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1. Introduction

A significant advancement of insight into fundamental physical principles has been the successful
development of quantum mechanics. Coming from the first theories formulated in the beginning
the 20th century it has evolved into a multi faceted field of rapidly developing research in physics.
Some applications of those fundamental principles are on the verge of becoming a technology
with a broad range of applications. One unique feature of quantum mechanics is the concept
of entanglement. For the description of a state of a multi particle system, it is not sufficient to
describe each particle on its own, but it is necessary to describe the state of the system holisti-
cally. Entanglement can arise from interaction of particles with each other by direct interaction
or mediated by exchange of e.g. photons. It can be verified by measurements that will show
strong correlations between the outcomes that exceed every correlation that can be explained by
classical physics.
As research has progressed over the last 50 years a large variety of entangled states can be gener-
ated experimentally in various quantum systems. A very intriguing example is the entanglement
of a single atom with a single photon [4, 39, 41]. This system can represent a building block of
a quantum network. In abstract terms such a network has to consist of nodes of quantum memo-
ries and quantum communication channels connecting the nodes. The atom-photon system offers
both, as the atom is a massive particle that can be used to store quantum information while the
photon is an ideal information carrier to a distant location. For connecting two atoms (i.e. two
quantum memories) in order to form a simple quantum network consisting of two memories and
a channel, different approaches can be taken. Either they can be interfaced by coherent absorp-
tion of a photon entangled to an atom by another (spatially separated) atom [28] or by employing
the entanglement swapping protocol where the four particle state of two entangled atom-photon
pairs is used. By projecting the photons onto a maximally entangled Bell-state, the atoms will be
entangled [43].
Several interesting applications for quantum communication can be realized with entanglement
over long distances. These include teleportation of quantum states between distant locations
[3, 22, 36] and secure communication using quantum key distribution (QKD) [12]. The latter
can also be performed in a device-independent way based on a loophole-free violation of Bell’s
inequality [1, 37, 2]. A common challenge is to increase the distance over which entanglement
is distributed, typical demonstrations cover several meters, while there were demonstrations over
several kilometers [22, 36]. To provide entanglement over longer distances the proposed quan-
tum repeater [31] could be a solution.
One requirement that is common for all experiments of this kind is the coherence of the quan-
tum memory. As all experimental processes take a finite amount of time the prepared quantum
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1. Introduction

state has to be preserved during the whole experimental procedure. Generally, the coherence of a
quantum system depends on the level of its isolation from the environment, typical limiting fac-
tors being its interaction with electric, magnetic and optical fields. A common interface between
memory and communication channel is the process of entangling a spin degree of freedom of
the memory with the polarization degree of freedom of a photon. The spin degree of freedom
of the memory is typically associated with with a finite magnetic moment making the system
susceptible to magnetic fields which is a common limiting factor in such experiments [17].
The quantum system presented in this work consists of two neutral Rubidium 87 atoms trapped
in individual traps at a distance of 400 m. The atomic quantum systems are the nodes and mem-
ories of a simple quantum network, that are connected by a fiber link through which photons
entangled to the atoms can be exchanged. By using the entanglement swapping protocol, the
atoms are entangled. The procedure of entangling atoms at this distance takes time on the order
of ten microseconds, during this time the atomic quantum state has to stay coherent. As the event
rate of atom-atom entanglement events for the experimental setup presented here requires acqui-
sition times of several hours to days, the precise stability of magnetic fields has to be achieved
on that timescales as well and an efficient control and maintenance of the goodness of magnetic
field control is key to experimental success. This can only be done by actual measurements on
the atomic quantum states used as a memory and is therefore time consuming.
This thesis begins with a general introduction into basic principles and mechanisms used to en-
tangle two atoms in remote traps in Chapter 2. In Chapter 3 the coherence properties of the
atomic quantum state will be discussed, while Chapter 4 discusses the methods, achievements
and limitations of the magnetic field compensation setup. The final Chapter 5 describes a method
to efficiently control and calibrate the magnetic field compensation setup, leading to better state
coherence during a long term experimental run.
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2. Overview of the experiment

Creating entanglement between an atom and a photon and subsequently between an atom and
another atom is a demanding task. Additionally, the large spatial separation of the two atoms
imposes further obstacles. In the following chapter, I will outline some of the methods and tech-
niques used to achieve atom-atom entanglement over the distance of 700 m (fiber length), thereby
achieving a spatial separation of 398 m. Even at this distance, an overall readout fidelity of 92%
of the atomic states is achieved. This experimental setup was developed and built throughout
the last 18 years with iterations on almost all the parts, described in detail in the according PhD
theses done at this experiment [7, 16, 40, 24, 38, 29, 15, 20]. One major result achieved with this
experimental setup was a statistically significant violation of Bell’s inequality closing all essential
loopholes, specifically closing the detection loophole and the locality loophole simultaneously
[30].

2.1. Atomic quantum system

The quantum system used in this experiment is a single, neutral Rubidium-87 atom. There are
several reasons why this is a preferable choice. 87Rb is a alkaline atom, meaning that it has
only one valence electron. Therefore the electronic band structure is fairly simple and well
understood[34]. Furthermore the transitions are accessible with commercially available laser
systems. According to the band structure calculations, the ground state of 87Rb is 5S and the
first excited state is 5P . A level diagram of the electronic states relevant for this experiment is
shown in Fig. 2.1. Due to the coupling of orbital angular momentum L and spin S of the valence
electron, the first excited state has a fine structure splitting into two sub-levels, 52P3/2 and 52P1/2.
These electronic levels are further split up by the hyperfine splitting. It arises from the coupling
of the total angular momentum J = L + S of the valence electron to the nuclear spin I = 3

2
of

87Rb. The ground state 52S1/2 splits into two hyperfine states, F = 1 and F = 2, whereas the
relevant splitting of the excited states is denoted as F ′. Those hyperfine states are subdivided into
Zeeman states with the quantum number mF . Those Zeeman states are degenerate in absence
of external fields. Optical as well as magnetic fields will lift this degeneracy. As an atomic
qubit, the Zeeman states mF = ±1 of the ground state 52S1/2, F = 1 are chosen. Here the state
|F = 1,mF = −1〉z corresponds to |↓〉z and |F = 1,mF = +1〉z corresponds to |↑〉z. In order to
achieve atom-photon entanglement, a Λ-system is necessary. Therefore the state 52P3/2, F ′ = 0
is used as the excited state to complete the Λ-system in addition to the two qubit states |↓〉z and
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2. Overview of the experiment

|↑〉z. On top of that, the transition from 52S1/2, F = 2 to 52P3/2, F ′ = 3 is a closed transition
allowing for efficient laser cooling.

2.2. Lasers and vacuum

In technical terms 87Rb is a preferable choice, because there is a high availability of commercial
products to do optical manipulations on the 87Rb quantum system. Especially for the D1-line at
780 nm and the D2-line at 795 nm, there are a lot of easy to access commercial optical compo-
nents, such as fibers, beam splitters, mirrors and lenses. As laser light sources to address those
transitions, commercial grating-stabilized diode lasers1 are used. To stabilize their frequency on
the D1-line and respectively the D2-line, the laser diodes run on an external resonator created
by a actively controlled grating. The grating is inside a feedback loop that uses a signal from
Doppler-free saturation spectroscopy of Rubidium to act as a frequency lock. For addressing
different hyperfine states of the atom, acousto-optical modulators (AOMs) are used to fine-tune
the light frequency.
In order to work with a quantum system that is sufficiently isolated from the environment, it is
necessary to perform those experiments under ultra-high vacuum (UHV) conditions, meaning
pressures below 10−9 mbar. This is achieved in a vacuum chamber where low pressure is main-
tained by an ion-getter pump2. Attached to the vacuum chamber is a glass cell, where the atom
trap is located. As the trapping and manipulation of the atom is purely done with light, the glass
cell provides optical access to the atom from most directions. The rubidium for the experiment
is introduced to the vacuum by a metal vapor dispenser. This is a small tube which is electrically
heated to achieve temperatures at which the amount of rubidium needed for the experiment is
evaporated. As the experiment has been running for years, some of the rubidium initially evapo-
rated by the vapor dispenser has precipitated on the walls of the vacuum glass cell, therefore it is
also possible to vaporize this rubidium again by shining on it with a light-emitting diode in the
ultraviolet spectral range.

2.3. Trapping

To perform well-controlled operations on the atomic quantum system, the experiment requires
a method to trap single neutral 87Rb atoms, meaning that the position of the atom needs to
be well defined within the time frame of the whole experimental procedure, in order to grant
optical access to the atom during that time. Furthermore a strong localization is necessary to
collect the fluorescence light emitted by the atom efficiently. In addition to that, the trapping
mechanism must not lift the degeneracy of the Zeeman sublevels of one hyperfine state, as these

1Toptica DL pro
2Varian/Agilent Vaclon Plus 55 Starcell
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Figure 2.1.: Level scheme of 87Rb [26]. The ground level 52S1/2 splits into hyperfine levels F =
1 and F = 2. The atomic qubit will be encoded in |1,−1〉z := |↓〉z and |1,+1〉z :=
|↑〉z of the F = 1 ground level as marked in blue. The state manifolds of 52P1/2 and
52P3/2 that can be addressed from the ground level with optical transitions driven
by lasers with wavelength of 795 nm (D2-line) and 780 nm (D1-line) respectively.
Also shown are the transitions used for the cooling cycle of the atom described in
sec 2.3.2. [26]
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2. Overview of the experiment

are used to encode the qubit and should not be disturbed. These requirements can be met by a
strongly focused optical dipole trap (ODT) [8], which will be introduced in this section. As the
atoms introduced to the vacuum chamber are evaporated at room temperature and the ODT has
a very shallow trapping potential on the order of kB · 1 mK, an intermediate cooling method is
indispensable. Therefore Doppler cooling in a magneto-optical trap (MOT) is employed. The
MOT is able to trap a cloud of many atoms and cool them to temperatures at around 30 µK (see
sec. 5.1.4), which is well below the Doppler limit, which is at 146 µK [34]. At those temperatures
it is possible to load a single atom into the ODT simply by spatially overlapping both traps. The
following chapter will give a more detailed description of the trapping mechanisms used in this
experiment.

2.3.1. Optical dipole trap (ODT)

The ODT is a simple method to trap a single, neutral atom. It uses a tightly focused Gaussian
beam to create an attractive potential for the atoms. The underlying effect creating this attractive
potential is the AC-Stark effect. If the beam is far detuned from a transition between a ground
and a excited state, it shifts the eigenenergy of the ground state by:

∆Eg =
~Ω2

4∆
∼ I (2.1)

Here Ω is the on-resonance Rabi-frequency, which is proportional to the square root of the inten-
sity I , whereas ∆ = ωA − ωL is the detuning of the light field, i.e. the difference between the
atomic transition frequency and the light field frequency. For the potential to be attractive, ∆ is
chosen to be negative. Additionally, the atom should remain in the ground state and undisturbed.
Therefore the detuning is chosen to be large, which leads to the use of a far red-detuned light
(∆� 0).
The spatial shape of the trap potential is given by the spatial intensity profile of the beam. In case
of a focused Gaussian beam propagating along the z-axis, the intensity distribution looks like:

I (r, z) = I0 ·
(

w0

w(z)

)2

· e−
2r2

w(z)2 (2.2)

Here I0 is the maximal intensity and w0 is the minimal transversal waist, both at r = 0 and z = 0.
w(z) is the transversal waist at a given position z along the propagation direction of the beam:

w(z) = w0

√
1 +

(
z

zR

)2

(2.3)

where

zR =
πw2

0

λ
(2.4)
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Figure 2.2.: Schematic visualization of a focused Gaussian beam and the resulting trapping po-
tential for a far red-detuned beam. [40]

is the Rayleigh length and λ is the wavelength of the light. This results in a different trapping
potential along the axis of propagation compared to the trapping potential in radial direction. A
graphical representation of a focused Gaussian beam and the resulting trapping potential can be
found in Fig. 2.2.
For the case of a 87Rb atom, the level structure is far more complex than a two level system, but
it can be well approximated by a three-level system with 52S1/2 as ground state and 52P3/2 and
52P1/2 as excited states. Then the dipole trap potential for each Zeeman sub-state of the ground
state 52S1/2 looks like [13]:

Udip(r, z) = ∆E(r, z) =
πc2Γ

2ω3
0

·
(

2 + PgFmF

∆2,F

+
1− PgFmF

∆1,F

)
· I(r, z) (2.5)

where Γ and ω0 are the spontaneous decay rate and the central transition frequency of the D-line,
gF the Landé-factor of the according Zeeman-state mF , ∆1,F and ∆2,F are the detunings of the
light field relative to the D1-line and D2-line and P the polarization of the light (P = ±1 for
circular polarization and P = 0 for linear polarization). This results in a trap depth of U0 ∼ I0. A
further approximation that is well justified is to assume the trapping potential to be harmonic, as
the thermal energy of the atom is much smaller than the trap depth (kBT � U0) [40]. Therefore
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2. Overview of the experiment

the trapping frequencies are given by:

Ωr =

√
4U0

mRbw2
0

Ωz =

√
2U0

mRbz2
R

(2.6)

where Ωr is the trapping frequency in radial direction, Ωz is the trapping frequency in axial
direction and mRb is the mass of the 87Rb atom.
This scheme presents an attractive potential to all 87Rb atoms. But as demonstrated in [33,
32], by choosing the trap depth and the trap size correctly (typically w0 < 4 µm), there is a
collisional blockade mechanism. Within this mechanism, atoms in the excited state collide and
will eventually be lost from the trap. As the cooling light of the MOT will populate the excited
state, this effect is already present during loading and atoms are expelled from the trap until there
is only one atom left within the ODT.

