient, conditions for the existence of a symmetric ne are

∂〈$D〉
∂θ

∣∣∣∣
θ=θ?, β=β?

= 0,
∂〈$D〉
∂β

∣∣∣∣
θ=θ?, β=β?

= 0, (5.7a)

∂2〈$D〉
∂θ2

∣∣∣∣
θ=θ?, β=β?

≤ 0,
∂2〈$D〉
∂β2

∣∣∣∣
θ=θ?, β=β?

≤ 0, (5.7b)

where 〈$D〉 is the payoff on the right hand side of Eqn. (5.6). Inequalities in Eqn. (5.7b)
indicate a local maximum in the payoff to Debra, however this may not be a global maximum.

2If Eqn. (5.6) holds for each player, this is nothing but a mathematical formulation of Def. 5.1.1.
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An equality in Eqn. (5.7b) may mean a local maximum, minimum or an inflection point in
the payoff. In the following all the symmetric ne strategies are enumerated by considering
Eqn. (5.7a) – Eqn. (5.7b) over the range of α ∈ [0, 1].

If Alice, Bob and Charlie use the strategy �(θ, β,−β) while Debra plays �(θ′, β′,−β′) then

∂〈$D〉
∂θ′

∣∣∣∣
θ′=θ, β′=β

=
sin(2θ)

8

(
2α2 + 2α

√
2− 2α2 cos(4β)

+
(
2α2 − 2− 2α

√
2− 2α2 cos(4β)− α2 cos2(4β)

)
sin2(θ)

)
∂〈$D〉
∂β′

∣∣∣∣
θ′=θ, β′=β

=
α

2
sin(4β) sin2(θ)

×
((√

2− 2α2 + α cos(4β)
)

sin2(θ)− 2
√

2− 2α2
)
.

(5.8)

The variables θ, β need to be found for which these derivatives are simultaneously zero.

Apart from the known ne for α = 1 the only other symmetric ne occurs for α ≤
√

2
3 when

cos(4β) = 1 and

cos(θ) =

√
2− 3α2

2− α2 + 2α
√

2− 2α2
. (5.9)

The expected payoff to each player for this equilibrium is

〈$〉 =
α(2− 3α2)(α+

√
2− 2α2)

4− 2α2 + 4α
√

2− 2α2
, (5.10)

which reaches a maximum value of (3 + 2
√

3)/(18 + 10
√

3) ≈ 0.183 at α =
√

1
6(3−

√
3).

Fig. 5.1(a) and Fig. 5.1(b) give the value of θ and the resulting payoff, respectively, for this
solution.

Now the po strategy profile is considered, i.e., the one from which no player can improve
their result without another being worse off. This is in effect the best result for the players
as a group. Again only symmetric strategy profiles are considered. That is, only values of
θ?, β? are of interest for which〈

$
(
�(θ?, β?,−β?)⊗4

)〉
≥
〈
$
(
�(θ, β,−β)⊗4

)〉
∀ θ, β, (5.11)

where $ represents the payoff to any one of the four players for the indicated strategy profile.
Suppose all players select the strategy �(θ, β,−β) for some θ, β to be determined. The payoff
to each player is

〈$〉 =
sin2(θ)

32

(
8− 2α2 + 8α

√
2− 2α2 cos(4β)− 2α2 cos(8β)

+ 2
(
4− 3α2

)
cos(2θ) + 8α

√
2− 2α2 cos(4β) cos(2θ)

+ 2α2 cos(8β) cos(2θ)
)
.

(5.12)
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(a) (b)

Figure 5.1: (a) The value of θ given by Eqn. (5.9) that, along with β = 0, gives a symmetric

ne, as a function of the initial state parameter α ∈ [0,
√

2
3 ]. The payoff for this equilibrium is

given in Fig. 5.1(b) dashed curve. (b) Payoffs for the two maxima in Tab. 5.1, along with the
symmetric ne payoff of Eqn. (5.10) (dashed line), as a function of the initial state parameter
α. In i (—) the ghz- and in ii (—) the Bell-dominated regions are shown. The symmetric

ne is maximal when α =
√

2
11 , while the peak of ii occurs when α =

√
1
3 . The two po payoff

curves (i and ii) meet at α =
√

2
3 .

A local maximum or minimum in the value of the payoff will have ∂〈$〉
∂θ = ∂〈$〉

∂β = 0 where,

∂〈$〉
∂θ

=
sin(2θ)

4

(
α2 sin(2θ)

(
1− 2 cos2(4β) sin2(θ)

)
(5.13a)

+ cos(2θ)
(
2− 2α2 + 2α

√
2− 2α2 cos(4β)

))
;

∂〈$〉
∂β

= 2α sin2(θ) sin(4β)
(
α cos(4β) sin2(θ)−

√
2− 2α2 cos2(θ)

)
. (5.13b)

The latter expression is zero if sin(θ) = 0, sin(4β) = 0, or

cos(4β) =
√

2− 2α2

α
cot2(θ). (5.14)

Substituting the last expression into Eqn. (5.13a) and simplifying gives

∂〈$〉
∂θ

=
3α2 − 2

4
sin(2θ), (5.15)

which is equal to zero if sin(2θ) = 0 or α =
√

2
3 . From these results, Tab. 5.1 of extrema

points and their corresponding payoffs can be calculated, where allowance has been made for

non-unit fidelities f . The first two strategies are po in the regions α ≥
√

2
3 and α ≤

√
2
3 ,

respectively. Fig. 5.1(b) shows the payoffs for these cases for a fidelity of f = 1, along
with the ne payoff of Eqn. (5.10). It has to be noted that the optimal strategy switches

from �i ≡ �(π2 ,
π
8 ,−

π
8 ) for α >

√
2
3 where the initial state is dominated by the ghz part, to

�ii ≡ �(π4 , 0, 0) for α <
√

2
3 , where the initial state is dominated by the Bell pairs. At α =

√
2
3
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θ β 〈$〉 ∂2〈$〉
∂θ2

∂2〈$〉
∂β2

π
2

π
8

1
8 + f

8 (2α2 − 1) < 0 ∀ α >
√

2
3 < 0

π
4 0 1

8 + f
16 α(2

√
2− 2α2 − α) < 0 ∀α 6=

√
2
3 < 0 ∀α <

√
2
3

π
4

π
4

1
8 + f

16 α(−2
√

2− 2α2 − α) < 0 ∀α 6=
√

2
3 > 0

0 0 1
8 −

f
8 > 0

0 min
0 π

4
1
8 −

f
8 > 0 0

π
2 0 1

8 −
f
8 > 0 > 0

π
2

π
4

1
8 −

f
8 > 0 > 0

Table 5.1: Table of θ and β that give rise to a local maximum or minimum expected payoff
for a symmetric strategy profile �(θ, β,−β)⊗4, along with the resulting payoff. The second
derivatives of the payoff can be used to classify the extrema. Here, f ∈ [0, 1] is the fidelity to
which the initial state is prepared.

the components in the initial state are equally weighted and both strategies yield the same
results.

There has been some recent interest in the correspondence between equilibria in quantum
game theory and the violation of Bell inequalities [224, 225]. In the case considered here
it is interesting that the curve for the symmetric po payoff is the same as that for the
maximal violation of the Mermin-Ardehali-Belinski-Klyshko (mabk) Bell inequality [226].
These findings are reported and discussed in detail in [227].

5.4 Experimental implementation and results

The implementation of the four-player quantum minority game consists of acting with the
strategy operator on each qubit of the input state and afterwards measuring the resulting
output state in different bases. The input states for different values of α are provided by the
linear optics setup described in Sec. 2.2. The unitary transformation corresponding to the
players’ choice of a strategy is realized by a series of quarter-, half- and quarter-wave plates
placed right before the pa in each of the four spatial modes. In order to play strategy i and
to act with �i the angles of the wave plates are chosen as {−π

8 ,
5π
16 , 0}, for strategy ii and �ii

as {π2 ,
π
16 ,

π
2 }.

