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Abstract

The technique of weak value amplification makes it possible to measure small
deflections of light precisely. So far, weak value amplification setups have mea-
sured deflections occurring in an interaction region inside the measurement device.
Here, we present an interferometric weak measurement setup able to measure dis-
placements and deflections of a light beam that occur outside of the measurement
device. This is achieved by spatially separating the arms of a Sagnac-like inter-
ferometer and inserting a Dove prism into one of them.

The Dove prism mirrors the initial deflection, introducing a relative angle and
offset between the two beams. The resulting interference depends on the initial
deflection. Amplified by the weak value of the system, this allows a highly sensitive
determination of the deflection and displacement.

We formulate a theoretical model of the experiment and compare its expected
performance with respect to noise with alternative measurement methods. Fur-
thermore, we describe an experimental realization we set up in a laboratory. We
describe and discuss difficulties we encountered during the implementation and
propose further improvements to the experimental setup.

We devise an algorithm to fit the model parameters to empirical data. When
applied to our preliminary laboratory results, we see that the calculated deflections
in the near and far field differ more than expected. We attribute this to the faulty
performance of a quarter-wave plate which we observed. Based on our experience,
we propose the next steps to proceed with the experimental realization.
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1. Introduction

In classical mechanics, systems are usually measured indirectly by looking at the
meter of a measurement device. The shift the meter displays correlates with a
change of the system. For example, a voltage is measured by connecting a battery
to a measurement device whose needle moves.

In quantum mechanics properties of systems are described by observables that
can be measured. In the early days of quantum mechanics it already became
clear that quantum systems can be measured similarly to classical systems. Von
Neumann presented a measurement scheme [1] where a quantum mechanical sys-
tem is coupled to a quantum mechanical measurement device. The change of the
quantum system manifests as a change of the quantum mechanical pointer state.

In those measurements, like direct measurements of a quantum observable, the
measurement results never exceed the minimal or maximal eigenvalue of the op-
erator representing the observable. As a new development, Aharonov, Albert and
Vaidman presented a measurement scheme [2] similar to the one of von Neumann,
however, where the pointer shift can now go beyond the bound set by the minimal
and maximal eigenvalue. This is achieved by carefully preparing the system to be
measured in an initial state and selecting into a particular final state. The cou-
pled preselected state of the system and the pointer are postselected with the final
state of the system, which means that only certain information of the system is
considered. Then, after the postselection, the pointer depends only on a quantity
called the “weak value” of the system, which can be much larger than the largest
eigenvalue.

By performing a postselection it is thus possible to amplify even small changes
of a quantum system [2]. The finding is harnessed in a method called “weak
value amplification”. In 1991 the first realization of such a measurement was
presented [3]. Since then, several experiments have made use of this technique, [4–
9], where small misalignments were introduced into an interferometer. Weak value
amplification allowed to measure the deflection in one arm of the interferometer
precisely by evaluating the change of the pointer encoded in the spatial mode of
the beam, i. e. the center of mass of the interfering beams.

In this work, an interferometric measurement is introduced, which allows to
determine small beam deflections. In contrast to all previous experiments, the
interaction region is not inside the interferometer but outside. This means that one
can detect deflections outside of the interferometer, which was not possible before.
In order to see a change of the interference pattern after the initial deflection, the
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1. Introduction

light beams in the different interferometer arms have to be displaced relative
to each other. It is achieved by spatially separating the arms of a Sagnac-like
interferometer and placing a Dove prism into one of the arms. The Dove prism
mirrors the initial deflection along its axis, deflecting the two beams relative to
each other. Hence, the initial deflection outside of the interferometer manifests in a
change of the center of mass of the interference. Postselection amplifies the pointer
shift, allowing a highly sensitive determination of the deflection parameters.

We formulate the theoretical model of this measurement technique and com-
pare it with respect to noise with alternative measurement methods that do not
employ the concept of weak value amplification. Furthermore, we describe an
experimental realization we set up in the quantum optics laboratory at the Max-
Planck-institute for Quantum Optics. We discuss difficulties that we encountered
during the realization. We were able to overcome several obstacles, such as the
faulty behavior of optical components. We propose solutions for the remaining
issues.

We devise an algorithm to fit the model parameters to empirical data, which
works for theoretical test data. When applied to our preliminary laboratory re-
sults, we see that the fitted deflections in the near and far field differ more than
expected. We attribute this to the faulty performance of a quarter-wave plate,
which we observed. Based on our experience, we propose the next steps for the
experimental realization.