2.3.2. Magneto optical trap (MOT)

In order to be able to trap a single atom with an ODT, their kinetic energy needs to be below
the level of the ODT trap depth. This is initially not the case, as the atoms are introduced to
the experiment by a vapor dispenser at room temperature (300 K). Therefore the atoms need to
be cooled. This can be done by radiation pressure using the Doppler effect [14, 9]. Six beams
from all spatial directions each form pairs of counter-propagating beams, that are red-detuned by
17 MHz with respect to the atomic transition from 52S1/2, F = 2 to 52P3/2, F ′ = 3 (see Fig.
2.1). As an atom moves along a certain direction, the detuning of the beam propagating against
the direction of the atom movement is reduced due to the Doppler effect. Therefore the atom will
scatter more photons from this beam. While the momentum transfer of the absorption process is
directed contrary to the atom movement, the emission is isotropic. This creates a net momentum
transfer contrary to the atom movement and thereby a velocity dependent force which decelerates
the atoms. As the the atoms undergo this cooling cycle many times, some decay to the 52S1/2,
F = 1 state. In order to get hold of those atoms, there is a repump laser beam that drives the
transition from 52S1/2, F = 2 to 52P3/2, F ′ = 3 and thereby puts those atoms back into the
cooling cycle. In order to add to the velocity dependent force a position dependent force that
traps the atoms at the correct position overlapped with the ODT, a magnetic quadrupole field
is applied. It is generated by two coils in anti-Helmholtz configuration placed outside the glass
cell. The center of the quadrupole field is overlapped with the intersection of the cooling beams.
In that way and by choosing the appropriate polarization of the cooling beams, atoms that move
away from the trap center experience a shift in their Zeeman sub-states resulting in a net radiation
pressure pushing them back to the center. With this process temperatures even below the Doppler
limit of 146 µK [34] can be reached due to polarization gradient cooling [11]. The limit that can
be achieved in our setup is at around 30 µK (see sec. 5.1.4)

16



2.3. Trapping

ODT 
(852 nm)

cooling,
repump
(780 nm)

To pol. analysis / BSM
ionization 
(473 nm)

polarizerdichroic 
mirrors

UHV
glass
cell

microscope
objective

fluorescence
collection
(780 nm)

Rb 
dispenser

Figure 2.3.: Setup of the confocal microscope objective, which is used to create the dipole trap
and simultaneously collect fluorescence of the atom in the trap. The collected flu-
orescence is coupled into a single mode fiber and send to a polarization analysis
apparatus counting with single photon precision. Additionally the light pulse used
for ionizing the atom during state readout is also sent through this objective. [19]

2.3.3. Confocal microscope setup

A unique feature of this experiment is the use of a confocal microscope objective, that serves for
three purposes at the same time. One the one hand, it is used as the objective to tightly focus
a laser beam, which creates the ODT. The beam with a wavelength of 852 nm is in a Gaussian
mode and focused to a waist of w0 = 1.92 µm, creating the tight trapping potential for a single
atom. On the other hand, the same objective acts as the collection optics for the fluorescence
light emitted by the atom. As the fluorescence is used to determine whether an atom is in the trap
or not and for doing atom-photon entanglement experiments, it is crucial that the fluorescence
collection is as efficient as possible. Therefore the focus of the dipole trap beam, i.e. the position
of the atom and the focus for 780 nm light, being the wavelength of fluorescence emission, are
chosen to precisely overlap. The fluorescence light is separated from the dipole trap beam by a
dichroic mirror, coupled into a single mode fiber and sent to single photon detectors (avalanche
photo diodes (APDs)). Additionally a laser beam with a wavelength of 473 nm is focused by
the microscope objective to the position of the atom. This beam is passing two dichroic mirrors
in order to be focused by the objective. The 473 nm light is only used in short pulses during
the atomic state readout (sec. 2.5) and tries to ionize the atom. A schematic of the confocal
microscope setup can be found in figure 2.3.

17



2. Overview of the experiment
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Figure 2.4.: Atom-photon entanglement scheme: excitation to 52P3/2, F ′ = 0, mF ′ = 0 and

subsequent spontaneous decay of the excited state back to 52S1/2, F = 1 state mani-
fold, while sending out either a σ+-, a σ−- or a π-polarized photon. The π-polarized
photon is not collected by the experiment due to the orientation of the quantization
axis.

2.4. Atom-Photon entanglement

Entanglement between an atom and a photon can be generated by spontaneous emission of a
photon by an atom. In the case of this experiment, atom-photon entanglement is implemented
by making use of the 52P3/2, F ′ = 0 state and the 52S1/2, F = 1 state manifold of 87Rb [39,
38]. The procedure is as follows: First the atom is prepared in the 52S1/2, F = 1, mF =
0 state by means of optical pumping. Then a resonant π-pulse of light with a wavelength of
780 nm will transfer the atom efficiently to the 52P3/2, F ′ = 0 state. This state has a lifetime
of 26.2 ns and the atom spontaneously decays back to one of the three states of the 52S1/2,
F = 1 state manifold. There are three possible final states of the atom 52S1/2|F = 1,mF = −1〉,
|F = 1,mF = 0〉 and |F = 1,mF = +1〉. Due to conservation of angular momentum during the
process of spontaneous emission of a photon, there are accordingly three possible spin states
of the photon |σ+〉 |σ−〉 and |π〉, corresponding to to left circular, right circular and linearly
polarized light (see Fig. 2.4). Each atomic state is thereby precisely mapped to exactly one
polarization state of the emitted photon. As the spatial emission characteristics of σ±- and π-
polarized photons are different in such a way, that no π-polarized light can be coupled into the
single mode fiber along the quantization axis (i.e. the optical axis of the confocal microscope
setup), only σ±-polarized photons are coupled into the single mode fiber and thereby recognized
as events by the experiment. Therefore the resulting entangled atom-photon state, that can be
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2.5. Atomic state readout

recognized by the experiment is

|Ψ〉a,p =
1√
2

(
|σ+〉 |↓〉z + |σ−〉 |↑〉z

)
(2.7)

=
1√
2

(|H〉 |↓〉x + |V 〉 |↑〉x)

=
1√
2

(
|+〉 |↓〉y + |−〉 |↑〉y

)
.

Definitions of reference frames and qubit basis transformations can be found in equation A.1
Atom-photon entanglement can be characterized by measuring correlations between the atomic
spin and the photonic polarization state in different basis sets.

2.5. Atomic state readout

In order to characterize atom-photon entanglement, the experiment requires a method to read out
the electronic state of the atom. Therefore a read out method that can distinguish the Zeeman
states of the 52S1/2, F = 1 state manifold is needed. The method also needs to be capable
of reading out the atomic Zeeman state in any basis, to not only show correlation, but rather
characterize entanglement. These requirements can be met by a Zeeman state-selective ionization
scheme.
As shown in Fig. 2.5, the state readout consists of three laser pulses. As the atomic state before
readout is some kind of superposition state in the 52S1/2, F = 1 state manifold, the readout laser
pulse (λ = 795 nm) will create a bright state |ΨB〉 and an orthogonal dark state |ΨD〉 due to its
polarization. An example therefor would be a readout beam with σ+- polarization (see Fig. 2.5).
As the atomic qubit is encoded in the states |mF = ±1〉z of 52S1/2, F = 1, the readout pulse
will transfer |mF = −1〉z to 52P1/2, F ′ = 1, mF = 0, whereas there is no transition possible
for |mF = +1〉z due to dipolar selection rules. Hereby |mF = −1〉z is the bright state to the σ+-
polarized readout pulse and |mF = +1〉z is the dark state. Generally speaking, the choice of a
polarization |χ〉

|χ〉ro = cos (α) |V 〉+ eiφ sin (α) |H〉 (2.8)

with angles α and φ creates a dark and a bright state for any atomic qubit state according to

|ΨB〉 = sin (α) |↑〉x − e
iφ cos (α) |↓〉x (2.9)

|ΨD〉 = cos (α) |↑〉x + eiφ sin (α) |↓〉x (2.10)

where |↑〉x = 1√
2

(|↑〉z + |↓〉z) and |↓〉x = i√
2

(|↑〉z − |↓〉z). For further relations between atomic
and photonic states see appendix A. Due to those relations, an atomic state readout with an ar-
bitrary basis is possible by choosing the polarization of the readout laser pulse. If the atom is
transferred to the 52P1/2, F ′ = 1, mF = 0 state, it will be ionized by a 473 nm laser that is
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2. Overview of the experiment

Table 2.1.: Polarization of the readout laser pulse |χ〉ro and resulting bright state |ΨB〉 and dark
state |ΨD〉 of the atom.

|χ〉ro |ΨB〉 |ΨD〉

|L〉 |1,−1〉z |1,+1〉z
|R〉 |1,+1〉z |1,−1〉z
|H〉 i√

2
(|1,−1〉z − |1,+1〉z)

1√
2

(|1,−1〉z + |1,+1〉z)

|V 〉 1√
2

(|1,−1〉z + |1,+1〉z)
i√
2

(|1,−1〉 − |1,+1〉z)

|+〉 1√
2
e−i

π
4 (i |1,−1〉z + |1,+1〉z)

1√
2
ei
π
4 (i |1,−1〉z − |1,+1〉z)

|−〉 1√
2
ei
π
4 (i |1,−1〉z − |1,+1〉z)

1√
2
e−i

π
4 (i |1,−1〉z + |1,+1〉z)

focused on the atom during state readout, meaning that the atomic system will be split up into
ionization fragments, i.e. an electron and an ion. As the ionization process should be as efficient
as possible to guarantee a good readout fidelity, an additional cycling laser pulse illuminates the
atom. This pulse re-excites possible decays from the excited state to 52S1/2, F = 2 back to
52P3/2, F ′ = 3, for the atom to still be ionized. As the ionization fragments are not trapped by
the ODT, they are lost from the trap. To verify whether the atom is still in the trap (or not) after
a ionization try, cooling and repump light can be shone onto the trap. If an atom is still there, it
will fluoresce and the fluorescence can be collected by the collection optics and quantified on the
single photon detectors (see Fig. 2.3). If the trap is empty, we will only see residual background
counts on the single photon detectors. This method takes about 66ms [24], which is needed to
collect enough fluorescence light to determine whether the atom is still in the trap or not.
The method mentioned above was too slow for the loophole free test off Bell’s inequality. There-
fore a much faster scheme to detect the ionization fragments was developed [24, 15, 30]. There,
the possible ionization fragments are detected by two Channel Electron Multipliers (CEMs). To
achieve a measurable electric signal, the ionization fragments are accelerated towards the CEMs
by a strong electric field. As a fragment hits the active area of a CEM, secondary electrons are
released and create an avalanche of electrons in the back part of the CEM, which in the end
results in a small current pulse. There are two ionization fragments, but it is sufficient to only
recognize one fragment to register a successful ionization event. This results in a combined de-
tection efficiency of the CEMs of η & 0.98. Further limits to the performance of the atomic state
readout scheme are events where the atom was ionized despite being in a dark state, or vice versa
not being ionized while being in a bright state (for details see [24]). It results in a total contrast
of distinguishing bright state from dark state for the state-selective ionization scheme of 93.8%.
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Figure 2.5.: Scheme for atomic state readout. The polarization of the readout laser (here σ+)
determines bright state (here 52S1/2, F = 1, mF = −1) and dark state (here 52S1/2,
F = 1, mF = +1) of Zeeman state selective ionization. Additionally, the cycling
laser re-excites atoms which decayed in certain channels before ionization. [19]

2.6. Atom-photon correlation measurements

With the methods mentioned above in place, an experiment to perform is to measure the cor-
relations between the polarization state of the photon and the spin state of the atom, that are
entangled. To perform such an experiment initially an atom needs to be trapped in the optical
dipole trap (ODT). After preparing the state of the atom in 52S1/2, F = 1, mF = 0, the atom-
photon entanglement is initialized by sending the excitation pulse. The procedure of pumping
and exciting the atom is repeated until a photon is collected by the collection optics and registered
at one of the two single photon detectors (APDs) in a predefined time window after polarization
analysis of the photon. As the overall photon detection efficiency is only at about 1.6 · 10−6, this
process of pumping and exciting the atom has to be repeated often. The polarization analysis
consists of a rotatable quarter wave plate and a rotatable half wave plate in front of a polarizing
beam splitter, all placed in front of the APDs, which allows a polarization measurement in an
arbitrary basis. If a photon is registered, the experiment immediately switches to the atomic state
readout scheme (see Fig. 2.6). The result of many such events allows us to calculate a state
population of the dark state |ΨD〉 chosen by the readout polarization |χ〉ro for a given basis of the
photon polarization state analysis ( e.g. |H〉/|V 〉 or |+〉/|−〉). To verify entanglement, correlation
curves for two photonic bases are measured. The readout polarization |χ〉ro is rotated for each
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2. Overview of the experiment

Table 2.2.: Fit parameters for measurements in fig. 2.7 [7]

photonic state A ∆φ (◦) c

|V 〉 0.939± 0.0050 2.85± 0.170 0.038± 0.0034

|H〉 0.905± 0.0064 0.65± 0.224 0.050± 0.0037

|−〉 0.926± 0.0069 1.08± 0.193 0.045± 0.0042

|+〉 0.914± 0.0086 2.69± 0.245 0.050± 0.0052

time

loading (~2s) 
                 cooling (350µs)

waiting
(3.5µs)

preparation (3µs)

             excitation (20ns)

atomic state
measurement

photon
detection

40x
No Yes

propagation
of photon

to pol. analysis

after 40
 exc.

 attempts

photon detection (120ns)

(100 ns)

Figure 2.6.: Experimental sequence to entangle the spin state of a 87Rb atom with the polariza-
tion state of a photon. After loading an atom in the dipole traps, the pumping and
excitation scheme is repeated to create atom-photon entanglement by spontaneous
emission. If a photon is measured after polarization analysis, the setup switches to
atomic state analysis.

setting. A measurement of this kind is shown in Fig. 2.7. The results can be fitted by

f (α) = A sin2 (α− φ) + c (2.11)

where A is the peak-to-peak amplitude, φ is the phase and c the offset. The amplitude A is the
contrast of the entangled state, while the offset c should be 0 and is (together with A) a figure of
merit for the state analysis. the phase φ should be 0 for detected photonic state |V 〉, π

2
for |H〉, π

4

for |+〉 and−π
4

for |−〉. The difference from these expected values is ∆φ and should be 0. These
fitted coefficients displayed in table 2.2 give an overview of the performance of the entanglement
and the readout scheme for atom-photon entanglement, which sets boundaries on the achievable
correlations of atom-atom entanglement, which will be discussed in the following section.
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2.7. Atom-atom entanglement

(a) Photonic states |H〉 and |V 〉 (b) Photonic states |+〉 and |−〉

Figure 2.7.: Measurement of correlation of photonic and atomic state with minimal time delay
between photonic and atomic state measurement (0.4 µs). Shown is the dark state
population for different angles of linearly polarized readout light (|χ〉ro = |V 〉 =̂ 0◦).
Additionally shown are fits of the correlations according to (2.11). [7]

2.7. Atom-atom entanglement

In order to generate entanglement between two atoms with large spatial separation, the experi-
ment employs the entanglement swapping protocol [43, 25]. This protocol opens up the possi-
bility to entangle two atoms not by direct (contact) interaction, but instead uses two atom-photon
pairs, where each atom-photon pair is entangled initially. After independent generation of two
entangled atom-photon pairs, the photons are overlapped and projected onto an entangled state
themselves, thereby entangling the atoms. The initial joint four-particle state of two entangled
atom-pairs can be written as

|Ψ〉 = |Ψ〉a1,p1 ⊗ |Ψ〉a2,p2

|Ψ〉 =
1

2

(
|↑〉x,1 |H〉1 + |↓〉x,1 |V 〉1

)
⊗
(
|↑〉x,2 |H〉2 + |↓〉x,2 |V 〉2

)
(2.12)

where (|↑〉x,1/2, |↓〉x,1/2) is the atomic qubit basis and (|H〉1/2, |V 〉1/2) is the photonic basis. Pro-
jecting the photons onto a Bell state yields four possible outcomes, which are the four maximally
entangled Bell states |Φ±〉p1,p2 = 1√

2
(|HH〉 ± |V V 〉) and |Ψ±〉p1,p2 = 1√

2
(|HV 〉 ± |V H〉). Ex-

panding and ordering (2.12) by possible outcomes of a photon projection yields

|Ψ〉 =
1

2

(
|Ψ+〉a1,a2 |Ψ

+〉p1,p2 + |Ψ−〉a1,a2 |Ψ
−〉p1,p2 + |Φ+〉a1,a2 |Φ

+〉p1,p2 + |Φ−〉a1,a2 |Φ
−〉p1,p2

)
This shows that the detection of a photonic Bell state projects the atoms onto the according Bell
state |Φ±〉a1,a2 = 1√

2
(|↑↑〉x ± |↓↓〉x) or |Ψ±〉a1,a2 = 1√

2
(|↑↓〉x ± |↓↑〉x).