First of all, the ne solution for α = 1 shall be experimentally tested. The expected state
after the application of strategy i, which is in this case the optimal one, is of the form

(�⊗4
i ) |ghz 〉 = − 1

2
√

2

(
|HHHV 〉+ |HHVH 〉

+|HVHH 〉+ |V HHH 〉
−|V V V H 〉 − |V V HV 〉

−|V HV V 〉 − |HV V V 〉
)

=
i√
2

(|RRRR 〉 − |LLLL 〉). (5.16)
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(a) (b)

Figure 5.2: Experimentally measured payoffs. The data is fitted assuming a mixed in-
put state of the form f |Ψ(α) 〉〈Ψ(α) |+ (1− f)/16 1⊗4. The maximum value achievable by
classical means is 1

8 (black line). The dashed line corresponds to the ideal case f = 1. (a)
Payoff 〈$i,ii〉 averaged over all four players dependent on α for strategy i (-•-) and strategy
ii (-•-), measured in the computational basis. (b) Payoff 〈$i,ii〉 averaged over all four players
dependent on α in the basis xxxx for strategy i (-•-) and strategy ii (-•-) and in the basis
yyyy for strategy i (-�-) and strategy ii (-�-).

As can be seen, the transformed state is also of ghz-type, and thus the fidelity

F = 〈ghz |�†⊗4
i �out

α=1�
⊗4
i |ghz 〉 (5.17)

of the experimental state �out
α=1 equals the average expectation value of the ghz stabilizer

operators3 (cp. page 88). A measurement of the respective correlations is hence sufficient
to evaluate the state fidelity. This requires nine measurement settings yielding a value of
F = 0.746±0.019. For comparison, the fidelity of the untransformed initial ghz state obtained
with the setup is F = 0.745 ± 0.022. Thus, application of the strategy operators leaves the
quality of the observed state unchanged.

The payoff awarded to each player can be evaluated from the correlation measurement in
the computational basis, zzzz. The obtained results are summarized in Tab. 5.2. The payoffs
differ slightly for each player but are comparable within the measurement error. Averaged
over all four players the payoff for α = 1 and strategy i is 〈$i〉α=1 = 0.206 ± 0.009 which is
well above the classical limit of 1

8 .
As shown theoretically in the previous section, the maximal achievable payoff depends on

α and, moreover, an interesting change in the po strategy occurs for α =
√

2
3 . This shall be

verified experimentally in the following; in particular the dependence of the po payoff on the
value of α shall be reconstructed. To this end, measurements for other distinguished states,

|Ψ(0) 〉, |Ψ(
√

2
11) 〉, and |Ψ(

√
2
3) 〉 are performed. The results are summarized in Tab. 5.2 and

the dependence of the average payoffs for strategy i and ii is displayed in Fig. 5.2(a).
For other values of α, like in the ghz case, the experimentally measured payoffs differ

also slightly for each player but are in most instances comparable. The only exception occurs

for player C and player A for α =
√

2
11 and

√
2
3 , respectively. The cause of this could

3A four-qubit ghz state is also a graph state.
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Strategy i Strategy ii

State Player payoff 〈$i〉 Player payoff 〈$ii〉

|Ψ(0) 〉

A: 0.023 ± 0.004 A: 0.128 ± 0.012
B: 0.028 ± 0.005 B: 0.117 ± 0.011
C: 0.041 ± 0.006 C: 0.123 ± 0.011
D: 0.042 ± 0.006 D: 0.131 ± 0.012

Average: 0.033 ± 0.003 Average: 0.125 ± 0.006

|Ψ(
√

2
11) 〉

A: 0.058 ± 0.007 A: 0.148 ± 0.014
B: 0.073 ± 0.008 B: 0.145 ± 0.014
C: 0.104 ± 0.010 C: 0.161 ± 0.015
D: 0.056 ± 0.007 D: 0.172 ± 0.015

Average: 0.073 ± 0.004 Average: 0.156 ± 0.007

|Ψ(
√

2
3) 〉

A: 0.095 ± 0.015 A: 0.161 ± 0.016
B: 0.155 ± 0.021 B: 0.133 ± 0.015
C: 0.168 ± 0.021 C: 0.133 ± 0.014
D: 0.145 ± 0.018 D: 0.165 ± 0.017

Average: 0.141 ± 0.009 Average: 0.148 ± 0.008

|Ψ(1) 〉

A: 0.202 ± 0.019 A: 0.061 ± 0.008
B: 0.213 ± 0.020 B: 0.078 ± 0.009
C: 0.185 ± 0.018 C: 0.068 ± 0.009
D: 0.226 ± 0.019 D: 0.093 ± 0.010

Average: 0.206 ± 0.009 Average: 0.075 ± 0.009

Table 5.2: Measured payoffs 〈$i,ii〉 for strategy i and ii played for four different initial states
with distinguished values of α.

not yet doubtlessly be identified. The average payoffs follow the expected dependence for
both strategies, once imperfect state quality is taken into account. To allow for loss in the
states’ fidelity the data in Fig. 5.2(a) is fitted assuming a mixed input state of the form of
Eqn. (5.3). Although the assumptions to have an admixture of white noise and constant
state quality for all values of α is only an approximation (see Sec. 2.2.4), the value of f =
0.71± 0.03 obtained from the fit is in good agreement with the measured ghz fidelity, where
F = (1 + 15f)/16 ≈ 0.73. A more detailed discussion of the results for each measured point
is given in the following.

For α = 0 a product of two Bell states is expected. As this state is not four-qubit
entangled it should yield at maximum the classical payoff for strategy ii. This is reproduced
in the experiment with an average payoff of 〈$ii〉α=0 = 0.125± 0.006. If the players chose to
play strategy i zero payoff is expected for ideal, pure input states. However, for an increasing
mixedness of the input states the payoff curves become more and more deformed into a
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constant of the classical limit and finally equalize for f → 0. This fact leads to a non-zero
value for the experimentally measured average payoff for strategy i, 〈$i〉α=0 = 0.033± 0.003.

Similar behavior is obtained for α =
√

2
11 , where the measured payoffs for strategy ii,

〈$ii〉α=
√

2/11
= 0.156±0.007, and strategy i, 〈$i〉α=

√
2/11

= 0.073±0.004, are lower and higher
than expected, respectively. Still, the experimentally reached state quality is high enough to
ensure for the proper strategy a payoff which exceeds the one maximally achievable in classical
games.

As mentioned before, the next point, α =
√

2
3 is special as both strategies lead to the same

payoff. It is the point in which the players have to switch between the different strategies.

The corresponding state, |Ψ(
√

2
3) 〉 ≡ |Ψ4 〉, was already discussed several times within this

work. The point’s feature of being a quantum fulcrum is nicely reproduced in the experiment
as well. As can be seen, both from Tab. 5.2 and Fig. 5.2(a), within the measurement errors
the average payoff, 〈$i〉α=

√
2/3

= 0.141± 0.009 and 〈$ii〉α=
√

2/3
= 0.148± 0.008, is the same

for strategy i and ii.

Finally, also the values obtained in the ghz case fit well in the dependence prescribed
by the previous points. Like for the other states, due to imperfect state quality the average
payoff is slightly lower (higher) than the ideal value of 1

4 ( 1
16) for strategy i (ii).

Recapitulatory, it can be stated that for all values of α the players are awarded payoffs
above the classical limit if they chose the proper strategy.

The realization of the Minority game presented here does not use an unentangling gate.
Thus a measurement in the computational basis alone cannot prove that the higher than
classical payoff values have their seeds in the four-qubit entanglement of |Ψ(α) 〉. In principle
they could be caused by an admixture of the separable state

�sep =
1
8

(
|HHHV 〉〈HHHV |+ permutations + |V V V H 〉〈V V V H |+ permutations

)
, (5.18)

which yields a maximal ”payoff” of 1
4 when measured in the computational basis. However,

measured in other bases, the state �sep will not give a payoff above the classical limit.

In contrast the state |Ψ(α) 〉 has the extraordinary property that it exhibits the same
term structure in the bases zzzz and xxxx when transformed by �⊗4

i and in the bases zzzz
and yyyy when transformed by �

⊗4
ii . Consequently, the strategies are still optimal, and if

the payoff is evaluated analogously in these bases, the same dependence on α is expected. In
order to prove this, the same measurements as before are performed in the bases xxxx and
yyyy. The result is shown in Fig. 5.2(b).