The thesis is structured as follows: In Chapter 2 fundamental aspects of optics,
quantum mechanics, weak values and weak value amplification are described. In
Chapter 3 our experiment is modeled theoretically and compared to two alter-
native measurement methods with regard to signal-to-noise ratio and technical
noise. Chapter 4 describes the experimental setup, obstacles and solutions, the
fitting algorithm and the preliminary data.

2



2. Weak values and related
concepts

This chapter describes the theoretical fundamentals needed for the description and
the understanding of the experiment that is presented in this thesis. First, some
aspects of optics and key concepts of quantum mechanics, most importantly the
standard quantum mechanical measurement process, are briefly called to mind.
Next, the concept of pre- and postselected systems is discussed, in which the
framework of weak values can be best understood. This concept offers a useful
application, the so-called “weak value amplification”, which is essential for the
experiment.

2.1. Properties of light

Here, two concepts of optics that are exploited in this thesis are explained. This
summary is based on [10–13].

2.1.1. Polarization of light

Light is an electromagnetic wave. The equation describing light can be derived
from the Maxwell equations. For homogeneous media, without charge carriers or
currents it describes a plane wave propagating in direction ~k. It has the form

~E(~r, t) = ~E0 exp
[
i(ωt− ~k~r + ϕ)

]
. (2.1)

~E is the electric field vector, ~E0 is the amplitude of the field, ω is the angular
frequency and ϕ is a phase angle. ~k is the wave vector, which is perpendicular to
the wavefront. It has norm k = |~k| = 2π

λ
with λ being the wavelength of the light.

The intensity I of the electric field can be related to the field by

I(~r, t) ∝ | ~E(~r, t)|2 . (2.2)

If the electric wave vector ~E oscillates in one plane the light is said to be
polarized. There are three polarizations the light can have: linear, circular or

3



2. Weak values and related concepts

elliptical polarization. Assuming the wave propagates along the z-axis Eq. 2.1
can be simplified to

~E(z, t) =

 Exe
i(ωt−kz)

Eye
i(ωt−kz+ϕ)

0

 . (2.3)

We can see that this wave is a superposition of a wave oscillating in the x-z plane
and one in the y-z plane that has a phase difference ϕ to the first wave. This
phase difference influences the polarization of the light, as we will see now.

Linear polarization of light generally refers to light whose electric (and mag-
netic) field vector oscillates in one direction. The electric field vector of horizon-
tally polarized light lies horizontally in a chosen reference frame, while the electric
field vector of vertical light is perpendicular to this plane. Any other linear polar-
ization state can be described as as superposition of horizontal and vertical light
that are in phase, that is ϕ = 0.

In Fig. 2.1 linear light is depicted. The blue wave oscillates in the horizontal
plane and the red wave on the vertical plane. They are in phase. The green wave
is a superposition of the two waves, also having linear polarization, but oscillating
in a plane tilted relative to the horizontal and vertical plane.

Figure 2.1.: Light with linear polarization. The blue and red wave are horizon-
tal and vertical polarized light without phase difference. The green wave is the
superposition of the horizontal and vertical light, which is also linear polarized
light oscillating in a plane tilted with respect to the horizontal and vertical plane.
The electric field vector ~E oscillates in one direction.

The electric field vector of elliptical light changes its direction, describing an
ellipse in the plane perpendicular to the propagation direction of the light. Over
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2.1. Properties of light

one period the vector changes its length. Depending on the circulation direction
the light is called right-handed or left-handed. The light itself is a superposition
of horizontal and vertical polarized light that are not in phase, that is ϕ 6= 0. This
can be seen in Fig. 2.2. The horizontal and vertical wave are not in phase, which
results in the superposition evolving in a spiral, the green wave. The projection
of the spiral is an ellipse.

Figure 2.2.: Light with elliptical polarization. The blue and red wave are hor-
izontal and vertical polarized light with a phase difference. The green wave is
the superposition of the horizontal and vertical light, which is elliptical polarized
light. The electric field vector ~E oscillates in a plane that is perpendicular to
the propagation direction of the wave, describing an ellipse. During a period it
changes its length.

For phase differences of exactly ϕ = π
2

the electric field vector describes a circle,
hence one speaks of circular polarized light. During a period its length remains
constant. This is shown in Fig. 2.3. The horizontal and vertical wave have a phase
difference of π

2
, which results in the superposition evolving in a spiral, the green

wave. The projection of the spiral is a circle.