The projection of the photonic state onto a Bell state takes place in a dedicated measurement ap-
paratus. It consists of a non-polarizing 50/50 fiber beamsplitter followed by two polarizing beam
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 a a1 2

±Ψ

±Ψ ±Ψ

Figure 2.8.: Scheme for atom-atom entanglement. Atom-photon entanglement is created in two
separate traps, followed by a Bell state measurement on the two photons (coinciden-
tal detection of two photons). Thereby atom-atom entanglement is created according
to the entanglement swapping protocol without any direct interaction between the
atoms. [19]

splitters (PBS) and four single-photon detectors (APDs) as shown in Fig. 2.8. On the initial fiber
beam splitter, the photons interfere and experience the Hong-Ou-Mandel effect[18]. It is crucial
that the photons are indistinguishable, i.e. they have to be in the same quantum state concerning
all their degrees of freedom except their polarization. As the photons in this experiment come
from the identical atomic transition and the photon generation in both traps is synchronized in
time, the overlap of the spectral and temporal mode of the photons is close to unity. As this is the
case, the Hong-Ou-Mandel effect leads to bunching or antibunching of the photons at the fiber
beam splitter according to the symmetry of the two photon state.
Afterwards the two PBS analyze the polarization state of the photons. The photons are then rec-
ognized by the according APD. By registering coincidental clicks on APDs 1‖ ∧ 2⊥ or 1⊥ ∧ 2‖
the photonic state is determined to be |Ψ−〉, whilst registering clicks 1‖ ∧ 1⊥ or 2⊥ ∧ 2‖ projects
the photons onto |Ψ+〉. If such photonic events are registered, the two atoms are entangled ac-
cordingly with states |Ψ−〉a1,a2 or |Ψ+〉a1,a2.

∣∣Φ±a1,a2

〉
cannot be distinguished and corresponding

events are ignored. The photonic measurement result heralds entanglement of the atoms. With
this scheme a violation of Bell’s inequality was demonstrated whilst simultaneously closing the
locality and detection loophole [30].
One limit to this scheme is, that the procedure to entangle two atoms takes some time, as the
traps are separated by 700 m of optical fiber. Therefore it takes time for the photons to be de-
tected by the Bell-state analysis and it also takes time to send back the result of the two-photon
coincidence measurement to the individual traps (for details see Fig. 2.9). For the atom-atom
entanglement to still be valid, each atom needs to preserve its exact quantum state, whilst still
being trapped in the ODT. This is called atomic state coherence and plays a crucial role in the
strength of measurable correlation between the states of the two atoms. For the experimental
setup as of today, the coherence time required is at least at 3.8 µs and 7.3 µs, which corresponds
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Figure 2.9.: Experimental sequence to entangle two 87Rb atoms in two spatially separated traps.
After successfully loading two atoms in both dipole traps, the pumping and exci-
tation scheme is repeated to create atom-photon entanglement individually in both
traps. As each excitation cycle heats the atom, there will be a cooling period after
40 excitation repetitions. If a suiting two photon coincidence is measured, the setup
switches to atomic state analysis. [7]

to the delay in the respective trap between atom-photon entanglement (’excitation’ in Fig. 2.9)
and the atomic state readout (’state measurement’). As it is planned to increase the distance of
the traps from 700 m to approximately 20 km (fiber length), the time of atomic state coherence
needs to be increased by a factor of around 10 and it needs to be maintained easily during the
course of a whole experimental run, which might take up to a few weeks. The following chapter
will give an overview of the effects limiting atomic state coherence. Then I will point out which
measures are taken in the experiment to compensate for those effects and maintain coherence. In
the end I want to introduce a scheme, how to optimize the compensation in a time- saving and
automated way.
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3. Coherence properties of the atomic
spin-1 system

A challenging requirement for this experiment is the coherence of the atomic quantum state,
while the entanglement swapping protocol is employed. Due to the single atom being trapped
under ultrahigh vacuum conditions, the possibilities of the atom interacting with its environment
are heavily reduced. But there are still some remaining effects, that will influence the atomic
quantum system, finally leading to decoherence. In this chapter, I will give insight into the effect
magnetic fields have on the atom, called Zeeman effect. I will introduce the influence, that the
light of the optical dipole trap (ODT) has on the atom due to the AC-Stark effect and I will
explain, what effects the strong focusing of the ODT in combination with the motion of the atom
in the trap gives rise to.

3.1. Evolution of a spin-1 system in a static magnetic
field

There is a time-dependent evolution of atomic (hyperfine) states when the atom is exposed to
external magnetic fields due to the Zeeman effect. This effect shifts the hyperfine states’ energies
relative to each other, which leads to a time evolution of the hyperfine states called Larmor
precession. The description here is following up on those presented in [29] and [7]. Up to this
point, only the states used to encode the qubit, a superposition of 52S1/2 |F = 1,mF = ±1〉z
(short: |1,±1〉z) were considered. At this point, we also have to take into account the state
|F = 1,mF = 0〉z(short: |1, 0〉z), that completes the spin-1 ground level state manifold of 52S1/2,
F = 1. The Hamiltonian that governs the interaction is

Ĥ =
µBgF
~
−→
B ·
−̂→
F (3.1)

where µB is the Bohr magneton, gF = −1
2

is the Landé-factor of the 52S1/2, F = 1 ground level,
−→
B is the vector of the magnetic field and

−̂→
F is the operator of (hyperfine) angular momentum,

which for a spin-1 system is composed of

−̂→
F =

 F̂x
F̂y
F̂z


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3.1. Evolution of a spin-1 system in a static magnetic field

with

F̂x =
1√
2

 0 1 0
1 0 1
0 1 0

 ,

F̂y =
i√
2

 0 −1 0
1 0 −1
0 1 0

 ,

F̂z =
1√
2

 1 0 0
0 0 0
0 0 −1


when expressed in the basis of (|1,+1〉z, |1, 0〉z, |1,−1〉z). For simplicity we can write for the
magnetic field as

~B = B (bx~ex + by~ey + bz~ez) (3.2)

withB the magnitude of the magnetic field and bx, by, bz being normalized components (
√
b2
x + b2

y + b2
z =

1). With these relations, we can express the Hamiltonian as

Ĥ = µBgFB

 bz
1√
2

(bx − iby) 0
1√
2

(bx − iby) 0 1√
2

(bx − iby)
0 1√

2
(bx + iby) −bz


also given in the basis of (|1,+1〉z, |1, 0〉z, |1,−1〉z). Due to the symmetry of the problem with
a quantization axis (z-axis) and an otherwise radially symmetric problem, it makes sense to
transform Ĥ into cylindrical coordinates by setting

bx =
√

1− b2
z cos (φ)

by =
√

1− b2
z sin (φ)

bz = bz

If we additionally define the Larmor frequency

ωL :=
µBgF
~

B, (3.3)

we can rewrite the Hamiltonian as

Ĥ = ~ωL

 bz
1√
2

√
1− b2

ze
−iφ 0

1√
2

√
1− b2

ze
iφ 0 1√

2

√
1− b2

ze
−iφ

0 1√
2

√
1− b2

ze
iφ −bz

 .
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3. Coherence properties of the atomic spin-1 system

This operator has eigenvectors

|Φ+1〉 =

 1
2

(1 + bz) e
−iφ

1√
2

√
1− b2

z
1
2

(1− bz) eiφ


|Φ0〉 =

 − 1√
2

√
1− b2

ze
−iφ

bz
1√
2

√
1− b2

ze
iφ


|Φ−1〉 =

 1
2

(1− bz) e−iφ
− 1√

2

√
1− b2

z
1
2

(1 + bz) e
iφ


and with the corresponding eigenvalues being +~ωL, 0, −~ωL. Therefore the time evolution of
the eigenvectors is given be the time evolution operator, implying

|Φ+1〉 (t) = |Φ+1〉 (t = 0) · e−iωLt

|Φ0〉 (t) = |Φ0〉
|Φ−1〉 (t) = |Φ−1〉 (t = 0) · e+iωLt.

Any arbitrary state of the atom can be written as a superposition of the eigenstates of the Hamil-
tonian

|Ψ〉 = c+1 |Φ+1〉+ c0 |Φ0〉+ c−1 |Φ−1〉

leading to a time evolution of this arbitrary state of

|Ψ〉 (t) = c+1 |Φ+1〉 (t = 0) · e−iωLt + c0 |Φ0〉+ c−1 |Φ−1〉 (t = 0) · e+iωLt

which entirely describes the dynamics, that an arbitrary quantum state of the atom in its ground
level in an constant external magnetic field experiences.
In the following section, I will give examples of the influence of some specific magnetic fields
on states of the atom that are regularly prepared in the experiment. It will illustrate a way how to
measure and quantify this effect experimentally.

3.1.1. Measuring Larmor precession

In order to measure these dynamics of the atomic quantum state, a straight forward way is to
employ a measurement of atom-photon correlation as described in sec. 2.6. In addition, we now
delay the atomic state readout by a certain time t. During this delay time t, the quantum state
of the atom can evolve due to Larmor precession. This scheme is advantageous, as it determines
the initial quantum state of the atom to a very high degree, as the polarization measurement of
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3.1. Evolution of a spin-1 system in a static magnetic field

the photon is fast and precise and projects the atom into a well-known state up to the fidelity of
the polarization state analysis.
For this measurement, the photons are typically analyzed in an H/V basis, which therefore
projects the atom either on |ΨV 〉 = 1√

2
(|1,+1〉z + |1,−1〉z) or |ΨH〉 = i√

2
(|1,−1〉z − |1,+1〉z)

according to (2.7) and (A.1). The polarization of the readout laser pulse is chosen according to
table 2.1 to |χ〉ro = |V 〉 to set |ΨV 〉 = |ΨD〉 the dark state and |ΨH〉 = |ΨB〉 the bright state
of the atomic state readout. As shown in Fig. 2.5, atoms in state |1, 0〉z will also be ionized and
contribute to the fraction in |ΨB〉. After a certain delay time t, the final atomic quantum state is
analyzed by projecting it onto the dark state |ΨD〉 of the atomic state readout. For a measure-
ment, the delay time t is scanned to unveil the dynamics of the atomic quantum system and a
meaningful number of events is collected. A simulation that shows the expected results of such
a measurement is shown in Fig. 3.1

Field in z-direction

If we assume a magnetic field that is oriented along the z-axis, setting bz = 1 and bx = by = 0
(φ = 0), it follows that the eigenstates of the Hamiltonian are

|Φ+1〉 =

 1
0
0

 , |Φ0〉 =

 0
1
0

 , |Φ−1〉 =

 0
0
1

 ,

which lets us express |ΨV 〉 and |ΨH〉 in terms of |Φi〉:

|ΨV 〉 =
1√
2

(|1,−1〉z + |1,+1〉z) =
1√
2

(|Φ−1〉+ |Φ+1〉)

|ΨH〉 =
i√
2

(|1,−1〉z − |1,+1〉z) =
i√
2

(|Φ−1〉 − |Φ+1〉)

leading to a time evolution of

|ΨV 〉 (t) =
1√
2

(
|1,−1〉z · e

iωLt + |1,+1〉z · e
−iωLt

)
|ΨH〉 (t) =

i√
2

(
|1,−1〉z · e

iωLt − |1,+1〉z · e
−iωLt

)
.

As a measurement of those states is always a projection onto the dark state of the atomic state
readout, the probability of finding an atom that was initially prepared in state |ΨV 〉/|ΨH〉 after a
delay time t in |ΨD〉 is

〈ΨD| ΨV 〉 (t) =
1

2
(〈1,−1|z + 〈1,+1|z)

(
|1,−1〉z · e

iωLt + |1,+1〉z · e
−iωLt

)
= cos (ωLt)

〈ΨD| ΨH〉 (t) =
i

2
(〈1,−1|z + 〈1,+1|z)

(
|1,−1〉z · e

iωLt − |1,+1〉z · e
−iωLt

)
= sin (ωLt)

29



3. Coherence properties of the atomic spin-1 system

P (|ΨD〉V , t) = ‖〈ΨD| ΨV 〉 (t)‖2 = cos2 (ωLt) (3.4)

P (|ΨD〉H , t) = ‖〈ΨD| ΨH〉 (t)‖2 = sin2 (ωLt) .

This shows the Larmor precession with a period T = π
ωL

. A pictorial display of such a state
evolution can be found in Fig. 3.1.

Field in x-direction

For a field oriented along the x-axis, indicating bx = 1, by = bz = 0 and φ = 0, the eigenstates
of the Hamiltonian become

|Φ+1〉 =

 1
2
1√
2

1
2

 , |Φ0〉 =

 −1√
2

0
1√
2

 , |Φ−1〉 =

 1
2
−1√

2
1
2

 .

Again we can express |ΨV 〉 and |ΨH〉 in terms of |Φi〉, resulting in

|ΨV 〉 =
1√
2

(|1,−1〉z + |1,+1〉z) =
1√
2

(|Φ−1〉+ |Φ+1〉)

|ΨH〉 =
i√
2

(|1,−1〉z − |1,+1〉z) = i |Φ0〉 .

These states show a time evolution of

|ΨV 〉 (t) = cos (ωLt) |ΨV 〉 − i sin (ωLt) |1, 0〉z
|ΨH〉 (t) = |ΨH〉

For a measurement with the same readout laser pulse polarization (|χ〉ro = |V 〉) as above, the
probability of finding initial states |ΨV 〉/|ΨH〉 after time t in the dark state are

P (|ΨD〉V , t) = ‖〈ΨD| ΨV 〉 (t)‖2 = cos2 (ωLt) (3.5)

P (|ΨD〉H , t) = ‖〈ΨD| ΨH〉 (t)‖2 = 0.

This shows that states prepared in |ΨH〉 are not affected by magnetic fields in x-direction,
whereas initial state |ΨV 〉 experiences Larmor precession with period T = π

ωL
. A time evolution

of the atomic states with a field in x-direction can be found in Fig. 3.1.

Field in y-direction

For a field in y-direction, stating by = 1, bx = bz = 0 and φ = π
2
, the eigenvectors are

|Φ+1〉 =

 −i
2
1√
2
i
2

 , |Φ0〉 =

 i√
2

0
i√
2

 , |Φ−1〉 =

 −i
2
−1√

2
i
2

 .
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3.1. Evolution of a spin-1 system in a static magnetic field

(a) Larmor precession for magnetic field in z-direction. (b) Larmor precession for magnetic field in x-direction.