For each basis and appropriate strategy indeed similar curves as for the computational
basis are found. The applied fitting procedure is the same as before. The resulting values
for f are slightly different for both bases (fx = 0.736 ± 0.019 and fy = 0.706 ± 0.053) but
comparable with the one found for zzzz. The small asymmetry between the bases indicates
that the experimental noise is indeed not purely white. The measured values of the averaged
payoffs are summarized in Tab. 5.3. For the proper strategy they lie all above the classical
limit also in these bases.
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Strategy i Strategy ii
in (�x ⊗ �x ⊗ �x ⊗ �x) in (�y ⊗ �y ⊗ �y ⊗ �y)

State payoff 〈$i〉 payoff 〈$ii〉

|Ψ(0) 〉 0.031 ± 0.003 0.118 ± 0.006

|Ψ(
√

2
11) 〉 0.069 ± 0.004 0.161 ± 0.007

|Ψ(
√

2
3) 〉 0.144 ± 0.010 0.153 ± 0.008

|Ψ(1) 〉 0.208 ± 0.009 0.079 ± 0.005

Table 5.3: Measured average payoffs 〈$i,ii〉 for strategy i and ii played for four different
initial states with distinguished values of α. The payoff is not evaluated in the computational
basis, but in the other two standard bases (�x ⊗ �x ⊗ �x ⊗ �x) and (�y ⊗ �y ⊗ �y ⊗ �y).

5.5 Conclusion

This chapter presented a theoretical study of the four-player quantum Minority game and its
first experimental realization. In contrast to previous work a whole family of input states was
considered.

It was shown that depending on the parameter which characterizes the family of states,
different po and ne solutions to the game exist. As long as the used input state is four-
qubit entangled these solutions yield always a payoff which is higher than the one achievable
in classical scenarios. In order to obtain the maximal possible reward the players have to
adapt their strategy to the corresponding input state. Thereby exists a distinguished state
at which the required change in strategy takes place. This fact appears to be rooted in the
entanglement and correlation structure of the family of input states which changes between
being dominated by its ghz or Bell part, respectively.

These findings could be corroborated experimentally constituting a successful application
of the linear optics network presented in Sec. 2.2. In particular, the experimentally achieved
average payoffs lie all well above the classical limit, and their input state dependence could
be well reproduced. An evaluation of the payoffs in different bases indicates the entanglement
of the input states to be indeed the cause of the better than classical performance.

It can be stated that the study of quantum games is interesting in general as it provides
another point of view to exploit preexisting classical frameworks as a base for finding new
ways of understanding and using entanglement in quantum systems. While game theory is
the mathematical language of competitive (classical) interactions, quantum game theory is
the natural extension to consider competitive situations in quantum information settings. For
example, eavesdropping in quantum communication (see, e.g., [228–230]) and optimal cloning
[231] can be conceived as strategic games between two or more players. The particular game
discussed here represents a different means of studying the entanglement structure of the
used input states. As shown elsewhere [227], there exists even an interesting correspondence
between the equilibria in the Minority game and the violation of Bell inequalities.
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Prediction is very difficult, especially if
it’s about the future.

Niels Bohr

Setups of today’s experiments on multi-photon entanglement can all be structured in the
following way: They consist of a photon source, a linear optics network by which the photons
are processed and the conditional detection of the photons at the output of the network.

This thesis has introduced two new linear optics networks and presented their application
for several quantum information tasks. Thereby, the workhorse of multi-photon quantum
information, spontaneous parametric down conversion (spdc), was used in different configu-
rations to provide the input states for the networks.

The first network was a controlled phase (cphase) gate which belongs to the set of
universal quantum logic gates necessary for quantum computation. The new design of the gate
is particularly interesting for applications in multi-photon experiments as it constitutes an
improvement of former realizations with respect to stability and reliability. This was achieved
by replacing (phase-dependent) single-photon interferometers for different polarizations by a
polarization-dependent (but phase-independent) two-photon interference. The performance
of the experimental gate was characterized by quantum process tomography in combination
with a theoretical model based on experimental parameters of the setup.

One application of a cphase gate is its usage for the complete projection measurement
of all four Bell states. In this context for the first time, a teleportation and entanglement
swapping protocol was performed where all four Bell states are distinguished by means of
linear optics only. Different polarization states have been teleported which showed fidelities
clearly above the classical bound. The quality of the implemented teleportation and the
achievement of an efficient quantum channel was confirmed by reconstruction of the quantum
process matrix. Furthermore, also teleportation of entanglement was demonstrated. Thereby,
the state to be teleported was completely indeterminate as it was itself part of an entangled
state. Running this so-called entanglement swapping protocol yielded entangled output states
with high fidelities between photons which have never interacted before. It could be even
shown, that these states are entangled strong enough to violate a Bell inequality.

The distinction of all four Bell states enables also the projection of states onto the sym-
metric or antisymmetric subspace. As was shown recently for pure states, if such a projection
is applied to the subsystem parts of two copies of the same quantum state, it allows the direct
measurement of concurrence without quantum state tomography (qst). Within this work,
for the first time, a generalization of the method for mixed states was tested experimentally,
accounting for the imperfections of state-of-the art technology. Detailed considerations about
the influence of non-ideal gate operation allowed a realistic lower bound estimation about the
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concurrence of the prepared states. These results prove the method for the direct measure-
ment of concurrence to be an important tool for experiments with limitations on the number
of measurements.

The cphase operation represents the central interaction in the generation principle of
graph states, in particular cluster states. In this thesis, starting from two Bell states, the
cphase gate could be successfully applied for the observation of a four-photon cluster state
with high fidelity. The analysis of the results was focused on a proof-of-principle demonstra-
tion of the main usage of cluster states, namely measurement based quantum computation.
The two fundamental types of single-qubit measurements commonly applied in such compu-
tation schemes have been demonstrated. This comprised the removal of physical qubits from
the cluster, and the entangling operation of two encoded logical qubits. Although a four-qubit
cluster provides only very restricted computational possibilities, the presented results are first
promising steps towards future linear optics quantum computation at a larger scale.

The second network presented in this work, once fed with the second order emission of
non-collinear type ii spdc, constitutes a tunable source of a whole family of states. This
is a significant achievement as up to now the observation of a particular state required an
individually tailored setup. With the network introduced here, many different states could
be obtained within the same arrangement by the tuning of an easily accessible experimental
parameter. These states form a subgroup of an important generic family of four-qubit entan-
gled states, exhibit many useful properties and play a central role in several applications of
quantum information. The performance of the setup was characterized by fidelity measure-
ments for selected distinguished states of the subgroup. It was shown that these states can
be obtained with high fidelities which are comparable with the ones achieved in alternative,
state tailored setups. Consequently, the possibility to generate a multitude of such states
within a single experimental setup is of great advantage as it represents an alternative to
many different state sources.

The applicability of the setup was explicitly demonstrated by using the obtained states
for the solution of a multi-party quantum information task. The task which was implemented
is the four-player quantum Minority game which is a simple multi-player game for studying
strategic decision making within a group of agents. In this game, each player acts locally
with a unitary operator on a multi-qubit input state with the aim of maximizing a certain
observable, the so-called payoff. In contrast to previous work, the optimal strategy for the
players and the resulting payoffs were studied not only for a single input state, but for a
whole family of states. The experimental verification of the theoretical findings was first
made possible by the usage of the new linear optics network. It could be shown that for
the whole family of states a greater than classically possible payoff is reached as long as
four-photon entanglement is used as a resource. The study of quantum games can provide
another point of view to exploit preexisting classical frameworks as a base for finding new
ways of understanding and using entanglement in quantum systems. While game theory is
the mathematical language of competitive (classical) interactions, quantum game theory is
the natural extension to consider competitive situations in quantum information settings. For
example, eavesdropping in quantum communication and optimal cloning can be conceived as
strategic games between two or more players. The particular game discussed here represents
thereby a different means of studying the entanglement structure of the used input states.
Inspired by this, it could be shown elsewhere that there exists an interesting correspondence
between the equilibria in the Minority game and the violation of Bell inequalities.

Another topic which was discussed within this thesis and which used the experimental data
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obtained with both networks, is the experimental discrimination of different multi-partite en-
tangled states. Whereas the characterization of entanglement is easy for two-partite quantum
states, it turns out to be an increasingly difficult problem for more than two subsystems. For
n-partite states it has to be distinguished not only between fully separable or entangled, but
also between different kinds of separability. Classifications for states with the same level of
separability exist for three and four qubits. However, from an experimental point of view,
the introduced classifications seemed rather academic especially for four qubits, as there was
no tool to easily assign an experimentally observed state to the one or the other class.