Figure 3.1.: Time evolutions for states |ΨV 〉 and |ΨH〉. At a given delay t they are projected onto
|ΨV 〉. Solid lines show state evolution for 10 mG field , dashed lines show 1.6 mG
field [7]

Expressing |ΨV 〉 and |ΨH〉 in terms of |Φi〉 yields

|ΨV 〉 =
1√
2

(|1,−1〉z + |1,+1〉z) = −i |Φ0〉

|ΨH〉 =
i√
2

(|1,−1〉z − |1,+1〉z) =
1√
2

(|Φ+1〉+ |Φ−1〉)

with a time evolution of

|ΨV 〉 (t) = |ΨV 〉
|ΨH〉 (t) = cos (ωLt) |ΨH〉 − i sin (ωLt) |1, 0〉z .

If measuring these dynamics with a readout pulse polarization as above (|χ〉ro = |V 〉), we will
not observe any dynamics as

〈ΨD| ΨV 〉 (t) = 1

〈ΨD| ΨH〉 (t) = 0.

Therefore we choose the readout pulse polarization to be |χ〉ro = |H〉 (i.e.|ΨH〉 = |ΨD〉), which
lets us observe similar dynamics as for a field in x-direction, just with the initial states being
switched

P (|ΨD〉V , t) = ‖〈ΨD| ΨV 〉 (t)‖2 = 0

P (|ΨD〉H , t) = ‖〈ΨD| ΨH〉 (t)‖2 = cos2 (ωLt) . (3.6)

31



3. Coherence properties of the atomic spin-1 system

3.2. AC-Stark shift in an optical dipole trap

The AC-Stark shift is an effect that influences atoms exposed to strong oscillating electric fields
(optical fields). From this effect arises a shift of the energies of the atom, which in our case
is used for trapping a single atom in an optical dipole trap with one tightly focused beam, as
described in sec. 2.3.1. This shift of the 52S1/2, F = 1 ground state in energy can also be
Zeeman state-dependent, if the polarization P of the dipole trap light has circular components
in relation to the quantization axis [10] (for details to the other parameters of this equation, see
(2.5))

∆E(~x) =
πc2Γ

2ω3
0

·
(

2 + PgFmF,z

∆2,F

+
1− PgFmF,z

∆1,F

)
· I(~x) (3.7)

The light of the dipole trap beam propagates along the z-axis, therefore the electric field is [26]

~E(~x) =

 Ex(~x)
Ey(~x)eiδ

0


which leads to a polarization of

P =
2 ‖Ex(~x)‖ · ‖Ey(~x)‖ sin (δ)

‖Ex(~x)‖2 + ‖Ey(~x)‖2 (3.8)

that is P ∈ [−1, 1] for any general elliptical polarization, with special cases P = 0 for linear
polarization and P = ±1 for σ+/σ− circular polarization. For the coherence of the atomic state,
only relative energy shifts between the Zeeman sub-states |1,+1〉z, |1, 0〉z and |1,−1〉z are of
interest. Following the calculations in [7], the shift that is state independent is

∆Eall(~x) =
πc2Γ

2ω3
0

·
(

2

∆2,F

+
1

∆1,F

)
· I(~x) (3.9)

which corresponds to the trapping potential that all atoms see, independent of their specific Zee-
man state and leads to no state evolution. For this reason, we define it to be the mean trapping
potential Um (~x) := ∆Eall(~x). We get the relative energy shift by subtracting (3.9) from (3.7),
which leaves a relative energy shift of the Zeeman states of

∆Erel(~x) =
πc2Γ

2ω3
0

·
(

1

∆2,F

− 1

∆1,F

)
PgFmF,zI(~x)

causing an evolution of ground states of the atom. For more compact calculation, we define the
the constant parameter Rcirc to be

Rcirc :=

1
∆2,F
− 1

∆1,F

2
∆2,F

+ 1
∆1,F

(3.10)
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3.2. AC-Stark shift in an optical dipole trap

now dividing the relative shift by the shift that all states experiences gives

∆Erel(~x)

∆Eall(~x)
= RcircPgFmF,z.

Rearranging this gives

∆Erel(~x) = P ·RcircgFmF,z∆Eall(~x)

= P ·RcircgFmF,zUm (~x) (3.11)

which is similar to a shift of the atom’s energy by the Zeeman effect with magnetic field in
z-direction

∆EZeeman = µBgFmF,zBz.

For this reason, we can express the shift of the atom being in the ODT with circular polarization
components in an external magnetic field in z-direction in a combined expression

∆E = ∆EZeeman + ∆Erel(~x)

= µBgFmF,z

(
Bz +

1

µB
P ·Rcirc∆Um (~x)

)
(3.12)

= µBgFmF,zBz,eff (~x)

that gives an effective field in z-direction Bz,eff which includes the relative AC-Stark shift in-
duced by the dipole trap laser beam and the external magnetic field. For calculating state evolu-
tions, we can still follow the formalism of sec. 3.1, but instead of the magnetic field, we now use
an effective magnetic field

~Beff (~x) =
−→
B +

1

µB
PRcircUm (~x)~ez. (3.13)

Note that this effective magnetic field is now position dependent, due to the intensity profile of
the dipole trap beam, whereas we assume the external magnetic field

−→
B to be spatially constant

within the volume of the dipole trap.
For an optimal state coherence, we want completely linearly polarized light to interact with the
atom ( ~Beff (~x) =

−→
B ). Therefore a polarizer is installed between the coupler of the dipole trap

light and the dichroic mirror that sends the dipole trap light to the objective (see Fig. 2.3). The
angle of the polarizer unfortunately can not be set a priori due to birefringence of the optical
components (mainly the glass cell) in the beam path between polarizer and atom. The birefrin-
gence is temperature dependent, which makes a temperature stabilization of the experimental
setup necessary [24].
To distinguish between elliptical polarization of the ODT light and real magnetic fields in a mea-
surement, we change the trap depth/intensity of the dipole trap beam, which will also change
the effective magnetic field according to (3.13). The change we observe between measurements
with different dipole trap beam intensities can then be attributed to elliptical polarization of the
dipole trap light only. By changing the trap depth and analyzing state evolutions, we therefore
can determine the angle of the polarizer experimentally. A scheme on how to do this can be
found in [7].
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3. Coherence properties of the atomic spin-1 system

3.3. Effects of strong focusing and oscillation of the
atom in the trap

As of now, the effect of elliptical polarization of the dipole trap beam on the atomic state was
analyzed and the effect can be minimized by linear polarization of the optical dipole trap (ODT)
beam. But there will be additional local elliptical polarization in the focal region, due to the
focusing of the ODT beam [29, 35, 42, 27]. This leads to energy shifts of the atomic Zeeman
states resulting in time evolution of the atomic state. This effect is depending strongly on the
position of the atom in the trap. When measuring many atoms subsequently, this will lead to
decoherence, as the starting conditions for the motion of the atom in the trap are thermally
distributed.

3.3.1. Focusing a linearly polarized Gaussian beam

The incident beam of the optical dipole trap is a Gaussian beam that is then focused by the
microscope objective. This objective focuses the beam so tightly (high numerical aperture (NA))
that the paraxial approximation of Gaussian ray optics does no longer hold. Therefore deviations
from the Gaussian beam arise, especially in the vicinity of the focus of the beam. For a linearly
polarized beam the field vector will have longitudinal components close to the focal point. This
effect was first described for the focus of a plane wave by a lens in [42, 27]. With additions
for Gaussian optics it can also be applied to our case [29]. For a Gaussian beam propagating
along the z-axis with incidental polarization along the x-axis, will have a polarization component
perpendicular to the optical axis and a longitudinal polarization component parallel to the optical
axis in the focal area. Due to the symmetry of the problem, we choose cylindrical coordinates
(r, φ, z), where the origin is the focal point and the angle φ is chosen with respect to the x-axis.
The components of the electrical field vector ~E in the vicinity of the focal point are given by

~E (r, z) =

 Ex (r, z)
Ey (r, z)
Ez (r, z)

 = Eo

 F0 (r, z) + F2 (r, z) cos (2φ)
F2 (r, z) sin (2φ)
2iF1 (r, z) cos (φ)


where E0 is a scaling constant andFi (r, z) are the diffraction integrals calculated as

F0 (r, z) =

∫ α

0

dθ exp

(
−f 2 tan (θ)2

w2

)√
cos (θ) (1 + cos (θ)) J0 (kr sin (θ)) eikz cos(θ) sin (θ)

F1 (r, z) =

∫ α

0

dθ exp

(
−f 2 tan (θ)2

w2

)√
cos (θ) sin (θ) J1 (kr sin (θ)) eikz cos(θ) sin (θ)

F2 (r, z) =

∫ α

0

dθ exp

(
−f 2 tan (θ)2

w2

)√
cos (θ) (1− cos (θ)) J2 (kr sin (θ)) eikz cos(θ) sin (θ) .
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3.3. Effects of strong focusing and oscillation of the atom in the trap

Here J0, J1, J2 are Bessel-J functions of the first kind, f is the focal length of the objective, w is
the radius of the Gaussian beam entering the microscope objective. These integrals sum partial
waves coming from infinitesimal rings of the objective at an angle θ relative to the z-axis up to
the angle α given by the NA of the objective. As these integrals have to be solved a lot of times
in order to get a map of the electrical field in the focal area, they can be approximated as [29]

F0 (r, z) ≈ F0 (0, 0)
1√

1 + z2

z2R

exp

− r2

w2
0

(
1 + z2

z2R

)


F1 (r, z) ≈ F0 (0, 0)
1

2zR

r

1 + z2

z2R

exp

− r2

w2
0

(
1 + z2

z2R

)


F2 (r, z) ≈ F0 (0, 0)
1

(2zR)2

r2(
1 + z2

z2R

)2 exp

− r2

w2
0

(
1 + z2

z2R

)


where w0 = λf
πw

the beam waist at the focus and zR = πw0

λ
the Rayleigh length from Gaussian

ray optics. The value of F0 (0, 0) then is

F0 (0, 0) =

∫ α

0

dθ exp

(
−f 2 tan (θ)2

w2

)√
cos (θ) (1 + cos (θ)) sin (θ) .

These formulas allow us to calculate the electrical field in the focal area, which is done by Math-
ematica for an initial polarization along the x-axis. Ex and Ez are plotted in Fig. 3.2, while
there are no noteworthy contributions of Ey. Note that for the transversal component Ex, the
distribution around the focus is similar to the distribution expected by Gaussian optics. The lon-
gitudinal component Ez is approximately one order of magnitude smaller than the transversal
component and maximal at a certain distance from the focal spot along the x-axis. In Fig. 3.2
it is obvious that the longitudinal component Ez has a sign-change when crossing the y-z-plane.
Combining both field components, the polarization of the light is slightly elliptical rotating clock-
wise/anticlockwise depending on the sign of x. As described in the previous section, elliptically
polarized light shifts the Zeeman state relative to each other in energy due to the state-dependent
and position-dependent AC-Stark effect, which leads to dephasing of the atomic states. If we
look at a measurement of many atoms this leads to decoherence, as the initial position and mo-
tion of the atom in the trap are not the same for all atoms, but instead obey a thermal distribution.

3.3.2. Time evolution of atomic states in the ODT field

For calculating the atomic state evolution due to the polarization effects of strong focusing, we
can use the same formalism as in sec. 3.2. But some adjustments have to be performed, as the
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3. Coherence properties of the atomic spin-1 system
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Figure 3.2.: Electrical field profiles in focal region (a)+(b): Ex transversal component; (c)+(d):
Ez longitudinal component, note the sign change along x-axis. [26]
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3.3. Effects of strong focusing and oscillation of the atom in the trap

electrical field now is

~E (~x) =

 Ex (~x)
0

Ez (~x)


which leads to a polarization P of

P (~x) = sgn (x)

√√√√1−

(
|Ex (~x)|2 − |Ez (~x)|2

|Ex (~x)|2 + |Ez (~x)|2

)2

where sgn (x) is the sign of the x-component of the position vector ~x. Whilst continuing to use
Rcirc as defined in (3.10) and Um (~x) as defined in (3.11), we can write the relative state shift as

∆Erel(~x) = P (~x)RcircgFmF,yUm (~x) .

Note that we have to usemF,y here compared tomF,z in (3.11), as the system here is in eigenstates
to the F̂y angular momentum operator [29]. Therefore this effect resembles a magnetic field in
y-direction with

Blong (~x) =
Rcirc

µB
P (~x)Um (~x)

and

~Beff (~x) =
−→
B +Blong (~x)~ey. (3.14)

As this effect is strongly position dependent (Blong(~0) = 0, max(Blong) at x ≈ 0.9w0) and
the motion of an atom in the trap, every atom will pass areas of high field strength, while
moving in the trap. For the reason that the atoms’ initial conditions, to be precise, the posi-
tion and the velocity an atom has when it sends out a photon, are thermally distributed, ev-
ery single atom will have an individual state evolution. When compared to the state evolu-
tion for a magnetic field in y-direction, as given in sec. 3.1.1, one can see that the prepared
atomic state |ΨH〉 = i√

2
(|1,−1〉z − |1,+1〉z) will undergo Larmor precession, while the state

|ΨV 〉 = 1√
2

(|1,−1〉z + |1,+1〉z) remains unaffected. This effect cannot be compensated for, the
reason being that the state evolution of every atom is different and initial conditions of the atom
are individual and unknown. For a measurement averaged over many individual atomic state
evolutions, this results in a quickly decaying coherence for |ΨH〉, while |ΨV 〉 will stay coherent.
An additional feature is that the effective magnetic field is antisymmetric to the z-axis. If we
now consider atomic motion in the x-y-plane only, this motion is symmetric with respect to the
z-axis. Therefore, a phase acquired by the atomic state on one side of the z-axis during the first
half of its motional period, will be withdrawn during the second half of its motional period on the
other side of the z-axis, where the atom will acquire the same phase, but with the opposite sign.
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3. Coherence properties of the atomic spin-1 system

Figure 3.3.: Measured time evolution of the atomic states, while moving in the effective magnetic
field Blong along the y-direction created by the polarization effects of the ODT. At
a delay time t after photon emission, the atomic state is projected onto |ΨH〉. The
initially prepared atomic state |ΨH〉 (blue) dephases and rephases after one radial
oscillation in the trap, while |ΨV 〉 (red) is unaffected. [7]

Assuming a motion of the atom in the x-y-plane only is reasonable for short evolution times, as
the trapping frequency in the x-y-plane (radial trapping) is

Ωr =

√
2πzR
λ
· Ωz ≈ 10.01 · Ωz

much higher than the trapping along the z-axis for our experimental parameters (λ = 852 nm,
zR = 13.59 µm). This results in a rephasing of all |ΨH〉 atomic states after one complete oscil-
lation in radial direction, which means that |ΨH〉 will be coherent again after one oscillation in
radial direction for a measurement averaged over many atomic state evolutions. This behavior
can be seen in Fig. 3.3.
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4. Compensation of external magnetic
fields

This chapter will follow up on the effects described in the previous chapter, as they have to be
compensated in order to achieve high visibilities for atom-atom entanglement experiments over
long distances. Fig. 2.9 gives an overview of the timing in atom-atom entanglement experiments
performed over a distance of 400 m. As shown there, the delay time between photon emission
by the atom and atomic state readout is on the order of 10 µs. Within that delay time, the contrast
of atom-photon correlation should not reduce by more than 1.0% [7], which was crucial for the
test of Bell’s inequality [30]. In general, the visibility V of atom-atom entanglement including
all effects should be well above V > 2

2
√

2
≈ 0.707 in oder to violate Bell’s inequality. When

going to longer distances, as planned for the future, the delay time will increase and so will the
requirements for atomic state coherence. We set ourselves the goal to limit the allowed ambient
magnetic field to less than 1 mG for each trap. Sources that create magnetic field fluctuations
are plentiful. Sources worth mentioning is the underground line passing by the laboratory at a
distance of 60 m, as well as all devices containing magnetic parts and electronic components used
in the lab, especially the ion getter pump and power converters. These sources create an ambient
magnetic field ~Ba that fluctuates on all timescales relevant for the experiment. This chapter will
give an insight into the setup and the procedure how to compensate this ambient magnetic field.

4.1. Active magnetic field stabilization

In our experiment an active stabilization of the magnetic fields is used, meaning that we try to
generate a magnetic field ~Bcomp, that compensates the ambient magnetic field at the position of
the atom at all times

~Bcomp (~xat, t) = − ~Ba (~xat, t) .

For this task one needs an active feedback loop, able to generate and control ~Bcomp. It consists
of a magneto-resistive feedback sensor1, a PID-controller, a triple current source and three pairs
of compensation coils. The sensor monitors the magnetic field for all three spatial directions

1Honeywell HMC 1053
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4. Compensation of external magnetic fields
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(z)I
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(i)U control

external
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Figure 4.1.: Schematic drawing of the magnetic field compensation setup, with a pair of rect-
angular coils in Helmholtz configuration for each spatial direction to generate
~Bcomp = − ~Ba, compensating the ambient magnetic field. The internal sensor out-
put is compared to a reference, the current sent to the compensation coils is con-
trolled accordingly. Note that the internal magneto-resistive sensor is placed inside
the MOT coils, therefore it needs to be calibrated with respect to the more stable
external senor and U (i)

ref needs to be adjusted every few minutes which is performed
automatically by the experimental control software. Further implications of this are
described in sec. 4.3.
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4.1. Active magnetic field stabilization

Figure 4.2.: Experimental setup of the magnetic field compensation in lab 2. The atom is trapped
inside the vacuum glass cell, the internal sensor is located close to the glass cell
wall. The trap and the internal senor are both surrounded by the MOT coils. The
compensation coils enclose the whole arrangement, in order to generate a homoge-
neous field at the location of the atom. The external sensor is placed outside of the
compensation coils. [7]

(x, y, z) and generates a voltage signal for each spatial direction i ∈ {x, y, z} that depends
linearly on the magnetic field

U (i) = s(i) ·B(i) + U
(i)
offset (4.1)

with an offset voltage of U (i)
offset and a sensitivity s(i) which differs slightly for each spatial di-

rection, but is on the order of 1mV
mG

after a preamplifier. The measured sensitivities can be found
in [7]. This signal is sent to a PID-Controller that compares the signal to a predefined reference
voltage U (i)

ref . The response of the PID to a difference between signal and reference is contin-
uously calculated in optimized fashion taking proportional, integral and derivative terms into
account, hence its name. The response of the PID then adjusts control voltages U (i)

control for each
spatial direction for a triple current source that generates the currents needed for compensation.
For every spatial direction the current goes to a pair of rectangular coils operated approximately
in Helmholtz configuration and placed around the vacuum glass cell where the atomic trap is
located. The coils then generate a field such that U (i) =U

(i)
ref .

A schematic drawing of the setup and a picture of the real setup are presented in Fig. 4.1 and Fig.
4.2. These components form a feedback loop that is able to compensate a varying magnetic field
with fluctuations up to ∼ 200 Hz [29]. There are several limitations to this scheme, that will be
discussed in the following sections.
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4. Compensation of external magnetic fields

4.2. High frequency magnetic field fluctuations

As the speed of the feedback loop is limited to ∼ 200 Hz by the time constant of the integrator
of the PID in the feedback loop [29], all fluctuations with components at higher frequencies
will not be compensated. Every magnetic field fluctuation will influence the atomic state. Of
special interest for the experiment are those fluctuations, that happen on the same timescale as
the experiments (∼ 1 − 100 µs) and therefore will not average out over the time evolution of a
prepared atomic state. To estimate those fluctuations, the signals U (i) (t) of the feedback sensor
was measured with an oscilloscope at a temporal resolution of 40 µs, while the feedback loop
was active. This measured trace of sensor signal can be transformed into a trace of fluctuating
field magnetic field using (4.1). To analyze the deviations from the average field

∆B(i)(t) = B(i)(t)−B(i)

with B(i) the average of all measurements for each spatial direction, they were summed up in
normalized histograms (e.g. for the setup in lab 1 in Fig. 4.3). Shown there is also a fit of the
histograms to a normal distribution

%
(i)
HF

(
∆B(i)

)
=

1√
2π
(
σ

(i)
HF

)2
exp

−(∆B(i) − µ
)2

2
(
σ

(i)
HF

)2

 (4.2)

where µ is the asymmetry of the fluctuations and σ
(i)
HF is the standard deviation of the high-

frequency magnetic field fluctuations. The results for both labs are written down in table 4.1.
The asymmetry µ turned out to be negligible. A numerical Fourier analysis of the trace of
fluctuations revealed, that there are small contributions for almost all frequencies, with larger
contributions of the higher harmonics of the power-line frequency (50 Hz).

4.3. Stability of the magnetic feedback sensor

Another limitation to the performance for short-term (’shot-to-shot’) stability and long-term sta-
bility (hours timescale) of the magnetic field compensation is the type of magnetic field sensor
used for the feedback loop and its position inside the volume enclosed by the MOT coils (see
Fig 4.1 and 4.2). The feedback sensor is a three-axis sensor, for each spatial direction there is a
Wheatstone bridge with embedded magneto-resistive elements. These cause a voltage imbalance
at the bridge, if a magnetic field is applied. After amplification of the initial signal, sensitivities
on the order of 1mV

mG
are achieved. Advantages of this sensor are its compact design, allowing for

placement close to the atomic trap, its high sensitivity and its high rate of measurements. The
major disadvantage is that the magneto resistive elements in the sensor need a certain magnetic
polarization for their function. This magnetization can be changed by applying strong magnetic
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4.3. Stability of the magnetic feedback sensor
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(a) Field fluctuations in x-direction.
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(b) Field fluctuations in y-direction.
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(c) Field fluctuations in z-direction.

Figure 4.3.: Remaining magnetic field fluctuations up to f ≤ 12.5 kHz with active magnetic field
stabilization in lab 1. Displayed is the probability density in

[
1
mG

]
for magnetic field

fluctuations in respective spatial directions. The fit is done according to a normal
distribution as given in (4.2).
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4. Compensation of external magnetic fields

fields. Such high fields are created by the MOT coils, when they are switched on for loading an
atom into the trap (see sec.2.3). The feedback sensor is then exposed to fields of 26.25 G (lab 1)
and 40.92 G (lab 2) [7] respectively, which clearly saturate the sensor and change its magneti-
zation. Therefore a sensor reset is set up, consisting of two current pulses in opposite directions
sent through coil straps, that are directly integrated into the sensor, in order to restore the original
magnetization of the sensitive areas [29]. This sensor reset is performed every time after an atom
is loaded into the trap and it is not perfect, i.e. that U (i)

offset from (4.1) can change slightly after a
reset. For that reason the magnetic field that the feedback loop stabilizes on for the subsequent
event of atom-photon entanglement changes by

∆B
(i)
SR =

∆U
(i)
offset

s(i)
.

These so called sensor reset jumps were experimentally recorded and quantified by a measure-
ment where the value of the feedback sensor was compared to an additional external sensor2

(see Fig. 4.1 and Fig. 4.2), that is positioned outside of the MOT coils and compensation coils
and is used as a stable reference. The external sensor is a fluxgate-type sensor with a certified,
long-term stable sensitivity of 10mV

mG
, but it is to big to be positioned close to the atom inside of

the current compensation coils, as necessary for the feedback loop. For measuring ∆B
(i)
SR, the

two sensors were initially compared, then the MOT coils were switched on for several seconds.
After switching off the MOT coils and resetting the internal sensor as described above, the two
sensors were compared again. When now comparing the difference between both sensors before
and after MOT on/off switching and sensor reset, the remaining difference is the sensor reset
jump

∆B
(i)
SR =

(
B

(i)
int,before −B

(i)
ext,before

)
−
(
B

(i)
int,after −B

(i)
ext,after

)
.

To quantify these reset jumps, about 2000 reset cycles were recorded and summed up in normal-
ized histograms (see Fig. 4.4). They were fitted to a normal distribution

%
(i)
SR

(
∆B

(i)
SR

)
=

1√
2π
(
σ

(i)
SR

)2
exp

−
(

∆B
(i)
SR − µ

)2

2
(
σ

(i)
SR

)2

 (4.3)

where σ(i)
SR is the standard deviation of the distribution (results for both labs see table 4.1) and µ

is the average value of the sensor reset jumps. As µ 6= 0 for this measurement, this indicates that
the sensor reset jumps do not only change the magnetic field shot-to-shot, but they also induce a
drift of the feedback sensor. Given that the drifts are on the order of 1 to 5 mG per hour [7], they
have to be compensated as well. As the external fluxgate sensor is much more stable, it is used
to calibrate the feedback sensor every few minutes.

2Bartington Mag-03MS100
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4.3. Stability of the magnetic feedback sensor
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(a) Sensor jumps in x-direction.
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(b) Sensor jumps in y-direction.
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(c) Sensor jumps in z-direction.

Figure 4.4.: Sensor reset jumps after MOT on/off switching and sensor reset in lab 2. These
jumps occur every time after a new atom is loaded into the trap (i.e. the MOT coils
were switched on) and the sensor is subsequently reset.

lab 1 σ
(i)
HF [mG] σ

(i)
SR [mG] σ

(i)
IH [mG]

x 0.31 0.80 0.02
y 0.26 0.25 0.19
z 0.46 0.20 0.08

lab 2 σ
(i)
HF [mG] σ

(i)
SR [mG]

x 0.63 0.17
y 0.30 0.18
z 0.55 0.16

Table 4.1.: Magnetic field fluctuations at the ’shot-to shot’ timescale. σ(i)
HF and σ(i)

SR are the stan-
dard deviations of the normal distributions as given in (4.2) and (4.3). The effect of
the inhomogeneity of the compensation field is characterized by σ(i)

IH from (4.4).
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4. Compensation of external magnetic fields

4.4. Inhomogeneity of the compensation field

Another limitation to the achievable stability of magnetic fields for the atom is, that it is impos-
sible to measure the magnetic field directly at the position of the atom. Therefore an additional
requirement for the feedback loop to work well is, that the ambient magnetic field is the same at
the position of the atom and the position of the feedback sensor

~Ba (~xat, t)
!

= ~Ba (~xsens, t)

As [29] states, gradients of the ambient field can be neglected, as the distance between the atom
and the feedback sensor (25 mm) is small, compared to all sources of fluctuating magnetic fields
(e.g. power converters of lab electronics). Sources that have a constant magnetic field, such as the
ion-getter pump, do not limit the stability, as they can be compensated for by initial calibration.
Another requirement is, that the compensation field should also be homogeneous

~Bcomp (~xat, t)
!

= ~Bcomp (~xsens, t) .

Here the geometry of the compensation coils is critical. For the compensation coils used in the
experiment (e.g. in lab 1: inner diameter lx = 19 cm, ly = 22 cm, lz = 22 cm with windings
Nx = 203, Ny = Nz = 250), the field shows small gradients between the position of the atom
(origin, ~xat = ~0) and the position of the sensor (lab 1: ~xsens = (−1, 18.5, −14) mm). If we now
assume, that the magnetic field is compensated perfectly at the position of the feedback sensor
(within the bandwidth of the compensation loop∼ 200 Hz), we can estimate what the residual
magnetic field fluctuations at the position of the atom are. Therefore a trace of magnetic field
fluctuations was recorded, while the compensation was switched off. Then with the help of the
Biot-Savart law, we could numerically calculate which currents ~Icomp would be sent through the
compensation coils to compensate the ambient field such that

~Ba (~xat, t) = − ~Bcomp (~xsens, t) .

Then a simulation of the compensation coil setup yields the field at the position of the atom for
~Icomp. The residual fluctuations due to inhomogeneity of the compensation field then are

∆B
(i)
IH = ~Ba (~xat, t)− ~Bcomp

(
~Icomp, ~xat, t

)
.

These fluctuations are shown in Fig. 4.5 for lab 1 as a normalized histogram. Additional fits to a
normal distribution

%
(i)
IH

(
∆B

(i)
IH

)
=

1√
2π
(
σ

(i)
IH

)2
exp

−
(

∆B
(i)
IH − µ

)2

2
(
σ

(i)
IH

)2

 (4.4)

quantify these fluctuations, with results given in table 4.1. This effect is small compared to those
described in sec. 4.2 and 4.3.
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4.4. Inhomogeneity of the compensation field
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(a) Residual field fluctuations in x-direction.
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(b) Residual field fluctuations in y-direction.
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(c) Residual field fluctuations in z-direction.

Figure 4.5.: Residual field fluctuations at the position of the atom due to inhomogeneities of
the compensation field. Note that the fluctuations along the x-direction are much
smaller compared to the other directions, because the feedback sensor is very close
to the atom in x-direction.
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4. Compensation of external magnetic fields

4.5. Summary

This chapter described how ambient magnetic fields causing a time evolution of the prepared
atomic states are compensated. The compensation can also compensate for initial elliptical po-
larization of the ODT leading to a effective magnetic field on the atom as described in sec. 3.2.
The active magnetic field stabilization can compensate static and fluctuating fields within its
feedback bandwidth. Its limitations are the long-term stability, as the internal sensor drifts when
exposed to strong magnetic fields. To counteract that drift the internal sensor is calibrated with
respect to a stable external sensor every few minutes. Furthermore, magnetic fields will fluctuate
for every single realization of a atomic state evolution due to field fluctuations that are outside of
the bandwidth of the feedback loop, imperfect internal sensor resets after loading an atom and
inhomogeneities of the compensation field between internal sensor and the atom trap. In table
4.1 we can see that the ’shot-to-shot’ fluctuations due to inhomogeneities of the compensation
field are smaller than those of the other effects.