Here, a simple, though not yet constructive, method to discriminate a given experimental
state from states of other entanglement classes was presented. It is based on characteris-
tic operators which are formed by the correlations between local measurement settings that
are typical for the respective quantum state. Such operators were introduced for important
four-qubit entangled states and successfully applied to the experimental data gained during
the presented experiments. As the number of measurement settings required for the eval-
uation of the operators is lower compared to standard, alternative analysis tools, like, e.g.,
qst or fidelity estimation, the experimental effort was significantly reduced. Demanding the
discrimination operators to be additionally Bell operators can be advantageous in case of
limited knowledge about the state space. Otherwise, employing characteristic symmetries
and properties of the state under investigation can even further reduce the effort to a number
of settings which scales polynomially with the number of qubits. Referring to this, already
known operators could be identified to be characteristic for the investigated states and applied
experimentally. In particular instances, they allowed an even more significant discrimination
between the states. This proves the new method to be a practicable and efficient tool for
the characterization of multi-partite entanglement which will also be important for future
experiments.

Future experiments aiming at the observation of states with a higher qubit number will
be, inevitably, even more concerned by the necessity of performing as few measurements
as possible in an exponentially increasing state space. Despite such occurring challenges,
the route to more photons is one that should be pursued, and experiments with up to six
photons have been already successfully reported. In the long run, they might require better
techniques, like other photon sources or different detectors, but reliable and versatile linear
optics networks such as the one presented here will always play a central role. It would surely
be interesting to operate the introduced networks with input states of an extended qubit
number. This might lead to the observation of new entangled states or the solution of other
quantum information problems. It is remarkable, that so far, already the biggest variety of
entangled states was observed in photonic systems. Currently, they seem to provide an ideal
testbed for the investigation of multi-partite entanglement on a smaller scale.

Admittedly, though linear optics quantum computing can be made near deterministic,
photons do not seem to be the suitable quantum system for information processing and it is
questionable whether quantum computers, – so they once will exist –, are based on photonic
qubits. It is, however, for sure that photons are the best quantum system for a fast information
transfer at low decoherence. They might provide the ideal ”quantum-bus” between different
quantum information processing and storage units. The role of linear optics quantum logic
in such a scenario can be seen twofold: On the one hand, it might be useful to implement
and support the interfaces between these units. On the other hand, it could take over some
pre-processing of information already during a communication stage. The presented work can
be seen as another small step to be on target for this vision.
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Appendix A

Experimentally measured
expectation values and their errors

This part of the appendix describes how expectation values of operators are determined
experimentally. In particular, it is shown how the error on the expectation value of a given
operator evolves depending on the number of measurement settings and the measurement
time.

A.1 Evaluation of expectation values of operators

The state under investigation be |ψ 〉. The results of any correlation measurement carried out
on this state are summarized in form of the correlation tensor

Ti1,...,iq = 〈ψ |�i1 ⊗ · · · ⊗ �iq |ψ 〉, (A.1)

where q is the number of qubits and i1, . . . , iq ∈ {0, x, y, z}. So, for example for q = 4 and
the measurement i1i2i3i4 = 0xyz, the correlation is T0xyz = 〈ψ |1 ⊗ �x ⊗ �y ⊗ �z|ψ 〉 =̂ ixyz,
cp. Eqn. (2.33).

As any operator can be decomposed in terms of correlation operators,

� =
∑

{(i1,...,iq)}

αi1,...,iq(�i1 ⊗ · · · ⊗ �iq), (A.2)

its expectation value can be accordingly expressed as a sum of correlations

〈� 〉ψ = 〈ψ |�|ψ 〉 =
∑

{(i1,...,iq)}

αi1,...,iqTi1,...,iq , (A.3)

where αi1,...,iq = tr
(
� · (�i1⊗· · ·⊗�iq)

)
. While Ti1,...,iq depends on the state under investigation,

the coefficients αi1,...,iq are specific for the chosen operator. The latter can be calculated
whereas the former need to be determined during the experiment, (cp. the considerations for
the measurement of the fidelity on page 56).

In order to measure Ti1,...,iq , each correlation operator is further decomposed in local
projectors of the form

�
b(q−1)b(q−2)...b0
i1,...,iq

= �
b0
i1 ⊗ · · · ⊗ �

b(q−1)
iq

, (A.4)
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with

�
b(j−1)
ij

=

{
1+(−1)b(j−1)�ij

2 , for ij ∈ {x, y, z}
1, for ij ∈ {0},

(A.5)

j = 1, . . . , q and b(q−1)b(q−2) . . . b0 the binary representation for an integer k ∈ {0, . . . , 2q−
1}. For example, �0101

xxzz is the projector (q = 4, k = 5),

�
1
x ⊗ �0

x ⊗ �1
z ⊗ �0

z =
1 + (−1)1�x

2
⊗ 1 + (−1)0�x

2
⊗ 1 + (−1)1�z

2
⊗ 1 + (−1)0�z

2
. (A.6)

With this definition, it follows that

�i1 ⊗ · · · ⊗ �iq =
2q−1∑
k=0

sign
(
b(q − 1)b(q − 2) . . . b0

)
�
b(q−1)b(q−2)...b0
i1,...,iq

, (A.7)

with

sign
(
b(q − 1)b(q − 2) . . . b0

)
= (−1)

(∑
j|ij 6=.0

b(j−1)
)

mod2
. (A.8)

Consequently, each correlation is determined by the probabilities,

℘
b(q−1)b(q−2)...b0
i1,...,iq

= 〈ψ |�b(q−1)b(q−2)...b0
i1,...,iq

|ψ 〉, (A.9)

for the different results of the local projectors (see page 39), and

Ti1,...,iq =
2q−1∑
k=0

sign
(
b(q − 1)b(q − 2) . . . b0

)
℘
b(q−1)b(q−2)...b0
i1,...,iq

. (A.10)

In the experiment, the probabilities ℘b(q−1)b(q−2)...b0
i1,...,iq

can be approximated by relative frequen-

cies, f b(q−1)b(q−2)...b0
i1,...,iq

, which are obtained from the four-fold coincidence count rates of the
corresponding detection event,

℘
b(q−1)b(q−2)...b0
i1,...,iq

≈ f b(q−1)b(q−2)...b0
i1,...,iq

=
c
b(q−1)b(q−2)...b0
i1,...,iq∑2q−1

k=0 c
b(q−1)b(q−2)...b0
i1,...,iq

. (A.11)

Thereby, cb(q−1)b(q−2)...b0
i1,...,iq

denotes the number of four-fold coincidence counts for the event
b(q − 1)b(q − 2) . . . b0 in the basis i1, . . . , iq.

Finally, the expectation value of an operator is given as,

〈� 〉ψ =
∑

{(i1,...,iq)}

αi1,...,iq

2q−1∑
k=0

sign
(
b(q − 1)b(q − 2) . . . b0

)
℘
b(q−1)b(q−2)...b0
i1,...,iq

≈
∑

{(i1,...,iq)}

αi1,...,iq

2q−1∑
k=0

sign
(
b(q − 1)b(q − 2) . . . b0

)
f
b(q−1)b(q−2)...b0
i1,...,iq

. (A.12)
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A.2 Errors of expectation values

In order to determine the error of the expectation value, ∆〈� 〉ψ, as a function of the measured
relative frequencies f b(q−1)b(q−2)...b0

i1,...,iq
Gaussian error propagation is applied,

∆〈� 〉ψ =

√√√√√ ∑
{(i1,...,iq)}; k

 ∂〈� 〉ψ
∂f

b(q−1)b(q−2)...b0
i1,...,iq

∆f b(q−1)b(q−2)...b0
i1,...,iq

2

, (A.13)

where ∆f b(q−1)b(q−2)...b0
i1,...,iq

is the error of f b(q−1)b(q−2)...b0
i1,...,iq

.