Outlook

This analysis allows to think of an improvement of the ’shot-to-shot’ stability of magnetic fields
by replacing the small magneto-resistive sensor used for the feedback loop. As the effect of
inhomogeneities of the compensation is small compared to other effects influencing the ’shot-
to-shot’ stability, it allows for larger distances between the position of the atom trap and the
feedback sensor used for the compensation loop. When additionally implementing a revision
of the compensation coils such that they enclose the whole experimental housing, the gradients
of the compensation field are further reduced. Simulations showed that the distance between
atom trap and feedback sensor can then be increased to d ≈ 25 cm (compared to d = 2.5 cm
at the moment) while maintaining the same level of fluctuations due to inhomogeneities of the
compensation field as there are right now. This allows for the use of the more stable but larger
fluxgate-type sensor instead of the magneto-resistive sensor as the feedback sensor for magnetic
field compensation. That would eliminate the shot-to-shot’ fluctuations due to the imperfect reset
of the magneto resistive sensor described in sec. 4.3 and drifts of the magneto-resistive sensor
itself.
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5. Analysis of measured atomic state
evolution using numerical
simulations

In this chapter I describe a way how to gauge the active magnetic field compensation system
that was described in Chapter 4. For optimal coherence of the atomic state, the effective mag-
netic field affecting the atom should be ~Beff (~xat) = ~0, where ~Beff (~x) is defined as in (3.13) and
~Beff (~x) is composed of the actual magnetic field and the Zeeman state dependent AC-Stark shift.
To achieve optimal state coherence, we can unfortunately not use a strong magnetic guiding field
for this specific experiment, as a strong guiding field along the z-direction does not work [7],
whereas a strong guiding field along the y-direction could create state coherence up to a few ms
for some state[29], with the trade-off, that the prepared atomic state mixes with other states very
rapidly reducing the visibility of atom-atom entangled states to around 70%[29], which is not
sufficient to violate Bell’s inequality in this experiment.
The experimental challenge is to find a set reference voltages U (i)

ref of the active magnetic feed-
back loop (see Fig. 4.1), such that the loop stabilizes the magnetic field (within its limitations)
to ~Beff (~xat) = ~0. To determine ~Beff (~xat) the most direct and only possible way is to experi-
mentally measure the evolution of atomic states by reading out the state population after a time
delay. Such measurements are time consuming (on the order of 2 hours) as each measurement is
performed on a single atom and has to be repeated many times . Such a measurement has to be
performed up to twice a day, as parameters influencing ~Beff (~xat) are:

• Temperature-dependent birefringence of optical components between ODT coupler and
the position of the atom, which influences the ODT polarization

• mechanical instability of the polarizer of ODT before the microscope objective, causing a
change of polarization of the ODT

• drifts of the magnetic field compensation (see sec. 4.3).

Especially for the ODT polarization, a slightly elliptical polarization of P = 0.01 (from(3.8)),
will result in a effective magnetic field of 257 mG at the trap center (from (3.13)) influencing
the coherence of atomic states, which makes frequent calibration by experimentally measuring
the evolution of atomic states indispensable. To analyze such measurements and draw the cor-
rect conclusions, in-depth knowledge of the experiment is crucial and the calibration process
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5. Analysis of measured atomic state evolution using numerical simulations

is time consuming for the people working at the experiment. For those reasons a faster, yet
precise method to calibrate the magnetic field compensation, that in future might even operate
autonomously, is desirable.
The idea is to use a simulation of atomic state evolution for a given set of parameters, which
yields a possible result of real measurement with these parameter, including the effective mag-
netic field. A dataset of such simulations for different effective magnetic fields can then be used
to fit a actual measurement, in order to find out the ~Beff (~xat) at the instance a measurement was
taken. In the following, I will outline the way the simulation of atomic state evolutions works
and list the important parameters going into this simulation. After that, I will explain what kind
of measurement needs to be taken and how a ~Beff (~xat) can be extracted.

5.1. Simulation of the evolution of atomic states

For a Monte-Carlo-type simulation of the evolution of atomic states, we need to recreate the
experimental situation with all known parameters and effects. The parameters that have to be
taken into account are:

• the initially prepared atomic state, which will be |ΨV 〉 and |ΨH〉 as defined in section 3.1.1

• the trap geometry (Gaussian beam) that determines the range motion of the atom. The char-
acteristic parameter is the waist of the dipole trap beam in the focal plane. The Rayleigh-
length can be calculated from the waist with (2.4). Both could be obtained experimentally
by knife-edge measurements [24]. An asymmetry of the trapping potential mentioned in
[7] could not be observed whilst this work was performed, therefore it will be neglected.

• the trap depth U0 that is proportional to the intensity of the dipole trap laser beam and
determines the trapping frequencies Ωr and Ωz. Thereby it also determines the frequency
of dephasing and rephasing of the atomic state due to the effects described in sec. 3.3

• the (local) ellipticity of polarization of the ODT beam leading to state evolutions caused
by the AC Stark effect as described in Chap. 3. It can be characterized by the maximal
effective magnetic field Bcirc,max, which is at the focal spot, coming from this effect (see
(3.12))

• the temperature T of the atoms, which determines the thermal distribution used to deter-
mine initial positions and velocities in the trap as mentioned above

• the static magnetic field ~B applied during the whole measurement, which is equal for all
simulated trajectories

• fluctuations ∆ ~B of the magnetic field, that are individual to every single state evolution
(see sec. 4.2, 4.3 and 4.4)
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5.1. Simulation of the evolution of atomic states

• the dark state |ΨD〉 of the atomic state readout after state evolution, which will be either
|ΨD〉 = |ΨV 〉 or |ΨD〉 = |ΨH〉

• the fidelity of the atomic state readout as described in 2.6 for measurements without a time
delay/atomic state evolution.

The values of those parameters used for the simulation are listed in table 5.1 for the experimental
setups in both labs.
The simulation than follows the steps that are performed in the experiment and simulates single
atomic state evolutions. As there are position-dependent effects affecting the atomic state, we
have to take into account the mechanical motion of the atom in the trap. Therefore the simulation
starts with the initial conditions of the experiment, meaning the initially prepared atomic states,
the starting position and starting velocity according to the thermal distribution and the magnetic
field fluctuations. Finally an average over the single evolutions is performed. How to determine
the starting conditions will be discussed in the following.

5.1.1. Mechanical motion of atoms in the trap

Here I follow a description given in [7]. The mechanical trajectory of the atom is treated in
classical fashion, as a massive particle a Gaussian potential created by the ODT. In order to
simulate a measurement, the trajectories of many atoms (typically 10000) have to be simulated
with differing initial conditions. The initial conditions are both the position and velocity of
the atom when it emits the single photon, the atom is entangled with. These initial conditions
are calculated by assuming a three-dimensional harmonic oscillator as trapping potential, which
creates negligible inaccuracies. Additionally the ambient magnetic field is a initial condition, as
it differs slightly for every single atomic state evolution. The initial position of the atom in a
harmonic oscillator are independent for each spatial direction and can be written as

x0 = Ax sin (ϕx)

y0 = Ay sin (ϕy)

z0 = Az sin (ϕz)

where ϕi (i ∈ {x, y, z}) is a uniformly distributed random phase and Ai is a random amplitude
of the harmonic oscillator, depending on the energy E as

E =
1

2
mRbω

2
iA

2 (5.1)

with mRb the atomic mass of 87Rb and ωi the the trap frequency along a given axis. The energy
E is distributed according to a one dimensional Boltzmann distribution

% (E) =
1

kBT
exp

(
− E

kBT

)
(5.2)

51



5. Analysis of measured atomic state evolution using numerical simulations

with kB the Boltzmann constant and T the atomic temperature. Note that it is not a temperature
in a macroscopic sense, as it is a single particle in the trap, but the ensemble of subsequent
atoms will behave according to the thermal Boltzmann distribution. In order efficiently sample
large number of Ai, we express them depending on a uniformly distributed random number
rand ∈ [0, 1]. With the cumulative distribution of (5.2) being

F (E) =
1

kBT

∫ E

0

dE ′ exp

(
− E ′

kBT

)
= 1− exp

(
− E

kBT

)
(5.3)

and F (E) ∈ [0, 1], we can invert (5.3) to E = F−1 (rand) and insert (5.1) leading to

Ai =

√
− 2kBT

mRbω2
i

ln (1− rand).

With the radial symmetry of the trapping potential from sec. 2.3.1 (2.6), the trapping frequencies
are

ωx = ωy = Ωr

ωz = Ωz.

Accordingly, the initial velocities expressed by

vx,0 = AxΩr cos (ϕx)

vy,0 = AyΩr cos (ϕy)

vz,0 = AzΩz cos (ϕz) .

5.1.2. Magnetic field fluctuations

Additionally to the mechanical starting conditions, the magnetic field also has fluctuations spe-
cific for each state evolution. The ambient magnetic field ~B, that the atom is exposed to during
state evolution, is assumed to be constant during the time of a single state evolution. Instead
we treat the fluctuations ∆Bi described in sec. 4.2 to 4.4 as ’shot-to-shot’ fluctuations, giv-
ing a slightly different magnetic field for every single state evolution. All external fluctuations
are assumed to normally distributed and independent from one another. For that reason we can
combine them to one Gaussian distribution for each spatial direction given by

%i (∆Bi) =
1√

2πσ2
B,i

exp

(
−(∆Bi)

2

2σ2
B,i

)
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5.1. Simulation of the evolution of atomic states

with a standard deviation

σB,i =

√(
σ

(i)
HF

)2

+
(
σ

(i)
SR

)2

+
(
σ

(i)
IH

)2

as given in (4.2), (4.3) and (4.4) with experimental values noted in table 4.1. To numerically sam-
ple a Gaussian distribution efficiently, we can use the Box-Muller method [5]. It uses two uni-
formly distributed random numbers {u1, u2} ∈ [−1, 1], that can be generated by uj = 2·rand−1
(j ∈ {1, 2}). They have to be inside of a unit circle with radius

r =
√
u2

1 + u2
2 ≤ 1.

Then the shot-to-shot magnetic field fluctuations

∆Bi = σB,i · uj

√
−2 ln (r)

r

are Gaussian distributed.

5.1.3. State simulation after initialization

The mechanical trajectory of a single atom is calculated as a classical massive particle in a
Gaussian potential up to a final evolution time tfin (typically up to tfin = 100 µs ) with discrete
timesteps ∆t (typically ∆t = 100 ns ). For each time step, the change of the atomic states is
calculated. At a certain position ~x, the atom is affected by a effective magnetic ~Beff (~x), that
contains contributions of the ambient magnetic field ~B, of the initial elliptical polarization of the
ODT and effects of elliptical polarization due to focusing of the ODT as

~Beff (~x) =
−→
B +

1

µB
PRcircUm (~x)~ez +Blong (~x)~ey

summarizes all effects on the atom as explained in Chapter 3. The program evaluates projections
of the atomic state onto the dark state of the atomic state readout (typically |ΨD〉 = |ΨV 〉 or
|ΨD〉 = |ΨH〉) and averages over all trajectories giving a state population of the chosen dark state
at any delay time t up to tfin. This gives a result that can be compared directly to experimental
measurements of the atomic state with a variable time delay. An example of such simulations
for the parameters of lab 1 and lab 2 for a vanishing static magnetic field ~B = 0 is presented
in fig 5.1. A single run of such a simulation with 10000 simulated atomic state evolutions and
a timestep ∆t = 100 ns up to the maximal delay time tfin = 100 µs takes 2-3 minutes on a
mid-range office PC.
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5. Analysis of measured atomic state evolution using numerical simulations

0 20 40 60 80 100
delay time [µs]

0.0

0.2

0.4

0.6

0.8

1.0

st
at

e 
po

pu
la

tio
n 

|
V

initial | V

initial | H

(a) Lab 1. For readout: |ΨD〉 = |ΨV 〉
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(b) Lab 1. For readout: |ΨD〉 = |ΨH〉
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(c) Lab 2. For readout: |ΨD〉 = |ΨV 〉
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(d) Lab 2. For readout: |ΨD〉 = |ΨH〉

Figure 5.1.: Simulated atomic state evolutions for both labs with parameters as given in table 5.1
and a static magnetic field ~B = 0. Only when projecting onto |ΨD〉 = |ΨH〉 after
a certain time delay, the effective magnetic field in y-direction caused by the oscil-
lation of the atom in the tightly-focused ODT is recognizable. Note that the lower
trap depth of lab 2 compared to lab 1 leads to slower dephasing and rephasing in lab
2. The difference was chosen a way, that for atom-atom entanglement experiments,
we could measure in both traps with maximal possible contrast (i.e. at a rephasing
point), when we take into account the time delays due to signal propagation from lab
1 to lab 2.
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5.1. Simulation of the evolution of atomic states

parameter lab 1 lab 2

trap depth U0 kB · 2.98 mK kB · 1.80 mK

waist w0 1.9 µm 1.9 µm

atomic temperature T 30 µK 30 µK

elliptical polarization B(∗)
circ,max 0.035 mG 0.035 mG

magnetic field fluctuations σB,x 0.86 mG 0.65 mG

magnetic field fluctuations σB,y 0.41 mG 0.35 mG

magnetic field fluctuations σB,z 0.51 mG 0.57 mG

Table 5.1.: Parameters of the setups in lab 1 and lab 2 used for simulation of atomic state evo-
lutions as described in sec. 5.1. (∗)The elliptical polarization is set to (nearly) 0 by
assumption. This not the case in the experimental setup, for fits this effect will con-
tribute to the magnetic field ~B.

5.1.4. Determining atomic temperature

The atomic temperature (or thermal energy of the atoms) is an important parameter in the context
of the dynamics in the trap. It determines the width of the initial position distribution and the
initial velocity distribution of subsequently trapped atoms as given in (5.3). Thereby the tem-
perature determines how far the atoms will enter into regions of high effective magnetic field in
y-direction arising from focusing the ODT while oscillating in the trap and thereby the dephas-
ing and rephasing effects described in sec. 3.3. For hotter atoms, this means that they will reach
higher field areas (compare fig. 3.2), meaning that they Larmor precession is faster, which would
lead to steeper incline to the peaks in fig 5.2. Additionally, hotter atoms will statistically move
more far along the z-axis, which leads to a degradation of the rephasing, as acquired phases on
the left-hand side of the y-z-plane, do cancel each other out less perfectly.
With the means of the simulation of atomic states’ evolution, we can simulate measurements
for different atomic temperatures and compare those to actual measurements of atomic state
populations at time delays around a rephasing point, which lets us determine the actual atomic
temperature. Such measurements and simulations for lab 1 and lab 2 are shown in fig. 5.2. For
the experimental measurement the static magnetic field was optimized to be as close to ~B = 0 as
possible, in order to reduce the influence of state evolution due to Larmor precession to a mini-
mum. From comparing measurements and simulation, we can determine the atomic temperature
in both labs to be T = 30± 3 µK. For the simulation we used the parameters listed in table 5.1.
The effect of initial elliptical polarization of the ODT (see sec. 3.2) influences the atomic state
evolution temperature-dependently due to the temperature-dependent motion of the atom in the
effective magnetic field created by this effect. For the analysis performed here it was neglected
by asumption, as its parameter entering the simulation Bcirc,max was set to Bcirc,max = 35 µG.
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Figure 5.2.: Measurement of atomic temperatures in lab 1 (a) and lab 2 (b). In grey are simu-
lations of temperatures from 20 µK (top) to 55 µK (bottom) in steps of 5 µK. The
blue line corresponds to simulation for a temperature of 30 µK, which fits best to the
measurements in both labs.

5.2. Analysis of atomic state measurements

With the simulation at hand that can predict the atomic state evolution for a certain set of param-
eters to a good degree, even for delay times up to 100 µs, one can now fit actual measurement
data to the simulation in order the extract fitted parameters from the experiment. These extracted
parameters can then be used to further adjust the parameters in the experiment. Here I will ex-
plain, how such an optimization for the magnetic field ~B can be realized.
As explained above, a reasonable simulation of atomic state evolution takes several minutes.
This is too slow for a ’real-time’ fitting procedure. Nevertheless, we can use a set of precalcu-
lated state evolutions as a database for fitting. This implies several requirements and limitations
for the fitting procedure:

• Every parameter used in the simulation for a precalculated database (such as trap depth,
beam waist, fluctuations of magnetic fields, ...) has to be stable on timescales larger than
the time it takes to calculate the database and perform one or multiple fits of actual mea-
surements.

• Resulting from the first requirement, a new database has to be created, if a parameter
entering the simulation has changed.

• The precalculated database gives limits to ranges in which we can fit parameters, as these
ranges have to be known before database creation, to avoid to large databases.

For fitting magnetic fields ~B, these requirements can be met, especially as the magnetic field
drifts by several mG on a timescale of hours and days, whereas the other parameters entering the
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5.2. Analysis of atomic state measurements

simulation listed in table 5.1 are longterm stable, or they are intentionally kept constant (e.g. for
the trap depth U0: the power of the optical dipole trap beam is stabilized to a constant value).
For an interval of magnetic fields that should be fitted, we limit ourselves to the most common
use case, which is optimization of the magnetic field in intervals from 12 hours to three days.
The expected magnetic field for this timescale is within

Bx, By, Bz ∈ [−10, 10] mG (5.4)

Cases how such state evolutions can look like are given in fig. 5.1 for both labs and ~B = 0. An
example for ~B = 5 mG · ~ez and ~B = 5 mG · ~ey is presented in fig. 5.3.

5.2.1. Experimental measurement scheme and evaluation
procedure

To determine the complete magnetic field vector ~B = Bx~ex +By~ey +Bz~ez, we have to perform
experimental measurements in two orthogonal directions of the atomic state readout (e.g. |ΨD〉 =
|ΨV 〉 and |ΨD〉 = |ΨH〉), as atomic state evolutions for some fields will not be detectable if using
only one detection setting (compare to fig 5.3 and sec. 3.1.1).
Additionally the experimental measurement of atomic state evolutions is time consuming. The
event rate for atom-photon entanglement events mainly depends on the loading rate of the ODT.
The whole experimental procedure of pumping and exciting the atom and measuring the atomic
state is performed in a few ten ms, but as the atomic state measurement is performed by state-
selectively ionizing the atom, in 50% of the cases the atom is lost from the trap and a new atom
has to be loaded, which takes 1 to 2 seconds. Therefore the event rate for typical experimental
conditions is between 50 to 100 events per minute. This strongly limits the number of points and
the statistics for each point we can measure in a given experimental time. In the following, we
choose the atomic readout basis to be |ΨD〉 = |ΨV 〉 and |ΨD〉 = |ΨH〉 and measure in both basis
at delay times of

td ∈ [40, 50, 60, 70, 80, 90] µs. (5.5)

As we want to automate the task of evaluating an experimental measurement and finding ~B, I
here want to list the work flow and program logic briefly:

• After measuring experimental data according to the scheme mentioned above, the program
needs to read in the data and sort and convert it accordingly, in order to get state popula-
tions for delay times td as displayed in fig. 5.3, which allow a comparison to simulated
state populations. An important step is to determine the atom-in/atom-out threshold for
fluorescence detection within the atomic state readout (sec. 2.5) in an automated fashion,
which will be explained in sec.5.2.2.

• Then an initial guess for the fit parameters Bx, By, Bz has to be developed for the fitting
procedure to be able to start fitting (see sec. 5.2.3 )
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(a) ~B = 5 mG · ~ez , readout: |ΨD〉 = |ΨV 〉
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(b) ~B = 5 mG · ~ez , readout: |ΨD〉 = |ΨH〉
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(c) ~B = 5 mG · ~ey , readout: |ΨD〉 = |ΨV 〉
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(d) ~B = 5 mG · ~ey , readout: |ΨD〉 = |ΨH〉

Figure 5.3.: Simulated atomic state evolutions for magnetic fields (a)+(b): ~B = 5 mG · ~ez and
(c)+(d): ~B = 5 mG · ~ey. All state evolutions were calculated for parameters of lab
2 according to table 5.1. When comparing this to fig. 5.1, note that a magnetic
field in z-direction can be recognized in both analyzed states |ΨD〉 = |ΨV 〉 and
|ΨD〉 = |ΨH〉, while a magnetic field in y-direction can only be recognized in one
analyzed state |ΨD〉 = |ΨH〉 (and vice versa a field in x-direction only in analyzed
state |ΨD〉 = |ΨV 〉).
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5.2. Analysis of atomic state measurements

• Following that, the fit has to be performed by an algorithm. One very important part there
is the way the error function of the fit is defined and calculated (see 5.2.4)

• In the end the signs have to be determined by additional experimental measurements, as
it is not possible to uniquely determine the orientation of Bx, By, Bz in one measurement
(see sec. 5.2.5)

In the following, I will describe the methods used to fit the parameter ~B with the help of pre-
calculated state evolutions to an experimental measurement in greater detail, the performance of
this scheme is evaluated in sec. 5.3.

5.2.2. Atom-in/atom-out threshold

Since the atomic state readout scheme (sec. 2.5) is a Zeeman state-selective removal of the
atom from the trap, it is necessary to determine whether the atom is lost or still trapped after
the readout process. To do this, cooling and repump lasers are turned on for 65.5 ms[24]. The
detected photon counts during that time will indicate, whether the atom is lost (low background
counts) or if it is still trapped (high fluorescence counts). Thereby we can determine whether
an atom was ionized or not by setting a threshold for the number of photons counts c recorded
during the defined time window. An example how such a histogram looks like is given in fig. 5.4.
As we can see there the photon counts for ’atom in trap’ and ’no atom in trap’ are well described
by a Gaussian distribution. Therefore we can fit

f(c) = Cout · exp

(
−(c− µout)2

2σ2
out

)
+ Cin · exp

(
−(c− µin)2

2σ2
in

)
(5.6)

to the experimental data, where Cout and Cin are scaling factors, σout and σin are the standard
deviations and µout and µin are the offsets of the photon count distributions for ’no atom in trap’
and ’atom in trap’ respectively. In order to find the threshold of counts cthres between ’no atom
in trap’ and ’atom in trap’, we can calculate the minimum of (5.6) between its two maxima

cthres = min (f(c)) |µout < c < µin.

Therefore we can determine the threshold number of counts cthres in a automated way.
With the help of the fit we can also estimate the error that we introduce by setting a threshold.
Errors here would be events, where the atom is still in the trap, but the registered fluorescence
count for this event is below cthres, or vice versa a atom is expelled from the trap, but the event’s
fluorescence count is above cthres. This typically only happens, if there is additional stray light
collected by the collection optics (e.g. when reflexes of the cooling and repump light are col-
lected) and thereby additional photon counts are created. When assuming Gaussian distributions
with for both cases, a fit according to (5.6) gives the parameters to both distributions individually.
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(a) Histogram and fit.
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(b) Individual distributions and error estimation.

Figure 5.4.: (a): Histogram of photon counts during fluorescence detection, as part of the atomic
state readout and the fit according to (5.6) for a measurement in lab 1. The pho-
ton count threshold, to distinguish between ’no atom in trap’ and ’atom in trap’ is
cthres = 27. (b): zoom into the region around cthres of (a). The curves are expected
distributions of photon counts of ’no atom in trap’ and ’atom in trap’ with fitted pa-
rameters from (5.6). The shaded areas are the expected errors due to the setting of
the threshold.

We can therefore also estimate the errors ein and eout by integrating the tails of the individual
distributions crossing cthres as

ein =

∫ cthres

0

dc′Cin · exp

(
−(c′ − µin)2

2σ2
in

)

eout =

∫ ∞
cthres

dc′Cout · exp

(
−(c′ − µout)2

2σ2
out

)
and thus being recognized as the wrong event. A figure illustrating this can be found in fig.
5.4(b). The relative error then is

erel =
ein + eout
Ntot

where Ntot is the total number of recorded events during one measurement. If the relative error
erel > 1%, the program will raise an error and stop further calculations.

5.2.3. Start parameters for fitting

The next step before fitting is to take an initial guess of the fit parametersBx, By, Bz for the fitting
algorithm to start with a set of parameters, that is as close as possible to the actual ones in order
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5.2. Analysis of atomic state measurements

to increase the probability of a successful fit. With the experimental measurement procedure
described in sec. 5.2.1 and conversion of the measurement results into values commensurate
with simulated evolution of states, we have 24 measured values in total, that can be grouped in
four groups

dV V =
{
‖〈ΨV | ΨV (td)〉‖2}

dV H =
{
‖〈ΨV | ΨH (td)〉‖2}

dHV =
{
‖〈ΨH | ΨV (td)〉‖2}

dHH =
{
‖〈ΨH | ΨH (td)〉‖2} (5.7)

where each dij ∈ [0, 1] correspond to populations of the dark state of atomic state readout i and
initially prepared atomic state j, each measured at the 6 delays td as defined in (5.5). According
to (3.2), we can write a magnetic field as a magnitude B and normalized field components bx, by
and bz. We use this decomposition to estimate the magnitude and the orientation separately.
For the orientation of the magnetic field, we look at the state evolutions for different magnetic
fields as described in sec. 3.1.1 and shown in fig. 3.1 and 5.3. These show the Larmor precession
of initially prepared atomic states |ΨV 〉 and |ΨH〉 in respective magnetic fields, also depending
on the choice of the atomic state readout (|ΨD〉 = |ΨV 〉 or |ΨD〉 = |ΨH〉). By taking average
values of the dij we determine whether one magnetic field component is dominant compared to
the others. The decision table is noted in table 5.2.
The magnitude B can be estimated by determining the period of the Larmor precession. As the
Larmor frequency depends on the magnitude of the magnetic field as given in 3.3, the time it
takes for state inversion e.g. from |ΨV 〉 to |ΨH〉 with pure Bz-field (see (3.4)) is

T =
π~

2µBgFB
.

For that reason we search for the minimal delay time tmin, where either dV V or dHH have their
global minimum. We then set the initial magnitude of the magnetic field to

B =
π~

2µBgF tmin
.

With this procedure, we have found the start parameters Bx, By, Bz for fitting.

5.2.4. Fitting and error function

In order to fit the parameters Bx, By, Bz to an experimental measurement, we need three main
components. These components are

• a database of simulated evolutions of atomic states. The database incorporates the connec-
tion between atomic state populations and the fit parameters Bx, By, Bz.
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5. Analysis of measured atomic state evolution using numerical simulations

field scenario dV V dV H dHV dHH bx by bz

dominating bx < 0.75 < 0.25 < 0.25 > 0.75 2√
5

1√
10

1√
10

dominating by > 0.75 < 0.25 < 0.25 < 0.75 1√
10

2√
5

1√
10

dominating bz < 0.75 > 0.25 > 0.25 < 0.75 1√
10

1√
10

2√
5

equal fields non of the above 1√
3

1√
3

1√
3

Table 5.2.: Decision table for orientation of ~B as the start parameters for fitting. dij are the
averaged values of the experimentally measured dij . The threshold values of dij for
each field scenario were determined by heuristic observation.

• an error function, that calculates the residual difference between experimentally measured
state populations and simulated state populations for a certain magnetic field ~B and thereby
defines a measure for the goodness of the fit.

• an algorithm, that performs the fit, i.e. minimizes the error function. If the minimization
converges, the latest magnetic field ~B becomes the fitted magnetic field ~Bfit.

Database

For the database we use the simulation described in sec. 5.1, where we simulate 10000 single
evolutions of atomic states to the maximal delay time tfin = 100 µs with a timestep ∆t = 100 ns
and average the simulated measurement results. These parameters of the simulation have shown
an appropriate compromise between precision of the simulation and computation time. As the
magnetic field components Bx, By, Bz are free parameters for the fit, we perform a simulation as
mentioned above for every magnetic field configuration within Bx, By, Bz ∈ [−10, 10] mG with
a resolution of ∆Bi = 0.5 mG. The database can then provide simulated atomic state populations

sV V

(
~B, t
)

=

{∥∥∥〈ΨV | ΨV

(
~B, t
)〉∥∥∥2

}
sV H

(
~B, t
)

=

{∥∥∥〈ΨV | ΨH

(
~B, t
)〉∥∥∥2

}
sHV

(
~B, t
)

=

{∥∥∥〈ΨH | ΨV

(
~B, t
)〉∥∥∥2

}
sHH

(
~B, t
)

=

{∥∥∥〈ΨH | ΨH

(
~B, t
)〉∥∥∥2

}
(5.8)

where each sij ∈ [0, 1] corresponds to simulated populations of the dark state of atomic state
readout i and initially prepared atomic state j after evolution for time t ∈ [0, 100] µs in magnetic
field ~B, analogously to (5.7).
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5.2. Analysis of atomic state measurements

Error function

The error function has to give a measure to the residual difference between the experimental
measurement and simulated evolution of atomic states for a certain magnetic field ~B that should
be tested during the fit process. As the fit algorithm also works with gradients of the fit parame-
ters, the error function has to be smooth, as for the test of ~B the error function will be evaluated
four times, once directly at ~B and additionally at

~Bgr,i = ~B + δB · ~ei

where i ∈ {x, y, z} and δB is a small change of the magnetic field on the order of 10−3 mG.
Therefore the challenge now is to create a smooth error function, although the database is sam-
pled in discrete steps ∆Bi = 0.5 mG large compared to δB. We use means of linear interpolation
to fill the gap between the simulations of evolution of atomic states in the database. For any sim-
ulated state population sij( ~B, t) (from (5.8)) required during the calculation of the error function,
there are eight simulated state evolutions stored in the database, surrounding sij( ~B, t) in the ~B
parameter space with a maximal deviation ∆Bi = 0.25 mG. A three-dimensional linear interpo-
lation function is used to deduce sij( ~B, t) from the nearest simulated state evolutions stored in
the database.
The measure for the residual difference between measurement and simulation for a given ~B then
is

err
(
~B
)

=
∑
t

∑
i,j

∣∣∣dij (t)− sij
(
~B, t
)∣∣∣2 (5.9)

where t ∈ td are the time delays at which the experimental data was measured, dij(t) is the
measured state population (from (5.7)) and sij( ~B, t) is the simulated state population with i, j ∈
{H,V }.