Assuming that the coincidence counts cb(q−1)b(q−2)...b0
i1,...,iq

are statistically independent Pois-
sonian random variables, and that the overall number of counts per measurement setting
(i1, . . . , iq) for a given measurement time is Ni1,...,iq ≡

∑2q−1
k=0 c

b(q−1)b(q−2)...b0
i1,...,iq

� 1, it holds
that1 [22],

∆f b(q−1)b(q−2)...b0
i1,...,iq

≈

√√√√c
b(q−1)b(q−2)...b0
i1,...,iq

N2
i1,...,iq

=

√√√√f
b(q−1)b(q−2)...b0
i1,...,iq

Ni1,...,iq

. (A.14)

Consequently, it follows for the error of the expectation value:

∆〈� 〉ψ =

√√√√ ∑
{(i1,...,iq)}

1
Ni1,...,iq

α2
i1,...,iq

2q−1∑
k=0

f
b(q−1)b(q−2)...b0
i1,...,iq

. (A.15)

As
∑2q−1

k=0 f
b(q−1)b(q−2)...b0
i1,...,iq

= 1 this yields finally,

∆〈� 〉ψ =

√√√√ ∑
{(i1,...,iq)}

1
Ni1,...,iq

α2
i1,...,iq

. (A.16)

In case that the number of total counts is the same for each measurement setting, Ni1,...,iq = N ,
this can be further simplified to,

∆〈� 〉ψ =
1√
N

√ ∑
{(i1,...,iq)}

α2
i1,...,iq

. (A.17)

In experiments, the 1-operator is usually not measured, i.e., for a real measurement set-
ting, (h1, . . . , hq), it holds that h1, . . . , hq ∈ {x, y, z}. Every (q − d)-qubit correlation T di1,...,iq
containing d-times ij = 0, (d ∈ {1, . . . , q}) can be evaluated out of all s, (s ∈ {1, . . . , 3d}), mea-
sured q-qubit correlations or measurement settings, (h1, . . . , hq), which satisfy hl = il ∀il 6= 0:

T di1,...,iq =
1
s

∑
{(h1,...,hq)|hl=il∀il 6=0}

2q−1∑
k=0

sign
(
b(q − 1)b(q − 2) . . . b0

)
℘
b(q−1)b(q−2)...b0
h1,...,hq

. (A.18)

In case that Eqn. (A.18) is applied for the evaluation of Eqn. (A.12) and Eqn. (A.13), the
error ∆〈� 〉ψ cannot be written anymore in the compact form of Eqn. (A.16). The reason is

1Terms of the order of 1
N3 are neglected.
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that each frequency f
b(q−1)b(q−2)...b0
i1,...,iq

appears in Eqn. (A.12) not only once but several times
with different coefficients αi1,...,iq . That means, in general, after carrying out the partial
derivatives in Eqn. (A.13), the frequencies within a correlation for fixed i1, . . . , iq do not sum
up anymore to one. Still, the error is always of the form:

∆〈� 〉ψ =
1√
N
A. (A.19)

However, the factor A depends not only on the operator (and the sate), but as well on
the particular set of measurements which is used to evaluate ∆〈� 〉ψ and 〈� 〉ψ.

A.3 Examples

Three examples of operators for the symmetric four-qubit Dicke state with two excitations,
|D(2)

4 〉 are considered (see Sec. 2.2.3). The operators are, the characteristic Bell operator
�1 = �

D
(2)
4

(see Eqn. (4.6)), the fidelity operator �2 = �
D

(2)
4

, and the spin witness operator

�3 = �′
D

(2)
4

(see Sec. 4.4, Eqn. (4.10) and [203]) with

�
D

(2)
4

=
1
6

(
−�x ⊗ �z ⊗ �z ⊗ �x − �x ⊗ �z ⊗ �x ⊗ �z

−�x ⊗ �x ⊗ �z ⊗ �z + �x ⊗ �x ⊗ �x ⊗ �x

−�y ⊗ �z ⊗ �z ⊗ �y − �y ⊗ �z ⊗ �y ⊗ �z

−�y ⊗ �y ⊗ �z ⊗ �z + �y ⊗ �y ⊗ �y ⊗ �y

)
, (A.20)

�
D

(2)
4

=
1
16

∑
{(i1,...,i4)}

αi1,...,i4(�i1 ⊗ · · · ⊗ �i4), (A.21)

where αi1,...,i4 = 〈D(2)
4 |�i1 ⊗ · · · ⊗ �i4 |D

(2)
4 〉, and

�
′
D

(2)
4

=
4
3

(
4 1⊗4 + 1⊗ 1⊗ �x ⊗ �x + 1⊗ �x ⊗ 1⊗ �x + 1⊗ �x ⊗ �x ⊗ 1

+�x ⊗ 1⊗ 1⊗ �x + �x ⊗ 1⊗ �x ⊗ 1 + �x ⊗ �x ⊗ 1⊗ 1

+1⊗ 1⊗ �y ⊗ �y + 1⊗ �y ⊗ 1⊗ �y + 1⊗ �y ⊗ �y ⊗ 1

+�y ⊗ 1⊗ 1⊗ �y + �y ⊗ 1⊗ �y ⊗ 1 + �y ⊗ �y ⊗ 1⊗ 1

)
. (A.22)

A measurement of these operators can be used to acquire information about an experimentally
prepared state. They can be even used to discriminate between different four-qubit entangled
states, see Chap. 4.

The Bell operator consists of eight correlation terms whose measurement requires the eight
settings

S� = {(x, z, z, x), (x, z, x, z), (x, x, z, z), (x, x, x, x),
(y, z, z, y), (y, z, y, z), (y, y, z, z), (y, y, y, y)} (A.23)

The fidelity operator decomposes into 40 correlation terms for which αi1,...,i4 6= 0. Out of
these, 21 describe four-qubit correlations (see Sec. 2.2.3 and App. B.1.3). The measurement
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Figure A.1: Scaling of measurement
errors. Error of the fidelity (—)
∆〈�

D
(2)
4
〉ψ, the Bell (—) ∆〈�

D
(2)
4
〉ψ,

and witness (—) ∆〈�′
D

(2)
4
〉ψ operator

for the Dicke state. The error on the ex-
pectation value of an operator, ∆〈� 〉ψ,
depends on the number of total counts,
N , per measurement setting. For a
fixed overall measurement time, N and
thus the scaling behavior is related to
the number of measurement settings re-
quired for the determination of 〈� 〉ψ.

of these 21 four-qubit correlations suffices to evaluate the fidelity and needs accordingly 21
settings,

S� = {(h1, . . . , h4) |αh1,...,h4 6= 0 ∧ h1, . . . , h4 ∈ {x, y, z}}. (A.24)

In contrast, the spin witness operator comprises 13 correlation terms whose measurement
take up only two settings,

S�′ = {(x, x, x, x), (y, y, y, y)}. (A.25)

The error for the measured expectation value of the Bell-operator can be directly estimated
using Eqn. (A.17):

∆〈�
D

(2)
4

〉ψ =
1√
N

√
8 · 1

62
=

1√
N
·
√

2
3
. (A.26)

For the calculation of the error on the expectation value of the fidelity and the spin witness
operator, the factor A in Eqn. (A.19) depends on the settings S�, S�′ and can be determined
using Eqn. (A.18),

∆〈�
D

(2)
4

〉ψ =
1√
N

√
269
21

12︸ ︷︷ ︸
A�

, (A.27)

∆〈�′
D

(2)
4

〉ψ =
1√
N

√
2
3︸︷︷︸

A�′

. (A.28)

With these results, the scaling of the error for the three operators can be compared. To
this end, the overall measurement time is assumed to be fixed. This implies that the total
count rate per measurement setting is by a factor 21

8 higher for �
D

(2)
4

and by a factor 21
2 for
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State Operator A Number of settings A′

|D(2)
4 〉

�
D

(2)
4

√
269
21

12 21 0.298

�
D

(2)
4

√
2

3 8 0.291

�
D

(2)
4

√
3
2

2 6 0.327

�′
D

(2)
4

√
2
3 2 0.252

|Ψ−4 〉
�Ψ4

√
1111
21

24 21 0.303

�Ψ4

√
5
2

3 10 0.364

�Ψ4
11

7
√

3
3 0.343

|C4 〉
�C4

1
2
√

2
9 0.354

�C4
1
2 4 0.333

�C4
1√
2

2 0.333

Table A.1: Scaling of measurement errors. The error factor A, the number of measurement
settings and the relativ scaling factor A′ are given for some important operators of particular
states.

�′
D

(2)
4

compared to �
D

(2)
4

, such that

∆〈�
D

(2)
4

〉ψ = 1√
N

√
269
21

12 ≈ 1√
N

0.298︸ ︷︷ ︸
A′
�

(A.29a)

∆〈�
D

(2)
4

〉ψ = 1√
21
8
N

√
2

3 ≈ 1√
N

0.291︸ ︷︷ ︸
A′
�

(A.29b)

∆〈�′
D

(2)
4

〉ψ = 1√
21
2
N

√
2
3 ≈ 1√

N
0.252︸ ︷︷ ︸
A′
�′

(A.29c)

The dependence on N is displayed in Fig. A.1. As can be seen, the error on the expectation
value for the Bell operator scales negligibly better than the one for the fidelity operator.
A considerably better scaling is achieved for the error on the expectation value for the spin
witness operator. With respect to the experimental effort, the usage of �′

D
(2)
4

is thus preferable

to gain information about an experimental state.
Tab. A.1 shows in addition the error factor A, as well as the number of required measure-

ment settings and the accordingly corrected relative scaling factors A′ for other operators.
These operators are used for the analysis of experimental states throughout this thesis (mainly
in Chap. 4). By means of the values given in the table, the expected error on a measured quan-
tity can be estimated prior to the actual measurement. This helps to rate the measurement
time needed for a sufficient statistics.



Appendix B

Supplementary information and
measured data

This part of the Appendix provides additional information and measured data for the different
states investigated during the thesis. The data is only listed in form of tables without any
further explanatory text. Explanations can be found in the respective sections where the
states are studied.

B.1 For Chap. 2

This section lists explicitly the theoretical and experimentally measured correlations for the
different states of the family |Ψ′(α) 〉 described in Sec. 2.2.

B.1.1 A product of two Bell pairs: |Ψ′(0) 〉

Theoretical correlations

(1): iixx, iiyy, xxii, yyii

(−1): iizz, zzii

(1): iiii, xxxx, yyyy, zzzz

(1): xxyy, yyxx

(−1): xxzz, yyzz, zzxx, zzyy

Table B.1: Theoretical values for the non-zero correlations of the state |Ψ′(0) 〉.
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Experimentally obtained results

iiii 1.000 ± 0.009
iixx 0.891 ± 0.025
iiyy 0.866 ± 0.024
iizz −0.980 ± 0.025
xxii 0.862 ± 0.025
yyii 0.883 ± 0.024
zzii −0.977 ± 0.025

Fidelity: F = 0.875± 0.013

xxxx 0.840 ± 0.043
xxyy 0.759 ± 0.042
xxzz −0.843 ± 0.043
yyxx 0.815 ± 0.043
yyyy 0.733 ± 0.042
yyzz −0.852 ± 0.042
zzxx −0.870 ± 0.044
zzyy −0.872 ± 0.042
zzzz 0.950 ± 0.043

Table B.2: Measured non-zero two-qubit and four-qubit correlations for the state |Ψ′(0) 〉,
as well as resultant fidelity.

B.1.2 Still unknown: |Ψ′(
√

1
6
(3−

√
3)) 〉

Theoretical correlations

(1
6(3 +

√
3)): iixx, iiyy, xxii, yyii

(− 1√
3
): iizz, zzii

( 1√
3
): ixix, ixxi, iyiy, iyyi, xiix, xixi, yiiy, yiyi

(1
6(−3 +

√
3)): iziz, izzi, ziiz, zizi

(1): iiii, xxxx, yyyy, zzzz

(1
6(3−

√
3)): xyxy, xyyx, yxxy, yxyx

(− 1√
3
): xzxz, xzzx, yzyz, yzzy, zxxz, zxzx, zyyz, zyzy

( 1√
3
): xxyy, yyxx

(1
6(−3−

√
3)): xxzz, yyzz, zzxx, zzyy

Table B.3: Theoretical values for the non-zero correlations of the state |Ψ′(
√

1
6 (3−

√
3)) 〉.
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Experimentally obtained results

iiii 1.000 ± 0.011
iixx 0.680 ± 0.029
iiyy 0.656 ± 0.028
iizz −0.606 ± 0.029
ixix 0.316 ± 0.029
ixxi 0.323 ± 0.029
iyiy 0.338 ± 0.028
iyyi 0.362 ± 0.028
iziz −0.175 ± 0.028
izzi −0.155 ± 0.028
xiix 0.331 ± 0.029
xixi 0.324 ± 0.028
xxii 0.675 ± 0.029
yiiy 0.333 ± 0.028
yiyi 0.301 ± 0.028
yyii 0.635 ± 0.029
ziiz −0.164 ± 0.028
zizi −0.160 ± 0.028
zzii −0.621 ± 0.028

Fidelity: F = 0.755± 0.014

xxxx 0.710 ± 0.051
xxyy 0.471 ± 0.050
xxzz −0.623 ± 0.051
xyxy 0.118 ± 0.047
xyyx 0.079 ± 0.049
xzxz −0.399 ± 0.049
xzzx −0.480 ± 0.049
yxxy 0.140 ± 0.049
yxyx 0.130 ± 0.049
yyxx 0.460 ± 0.051
yyyy 0.663 ± 0.050
yyzz −0.643 ± 0.049
yzyz −0.377 ± 0.048
yzzy −0.370 ± 0.047
zxxz −0.318 ± 0.048
zxzx −0.346 ± 0.048
zyyz −0.338 ± 0.049
zyzy −0.386 ± 0.050
zzxx −0.670 ± 0.049
zzyy −0.568 ± 0.048
zzzz 0.900 ± 0.050

Table B.4: Measured non-zero two-qubit and four-qubit correlations for the state

|Ψ′(
√

1
6 (3−

√
3)) 〉, as well as resultant fidelity.

B.1.3 The symmetric four-qubit Dicke state: |Ψ′( 1√
3
) 〉

Theoretical correlations

(2
3): iixx, iiyy, xxii, yyii

(−1
3): iizz, zzii

(2
3): ixix, ixxi, iyiy, iyyi, xiix, xixi, yiiy, yiyi

(−1
3): iziz, izzi, ziiz, zizi

(1): iiii, xxxx, yyyy, zzzz

(1
3): xyxy, xyyx, yxxy, yxyx

(−2
3): xzxz, xzzx, yzyz, yzzy, zxxz, zxzx, zyyz, zyzy

(1
3): xxyy, yyxx

(−2
3): xxzz, yyzz, zzxx, zzyy

Table B.5: Theoretical values for the non-zero correlations of the state |Ψ′( 1√
3
) 〉.
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Experimentally obtained results

iiii 1.000 ± 0.010
iixx 0.536 ± 0.028
iiyy 0.578 ± 0.028
iizz −0.400 ± 0.027
ixix 0.370 ± 0.027
ixxi 0.425 ± 0.028
iyiy 0.358 ± 0.028
iyyi 0.398 ± 0.028
iziz −0.300 ± 0.027
izzi −0.252 ± 0.026
xiix 0.422 ± 0.028
xixi 0.370 ± 0.027
xxii 0.516 ± 0.027
yiiy 0.351 ± 0.027
yiyi 0.360 ± 0.028
yyii 0.541 ± 0.028
ziiz −0.250 ± 0.028
zizi −0.245 ± 0.027
zzii −0.441 ± 0.028

Fidelity: F = 0.709± 0.013

xxxx 0.701 ± 0.049
xxyy 0.318 ± 0.047
xxzz −0.376 ± 0.046
xyxy 0.182 ± 0.047
xyyx 0.273 ± 0.049
xzxz −0.418 ± 0.047
xzzx −0.397 ± 0.045
yxxy 0.221 ± 0.047
yxyx 0.226 ± 0.048
yyxx 0.259 ± 0.047
yyyy 0.677 ± 0.050
yyzz −0.469 ± 0.046
yzyz −0.497 ± 0.047
yzzy −0.306 ± 0.044
zxxz −0.405 ± 0.048
zxzx −0.444 ± 0.046
zyyz −0.324 ± 0.048
zyzy −0.401 ± 0.048
zzxx −0.606 ± 0.047
zzyy −0.514 ± 0.049
zzzz 0.925 ± 0.047

Table B.6: Measured non-zero two-qubit and four-qubit correlations for the state |Ψ′( 1√
3
) 〉,

as well as resultant fidelity.