Fitting algorithm

The fitting algorithm performs its task by starting with values for the magnetic field as deter-
mined in sec. 5.2.3 and then minimizing err( ~B), yielding in the end the fitted magnetic field
~Bfit. This algorithm also has to obey the boundary conditions set by the range of magnetic fields
contained in the database given in (5.4). A suitable algorithm for this is the ’trust region reflec-
tive’ (trf) algorithm [6]. It basically is like a Levenberg-Marquardt algorithm, where err( ~B) is
iteratively approximated by a quadratic hyperplane around the initial guess for ~B, then a linear
solver searches within this quadratic hyperplane for a minimum of err( ~B), which is then used
to update the estimate for ~B [21, 23]. The trf algorithm additionally implements boundaries and
estimates, that would exceed the boundaries, are instead reflected at the boundaries . On top of
that, the trf algorithm implements a trust region, in which it allows to estimate to change during
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(b) Data and fit. Readout: |ΨD〉 = |ΨH〉

Figure 5.5.: Example of measurement data and fit of magnetic fields for lab 2 according to proce-
dure described in sec. 5.2. The fitted magnetic field is ~Bfit = (0.12, 1.51, 6.99) mG.
(a): Displayed is experimentally measured data dV V (red crosses) and dV H (blue
crosses) and corresponding simulated state evolutions sV V ( ~Bfit) (red solid line) and
sV V ( ~Bfit) (blue solid line ). The readout direction is |ΨD〉 = |ΨV 〉.
(b): Experimentally measured data dHH (magenta crosses) and dHV (green crosses)
and corresponding simulated state evolutions sHH( ~Bfit) (magenta solid line) and
sHV ( ~Bfit) (green solid line ). The readout direction is |ΨD〉 = |ΨH〉.
All dij as defined in (5.7) and all sij as defined in (5.8).

one iteration. This trust region is reduced continuously, if the estimate of ~B gets closer to the
boundaries. This prevents the trf algorithm from getting stuck at the boundaries. In a nutshell the
trf algorithm is a fast and robust algorithm for the minimization of err( ~B) obeying the boundary
conditions, resulting in a fitted magnetic field ~Bfit.
A strong liability still are the starting parameters for the fit as estimated in sec. 5.2.3. If the
residual relative error after optimization

errrel =
err
(
~Bfit

)
ntd

where ntd is the number of time points, is larger than the a threshold of errrel > 5 · 10−3, it
has proven useful to start the optimization process all over again, with new starting parameters
Bx, By, Bz, now randomly distributed within the boundaries. This step can be repeated multiple
times, until errrel ≤ 5 · 10−3. An example of such a fit to experimentally measured data of lab 2
can be found in Fig. 5.5.

64



5.3. System performance

5.2.5. Determining the orientation of the magnetic field vector

To find the orientation of the fitted magnetic field vector ~Bfit is a challenging task on its own. We
therefore have to determine the signs of the components Bx, By and Bz. If all components are
contributing considerably to ~Bfit, there are differences of atomic state populations for different
parity of signs (’even (0 or 2) or uneven (1 or 3) number of minus signs within Bx, By, Bz’).
Different parity of signs will change the orientation of the vector of Larmor precession in a way,
that measurable state populations change, although the Larmor frequency ωL (from (3.3)) stays
the same. By performing a experimental measurement and evaluating the state populations as
described in sec. 5.2.1 and sec. 5.2.4, we will not be able to determine the orientation of ~Bfit

uniquely. Therefore, we take an iterative approach to finding out the orientation of ~Bfit. With
a ~Bfit from a fit as described above at hand, we start with the largest field contribution B

(i)
fit

(i ∈ {x, y, z}). If we now change B(i) at the experiment by a defined value in a certain direction

∆B(i) =
∆U

(i)
ref

s(i)

with U
(i)
ref the reference voltage of the magnetic feedback loop as described in sec. 4.1 and

the sensitivity of the feedback loop sensor as given in (4.1), we can look at the expected state
evolutions for both possible magnetic field configurations

~Bnew = ~Bfit ±∆B(i) · ~ei.

From the database used for fitting we can extract, what state evolutions we expect for setting
~Bnew. With that, we can determine the delay time and the setting of the state readout we have to
choose to be able to distinguish the best between both possibilities of ~Bnew. An image illustrating
this process can be found in Fig. 5.6. We then have to experimentally measure at the proposed
time delay whilst changing ∆U

(i)
ref by the defined amount in a certain direction. The measured

state population then determines the sign of B(i)
fit. This process then has to be repeated for the

remaining components B(i)
fit.

5.3. System performance

Sec. 5.2 described a way, how to measure and how to analyze a time-delayed atomic state popu-
lation measurement for finding out the magnetic field configuration. An interesting question now
is the performance of the analysis part, i.e. how precise is the analysis, meaning how accurate
can ~Bfit be extracted. The simulation of evolution of atomic states explained in sec. 5.1, presents
an optimal tool to test the analysis functionality with synthetic data. Synthetic data stands for
data, that was not taken by experimental measurement, but by simulation with (low) statistics as
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(a) Readout: |ΨD〉 = |ΨV 〉
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(b) Readout: |ΨD〉 = |ΨH〉

Figure 5.6.: State evolutions for ~Bfit = (1, 7, 3) mG (red) , ~Bnew,+ = ~Bfit+2 mG·~ey (green) and
~Bnew,− = ~Bfit−2 mG ·~ey. The delay time where to measure best for the direction of
By is at td = 73.8 µs with readout |ΨD〉 = |ΨH〉 as indicated by the vertical magenta
line. There the state population of initial state |ΨH〉 for ~Bnew,− and ~Bnew,+ differ the
most.

experimental measurement would yield. Another advantage of synthetic data, is the full knowl-
edge and control about all parameters entering the simulation, whereas in a real experiment, the
control over parameters is limited and some parameters are hard to determine. For the following
performance test, we will limit ourselves to three typical magnetic field configurations, as the
following analysis is heavy in computation. For magnetic field configurations we choose:

• equal fields in all spatial directions ~Binput = (5, 5, 5) mG

• a dominating field contribution in z-direction, with smaller contributions of other field
components ~Binput = (0.5, 1, 7) mG

• small contributions from all components ~Binput = (1, 1, 1) mG

A second advantage of the simulation is, that it simulates a measurement in exactly the same
steps, as the experimental setup would perform a measurement as well. The accuracy of a mea-
surement at the experimental setup is largely limited by the statistics we can accumulate in a
certain time. For atom-photon entanglement events, the current experimental rate is in the range
of 50 to 100 events per minute. Hence, a measurement as described in sec. 5.2.1, would take take
1 to 2 hours to acquire on average 250 events per datapoint. This gives a guideline on how to
to test the analysis functionality. We use the simulation of evolution of atomic states with event
numbers per datapoint of

nev = {100, 200, 400, 600, 800, 1000, 1200, 1400} (5.10)
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(c) Fit accuracy for ~Binput = (0.5, 1, 7) mG
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Figure 5.7.: (a): Histogram of fitted magnetic field valuesB(y)
fit in a field configuration of ~Binput =

(5, 5, 5) mG, where the statistics of the synthetic input were limited to nev = 100.
(b)+(c)+(d): Figure of merit σ(i)

fit,nev
as defined in (5.7) for limited statistics nev.

Note that in (c) the dominating field contribution in z-direction was detected very
precisely, while the smaller contributions had a large scatter compared to the field
configuration in (b) and (d).
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which are rather small compared to 10000 simulated events used for the creation of the database.
The simulation with those limited statistics is repeated multiple times, to simulate different exper-
imental realizations of the same kind, as the statistical distributions sampled in every simulation
run will sample different starting conditions, as if it were different experimental realizations.
Drawing from those simulated experimental realizations, we can generate synthetic data as in-
put of the analysis tool, that in principle should output the magnetic field, that was the input
in the simulation ( ~Bfit = ~Binput). This is in general not exactly the case, as the synthetic data
is simulated with very limited statistics, leading to fluctuations of the synthetic datapoints dij .
Therefore the fitted magnetic field ~Bfit will have a certain scatter. This scatter can be represented
in a normalized histogram (see Fig.5.7(a)). Gaussian distributions defined as

%(i)
nev

(
∆B

(i)
fit,nev

)
=

1√
2π
(
σ

(i)
fit,nev

)2
exp

−
(

∆B
(i)
fit,nev

− µ
)2

2
(
σ

(i)
fit,nev

)2

 (5.11)

where i ∈ {x, y, z} and nev as defined in (5.10), are fitted to the histograms. The standard
deviation σ(i)

fit,nev
of those fits is a good figure of merit for the analysis functionality working

under the constraint of data with very limited statistics. The dependence of σ(i)
fit,nev

on nev for
three different magnetic field configurations ~Binput as mentioned above is shown in Fig. 5.7.
This test yields a good estimation about the expected accuracy of the fitting procedure, when
dealing with limited statistics of a measurement. Yet this test will overestimate the fit accuracy,
as all parameters (list of parameters in sec. 5.1) chosen to simulate a synthetic measurement
are exactly the same as they are for the simulation of the database that is used for fitting. Such
accordance of all parameters will not be the case for a real experimental measurement.
Nonetheless are the results shown in Fig. 5.7 very promising. With the experimental event
rate being at 50 to 100 events per minute, a measurement time of 2 hours gives statistics of
250 ≤ nev ≤ 500, which should enable us to determine ~B up to deviations of ∆ ~B ≤ ±0.5 mG.
Tests with real experimental data need to be performed. One test is to gauge the magnetic fields
manually with the old procedure, then a measurement and fit executed as described in this chapter
should yield ~B = ~0 up to the expected accuracy of the procedure.

5.4. Summary

In conclusion this chapter shows a way how to efficiently optimize the magnetic fields in a single
atom experiment. The main components needed for this procedure are a precise simulation
of evolution of atomic states in an optical dipole trap including all relevant effects, an up-to-
date knowledge of the slowly-changing parameters of the experiment listed in table 5.1 and
a functionality analyzing the measurement as described above. Up-to-date knowledge of the
experimental parameters has to be obtained in separate measurements. Additional computational
power is needed to create the database for fitting. The analysis functionality is developed to a
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5.4. Summary

point, where it shows great promise to perform optimizations of the magnetic field to B ≤
±0.5 mG in less than 1.5 hours, although a final experimental proof is still pending.
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6. Conclusion and Outlook

This work describes a scheme to efficiently control the magnetic fields in experiments with sin-
gle trapped 87Rb atoms. This control is essential to ensure long term stability of magnetic fields
over days which is necessary to achieve a high coherence of atomic states in data sets collected
in long experimental runs.
The first part of the thesis describes in detail the effects leading to a time evolution of the atomic
quantum state. The atomic quantum state stored in Zeeman states of the atomic hyperfine ground
level is particularly influenced by external magnetic fields and the state-dependent AC-Stark shift
induced by the light of the optical dipole trap which both lead to a Larmor precession of the
atomic state. These two effects can be compensated by applying an additional magnetic field
that compensates them. As presented in this thesis, such compensation reduces the fluctuations
of the magnetic field down to a level of σ ~B ≈ 1 mG (standard deviation) on a ’shot-to-shot’
timescale (i.e. between single experiments), if the magnetic compensation setup is properly cal-
ibrated. This is sufficient to perform atom-atom entanglement experiments over a distance of
400 m like a test of Bell’s inequality closing all essential loopholes [30].
The second part discusses the calibration process of the magnetic field compensation. As exper-
imental parameters affecting state coherence (e.g. the polarization of the dipole trap beam) drift
on a hourly timescale, a calibration of the magnetic field compensation by efficiently measuring
atomic state evolutions and deducing all components of the magnetic field from the measurement
is indispensable. Therefore, a scheme is developed that performs such measurement analysis in
an automated way under the condition of limited experimental data available for an efficient
experimental implementation. It uses simulated state evolutions to fit measured atomic state evo-
lutions with the magnetic field as a fit parameter. This fit assisted scheme shows great promise
to calibrate the compensation setup to less than 0.5 mG of static magnetic field within 1.5 hours,
which is at least as precise and faster than a calibration that otherwise needs to be performed man-
ually by experienced experimentalists. Therefore it can be performed more frequently, leading to
an overall improved state coherence for long term experimental runs of atom-atom entanglement
experiments.

Outlook

The analysis functionality for measurements of atomic state evolution developed throughout this
work has to be tested thoroughly under experimental conditions. Therefore, the quality of cal-
ibration of the compensation setup has to be validated by comparing it to results which can be
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achieved manually. With proven correctness of the automated analysis functionality, the whole
procedure of calibrating the compensation setup can be automated even to the point where this
optimization is performed completely autonomously. Therefore, additional interfaces in the soft-
ware running and evaluating the experiment are necessary that allow for autonomous execution
and analysis of experiments. In that way, the calibration of magnetic fields can be performed
more efficiently without the need of supervision.
In addition, further improvements to increase the atomic state coherence have to be implemented
in order to be able to perform experiments over distances of up to 20 km as planned for the fu-
ture. Those can include further development of the feedback loop setup for the magnetic field
compensation by using a different sensor and larger compensation coils as discussed in sec. 4.5.
Furthermore, the magnetic field compensation setup could be upgraded by using a more sophisti-
cated feed-forward system that incorporates a detailed model of magnetic fields around the atom
trap and uses input from multiple sensors. Together with using other states of the 87Rb atom to
encode the qubit making the qubit less sensitive to magnetic fields, these improvements would
allow to increase the effective coherence time of the internal atomic states by several orders of
magnitude.
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A. Definition of coordinate system,
polarization and atomic states

This appendix will give a short overview about some definitions that are made to consistently
describe the coordinate system and reference frames for photonic polarization states and atomic
Zeeman states. These definitions apply for both traps in the same way. This is a shortened and
adapted version of the definitions given in the appendix of [26].
In this experiment a right-handed coordinate system is used. The origin of the coordinate system
is the focal spot of the optical dipole trap (ODT). The z-axis is defined by the optical axis of the
microscope objective, that creates the focus for the ODT and points from the origin towards the
microscope objective. The y-axis is pointing in vertical direction and the x-axis is parallel to the
optical table (horizontal plane).
The polarization of a photon is always defined with respect to the propagation direction of the
photon. As the z-axis is the quantization axis in this experiment due to the single photons emit-
ted by the atom being collected by the microscope objective (along the z-axis) all polarizations
states of light in the lab framework (|H〉, |V 〉, |+〉, |−〉, |R〉, |L〉) are given with respect to this
reference, e.g. horizontally polarized light |H〉 describes light polarized in the x-z-plane.
In the reference frame of the atom the polarization of a photon emitted by the atom with a quan-
tization axis Γ is defined as |σ+〉(right-hand rotating in direction of travel), if ∆mF,Γ = −1 or
|σ−〉 (left-hand rotating in direction of travel), if ∆mF,Γ = +1 or |π〉 (linear polarization parallel
to Γ ), if ∆mF,Γ = 0.
The atomic qubit states are |F = 1,mF = −1〉z (|↓〉z) and |F = 1,mF = +1〉z (|↑〉z) which
leads to the following relations, if we consider the above-mentioned definitions:

|↑〉x =
1√
2

(|↓〉z + |↑〉z)

|↓〉x =
i√
2

(|↓〉z − |↑〉z)

|↑〉y =
1√
2
ei
π
4 (|↓〉z − i |↑〉z)

|↓〉y =
1√
2
e−i

π
4 (|↓〉z + i |↑〉z) (A.1)
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