B.1.4 Still unknown: |Ψ′( 1√
2
) 〉

Theoretical correlations

(1
2): iixx, iiyy, xxii, yyii

( 1√
2
): ixix, ixxi, iyiy, iyyi, xiix, xixi, yiiy, yiyi

(−1
2): iziz, izzi, ziiz, zizi

(1): iiii, xxxx, yyyy, zzzz

(1
2): xyxy, xyyx, yxxy, yxyx

(− 1√
2
): xzxz, xzzx, yzyz, yzzy, zxxz, zxzx, zyyz, zyzy

(−1
2): xxzz, yyzz, zzxx, zzyy

Table B.7: Theoretical values for the non-zero correlations of the state |Ψ′( 1√
2
) 〉.
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Experimentally obtained results

iiii 1.000 ± 0.010
iixx 0.445 ± 0.026
iiyy 0.491 ± 0.027
ixix 0.354 ± 0.027
ixxi 0.394 ± 0.027
iyiy 0.362 ± 0.027
iyyi 0.368 ± 0.027
iziz −0.322 ± 0.027
izzi −0.410 ± 0.028
xiix 0.393 ± 0.027
xixi 0.411 ± 0.027
xxii 0.452 ± 0.027
yiiy 0.366 ± 0.027
yiyi 0.370 ± 0.027
yyii 0.425 ± 0.026
ziiz −0.370 ± 0.026
zizi −0.351 ± 0.027

Fidelity: F = 0.677± 0.013

xxxx 0.692 ± 0.047
xxzz −0.456 ± 0.047
xyxy 0.356 ± 0.048
xyyx 0.310 ± 0.046
xzxz −0.380 ± 0.047
xzzx −0.414 ± 0.047
yxxy 0.355 ± 0.046
yxyx 0.334 ± 0.048
yyyy 0.695 ± 0.048
yyzz −0.427 ± 0.045
yzyz −0.297 ± 0.046
yzzy −0.421 ± 0.049
zxxz −0.380 ± 0.045
zxzx −0.443 ± 0.047
zyyz −0.419 ± 0.045
zyzy −0.352 ± 0.045
zzxx −0.396 ± 0.046
zzyy −0.536 ± 0.047
zzzz 0.901 ± 0.047

Table B.8: Measured non-zero two-qubit and four-qubit correlations for the state |Ψ′( 1√
2
) 〉,

as well as resultant fidelity.

B.1.5 Psi-four: |Ψ4 〉

Theoretical correlations

(1
3): iixx, iiyy, xxii, yyii

(1
3): iizz, zzii

(2
3): ixix, ixxi, iyiy, iyyi, xiix, xixi, yiiy, yiyi

(−2
3): iziz, izzi, ziiz, zizi

(1): iiii, xxxx, yyyy, zzzz

(2
3): xyxy, xyyx, yxxy, yxyx

(−2
3): xzxz, xzzx, yzyz, yzzy, zxxz, zxzx, zyyz, zyzy

(−1
3): xxyy, yyxx

(−1
3): xxzz, yyzz, zzxx, zzyy

Table B.9: Theoretical values for the non-zero correlations of the state |Ψ−4 〉.
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(1− α2): iixx, iiyy, xxii, yyii

(2α2 − 1): iizz, zzii

(α
√

2− 2α2): xzxz, xzzx, yzyz, yzzy, zxxz, zxzx, zyyz, zyzy

(−α2): iziz, izzi, ziiz, zizi

(1): iiii, xxxx, yyyy, zzzz

(α2): xyxy, xyyx, yxxy, yxyx

(−α
√

2− 2α2): ixix, 1xx1, iyiy, iyyi, xiix, xixi, yiiy, yiyi

(1− 2α2): xxyy, yyxx

(α2 − 1): xxzz, yyzz, zzxx, zzyy

Table B.10: Theoretical values for the non-zero correlations of the state |Ψ+
4 〉.

Experimentally obtained results

iiii 1.000 ± 0.010
iixx 0.301 ± 0.026
iiyy 0.299 ± 0.026
iizz 0.311 ± 0.026
ixix −0.590 ± 0.027
ixxi −0.608 ± 0.027
iyiy −0.592 ± 0.026
iyyi −0.629 ± 0.027
iziz −0.624 ± 0.027
izzi −0.626 ± 0.027
xiix −0.627 ± 0.027
xixi −0.611 ± 0.026
xxii 0.278 ± 0.026
yiiy −0.624 ± 0.027
yiyi −0.609 ± 0.027
yyii 0.265 ± 0.026
ziiz −0.640 ± 0.027
zizi −0.610 ± 0.027
zzii 0.286 ± 0.027

Fidelity: F = 0.904± 0.014

xxxx 0.858 ± 0.047
xxyy −0.299 ± 0.045
xxzz −0.271 ± 0.045
xyxy 0.582 ± 0.044
xyyx 0.592 ± 0.046
xzxz 0.590 ± 0.045
xzzx 0.588 ± 0.045
yxxy 0.535 ± 0.046
yxyx 0.569 ± 0.045
yyxx −0.231 ± 0.044
yyyy 0.834 ± 0.047
yyzz −0.329 ± 0.044
yzyz 0.620 ± 0.046
yzzy 0.568 ± 0.046
zxxz 0.646 ± 0.047
zxzx 0.588 ± 0.046
zyyz 0.640 ± 0.046
zyzy 0.587 ± 0.046
zzxx −0.281 ± 0.045
zzyy −0.263 ± 0.045
zzzz 0.973 ± 0.049

Table B.11: Measured non-zero two-qubit and four-qubit correlations for the state |Ψ−4 〉,
as well as resultant fidelity.
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iiii 1.000 ± 0.015
iixx 0.337 ± 0.039
iiyy 0.317 ± 0.041
iizz 0.051 ± 0.043
ixix 0.342 ± 0.041
ixxi 0.331 ± 0.040
iyiy 0.374 ± 0.041
iyyi 0.293 ± 0.041
iziz −0.532 ± 0.041
izzi −0.491 ± 0.041
xiix 0.342 ± 0.041
xixi 0.318 ± 0.040
xxii 0.405 ± 0.042
yiiy 0.417 ± 0.041
yiyi 0.306 ± 0.042
yyii 0.366 ± 0.040
ziiz −0.452 ± 0.041
zizi −0.451 ± 0.040
zzii 0.128 ± 0.040

Fidelity: F = 0.651± 0.019

xxxx 0.754 ± 0.071
xxyy −0.163 ± 0.072
xxzz −0.365 ± 0.076
xyxy 0.446 ± 0.071
xyyx 0.371 ± 0.072
xzxz −0.368 ± 0.068
xzzx −0.382 ± 0.070
yxxy 0.433 ± 0.069
yxyx 0.468 ± 0.072
yyxx −0.098 ± 0.065
yyyy 0.704 ± 0.072
yyzz −0.298 ± 0.073
yzyz −0.300 ± 0.073
yzzy −0.321 ± 0.071
zxxz −0.540 ± 0.070
zxzx −0.312 ± 0.068
zyyz −0.273 ± 0.071
zyzy −0.394 ± 0.069
zzxx −0.187 ± 0.066
zzyy −0.303 ± 0.067
zzzz 0.786 ± 0.072

Table B.12: Measured non-zero two-qubit and four-qubit correlations for the state |Ψ+
4 〉,

as well as resultant fidelity.

B.1.6 Still unknown: |Ψ′(
√

1
6
(3 +

√
3)) 〉

Theoretical correlations

(1
6(3−

√
3)): iixx, iiyy, xxii, yyii

( 1√
3
): iizz, zzii

( 1√
3
): ixix, ixxi, iyiy, iyyi, xiix, xixi, yiiy, yiyi

(1
6(−3−

√
3)): iziz, izzi, ziiz, zizi

(1): iiii, xxxx, yyyy, zzzz

(1
6(3 +

√
3)): xyxy, xyyx, yxxy, yxyx

(− 1√
3
): xzxz, xzzx, yzyz, yzzy, zxxz, zxzx, zyyz, zyzy

(− 1√
3
): xxyy, yyxx

(1
6(−3 +

√
3)): xxzz, yyzz, zzxx, zzyy

Table B.13: Theoretical values for the non-zero correlations of the state |Ψ′(
√

1
6 (3 +

√
3)) 〉.
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Experimentally obtained results

iiii 1.000 ± 0.011
iixx 0.320 ± 0.028
iiyy 0.288 ± 0.028
iizz 0.200 ± 0.029
ixix 0.292 ± 0.028
ixxi 0.343 ± 0.028
iyiy 0.268 ± 0.028
iyyi 0.310 ± 0.028
iziz −0.612 ± 0.029
izzi −0.543 ± 0.029
xiix 0.345 ± 0.028
xixi 0.284 ± 0.028
xxii 0.312 ± 0.028
yiiy 0.328 ± 0.028
yiyi 0.281 ± 0.028
yyii 0.303 ± 0.028
ziiz −0.552 ± 0.029
zizi −0.580 ± 0.029
zzii 0.191 ± 0.029

Fidelity: F = 0.663± 0.014

xxxx 0.708 ± 0.049
xxyy −0.223 ± 0.049
xxzz −0.258 ± 0.047
xyxy 0.488 ± 0.049
xyyx 0.524 ± 0.048
xzxz −0.293 ± 0.049
xzzx −0.336 ± 0.050
yxxy 0.455 ± 0.049
yxyx 0.467 ± 0.049
yyxx −0.281 ± 0.049
yyyy 0.763 ± 0.048
yyzz −0.222 ± 0.049
yzyz −0.389 ± 0.046
yzzy −0.289 ± 0.047
zxxz −0.367 ± 0.049
zxzx −0.336 ± 0.049
zyyz −0.309 ± 0.048
zyzy −0.357 ± 0.049
zzxx −0.179 ± 0.047
zzyy −0.228 ± 0.048
zzzz 0.879 ± 0.054

Table B.14: Measured non-zero two-qubit and four-qubit correlations for the state

|Ψ′(
√

1
6 (3 +

√
3)) 〉, as well as resultant fidelity.

B.1.7 GHZ: |Ψ′(1) 〉

Theoretical correlations

(1): iizz, zzii

(−1): iziz, izzi, ziiz, zizi

(1): iiii, xxxx, yyyy, zzzz

(1): xyxy, xyyx, yxxy, yxyx

(−1): xxyy, yyxx

Table B.15: Theoretical values for the non-zero correlations of the state |Ψ′(1) 〉.
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Experimentally obtained results

iiii 1.000 ± 0.010
iizz 0.656 ± 0.027
iziz −0.800 ± 0.027
izzi −0.810 ± 0.028
ziiz −0.790 ± 0.028
zizi −0.819 ± 0.028
zzii 0.666 ± 0.028

Fidelity: F = 0.750± 0.013

xxxx 0.786 ± 0.047
xxyy −0.616 ± 0.049
xyxy 0.756 ± 0.049
xyyx 0.675 ± 0.048
yxxy 0.641 ± 0.048
yxyx 0.672 ± 0.048
yyxx −0.609 ± 0.048
yyyy 0.799 ± 0.048
zzzz 0.902 ± 0.048

Table B.16: Measured non-zero two-qubit and four-qubit correlations for the state |Ψ′(1) 〉,
as well as resultant fidelity.

B.2 For Chap. 3

Measured stabilizer correlations for the observed cluster state described in Sec. 3.3. Ideally
the values should be ±1.

iiii 1.000 ± 0.017
iizz 0.931 ± 0.036
izxx 0.638 ± 0.045
izyy −0.626 ± 0.067
xxiz 0.674 ± 0.044
xxzi 0.713 ± 0.044
yyiz −0.690 ± 0.060
yyzi −0.679 ± 0.043
zixx 0.707 ± 0.045
ziyy −0.616 ± 0.067
zzii 0.935 ± 0.037

xyxy 0.681 ± 0.066
xyyx 0.729 ± 0.062
yxxy 0.681 ± 0.064
yxyx 0.628 ± 0.066
zzzz 0.931 ± 0.064

Fidelity: F = 0.741± 0.013

Table B.17: Measured stabilizer correlations for the state |C4 〉, as well as resultant fidelity.

B.3 For Chap. 4

Measured non-zero two-qubit and four-qubit correlations for the symmetric four-qubit Dicke
state with two excitations. The measurements were performed with 2 nm interference filters
in the alternative setup described in [99].



138 B. Supplementary information and measured data

iiii 1.000 ± 0.009
iixx 0.613 ± 0.027
iiyy 0.618 ± 0.026
iizz −0.337 ± 0.027
ixix 0.624 ± 0.027
ixxi 0.619 ± 0.027
iyiy 0.628 ± 0.028
iyyi 0.632 ± 0.027
iziz −0.320 ± 0.026
izzi −0.320 ± 0.026
xiix 0.615 ± 0.027
xixi 0.624 ± 0.028
xxii 0.632 ± 0.027
yiiy 0.628 ± 0.026
yiyi 0.622 ± 0.026
yyii 0.648 ± 0.027
ziiz −0.337 ± 0.027
zizi −0.305 ± 0.026
zzii −0.292 ± 0.026

Fidelity: F = 0.919± 0.019

xxxx 0.901 ± 0.084
xxyy 0.315 ± 0.076
xxzz −0.458 ± 0.078
xyxy 0.363 ± 0.089
xyyx 0.345 ± 0.076
xzxz −0.594 ± 0.083
xzzx −0.678 ± 0.085
yxxy 0.364 ± 0.078
yxyx 0.377 ± 0.081
yyxx 0.470 ± 0.078
yyyy 0.860 ± 0.086
yyzz −0.598 ± 0.084
yzyz −0.603 ± 0.081
yzzy −0.683 ± 0.079
zxxz −0.673 ± 0.081
zxzx −0.543 ± 0.083
zyyz −0.555 ± 0.078
zyzy −0.517 ± 0.079
zzxx −0.664 ± 0.079
zzyy −0.468 ± 0.077
zzzz 0.864 ± 0.083

Table B.18: Measured non-zero two-qubit and four-qubit correlations for the state |D(2)
4 〉,

as well as resultant fidelity.



Acronyms and abbreviations

epr Einstein, Podolski, Rosen

chsh Clauser, Horne, Shimony, Holt

ppt positive partial transpose

locc local operations and classical communication

lu local unitary

slocc stochastic local operations and classical communication

ghz Greenberger, Horne, Zeilinger

cnot controlled not

xor exclusive or

cphase controlled phase

hwp half-wave plate

qwp quarter-wave plate

yvo4 Yttrium Vanadate

klm Knill, Laflamme, Milburn

loqc linear optics quantum computation

loql linear optics quantum logic

spdc spontaneous parametric down conversion

cw continuous wave

uv ultraviolet

ir infrared

shg second harmonic generation

lbo Lithium Borate

ti:sa Titanium doped Sapphire
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nd:yvo4 Neodymium doped Yttrium Vanadate

bbo β-Barium Borate

apd avalanche photo diodes

pa polarization analysis

pbs polarizing beam splitter

pdbs polarization dependent beam splitter

qpt quantum process tomography

qst quantum state tomography

hom Hong, Ou, Mandel

bs beam splitter

povm positive operator-valued measure

qmg quantum Minority game

ne Nash equilibrium

po Pareto optimal

mabk Mermin-Ardehali-Belinski-Klyshko

lmu Ludwig-Maximilians-University

cern Conseil Européen pour la Recherche Nucléaire

opal Omni Purpose Apparatus for Lep

mpq Max-Planck-Institute of Quantum Optics
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[10] C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W.K. Wootters. Tele-
porting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen
channels, Phys. Rev. Lett. 70, 1895 (1993).
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[99] N. Kiesel, C. Schmid, G. Tóth, E. Solano and H. Weinfurter. Experimental Observation
of Four-Photon Entangled Dicke State with High Fidelity, Phys. Rev. Lett. 98, 063604
(2007).

[100] H. Weinfurter and M. Żukowski. Four-photon entanglement from down-conversion,
Phys. Rev. A 64, 010102 (2001).
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[177] P. Rungta, V. Bužek, C.M. Caves, M. Hillery and G.J. Milburn. Universal state inver-
sion and concurrence in arbitrary dimensions, Phys. Rev. A 64, 042315 (2001).

[178] N. Kiesel, C. Schmid, U. Weber, G. Toth, O. Guhne, R. Ursin and H. Weinfurter.
Experimental Analysis of a Four-Qubit Photon Cluster State, Phys. Rev. Lett. 95,
210502 (2005).

[179] M.A. Nielsen. Quantum computation by measurement and quantum memory, Phys.
Lett. A 308, 96 (2003).

[180] P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. As-
pelmeyer and A. Zeilinger. Experimental one-way quantum computing, Nature 434,
169 (2005).



152 BIBLIOGRAPHY

[181] R. Prevedel, P. Walther, F. Tiefenbacher, P. Bohi, R. Kaltenbaek, T. Jennewein and
A. Zeilinger. High-speed linear optics quantum computing using active feed-forward,
Nature 445, 65 (2007).

[182] C.Y. Lu, X.Q. Zhou, O. Gühne, W.B. Gao, J. Zhang, Z.S. Yuan, A. Goebel, T. Yang
and J.W. Pan. Experimental entanglement of six photons in graph states, Nat. Phys.
3, 91 (2007).

[183] M.S. Tame, R. Prevedel, M. Paternostro, P. Böhi, M.S. Kim and A. Zeilinger. Exper-
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