2.1.2. Gaussian beam

Light beams are often represented as straight lines or rays, whose intensity dis-
tribution has a finite radius. This is not the reality of light. In one possible
solution to the paraxial approximation of the Helmholtz equation, light evolves as
a so-called Gaussian beam. There, the intensity distribution follows a Gaussian
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2. Weak values and related concepts

Figure 2.3.: Light with circular polarization. The blue and red wave are hori-
zontal and vertical polarized light with a phase difference of π

2
. The green wave is

the superposition of the horizontal and vertical light, which is circular polarized
light. The electric field vector oscillates in a plane that is perpendicular to the
propagation direction of the wave, describing a circle. During a period its length
remains constant.

distribution. The light propagates along an axis initially as a plane wave, which
becomes curved with increased propagation distance.

Since laser light often has this form it is crucial to understand Gaussian beam
for both the experiment and the theory of this thesis.

The electric field of a Gaussian beam propagating in z-direction is expressed as

E(r, z) = E0
w0

w(z)
exp

(
− r2

w(z)2

)
exp

(
ikz + ik

r2

2R(z)
− iψ(z)

)
, (2.4)

where r is the radial distance from the propagation axis of the beam.
In this equation E(r, z) is the electric field with the amplitude E0. The intensity

is given by

I(r, z) ∝ |E(r, z)|2 ∝
( w0

w(z)

)2

exp

(
− 2r2

w(z)2

)
. (2.5)

Such a beam is depicted in Fig. 2.4 in propagation direction z. Since the electric
field, and therefore also the intensity, will never become zero, the width w(z) of
the beam is defined as the point where the electric field has decreased by 1/e
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2.1. Properties of light

r

z

w0 w(z)
R(z)

w0
zR

Figure 2.4.: A Gaussian beam propagating in z-direction. The thick solid line
indicates the line where the field intensity has decreased 1/e2 with respect to
the amplitude at the propagation axis. w(z) is the beam radius at position z,
w0 = w(z = 0) is the waist of the beam, zR is the Rayleigh length, R(z) the
radius of curvature and Θ is twice the divergence angle of the beam.

with respect to the amplitude at the propagation axis, or where the intensity has
decreased by 1/e2. The beam width is given by

w(z) = w0

√
1+
( z
zR

)2

. (2.6)

Clearly, the Gaussian beam width is the smallest at z = 0. At this position w(z)
is denoted by w0 and called the waist of the beam. zR is the so-called Rayleigh
length of the beam. At its position the beam width has increased by a factor

√
2,

hence w(zR) =
√

2w0. The Rayleigh length is expressed as

zR =
πw2

0

λ
. (2.7)

Here, λ is the wavelength of the beam. With very large z the beam width converges
towards an asymptote. The angle between the propagation axis and the asymptote
is called the divergence of the beam, defined as

tan(θdiv) ≈ θdiv =
w0

zR
=

λ

πw0

. (2.8)
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2. Weak values and related concepts

Sometimes the divergence angle is defined as the angle between the two asymptotes
of the upper and lower edge of the Gaussian beam, Θ = 2θdiv.

Eq. 2.4 is also dependent on the wave number k of the Gaussian beam and
of R(z). The parameter defines the radius of curvature the wavefront shows at
position z. It is given by

1

R(z)
=

z

z2 + z2
R

. (2.9)

The radius of the wavefront is therefore given by

R(z) = z
[
1 + (

zR
z

)2
]
. (2.10)

At the waist of the beam R(z = 0) = ∞, hence there the wavefront is plane.
At z = zR the wavefront curvature is the largest with 1/(2zR). For z → ∞ the
wavefront resembles the wavefront of a spherical wave with origin z = 0 [14].

The last term in Eq. 2.4 is the Gouy-phase

ψ(z) = arctan

(
z

zR

)
. (2.11)

over the whole length of the Gaussian beam the Gouy phase changes from −π/2
to π/2, with the biggest change happening around the focal area of the beam,
z = 0. [14]

2.2. Quantum mechanics in Hilbert spaces

Here, just a very short introduction to Quantum mechanics is given. For a much
more extensive description please refer to [15, 16], on which this chapter is also
based on.

States and operators A quantum state representing the physical state of a
quantum system can be written as a vector in a Hilbert space

|v〉 ∈ H . (2.12)

Here the Dirac notation (or bra-ket notation) is used. |v〉 is called ket. It can often
be represented as a column vector. Any arbitrary state |v〉 can be decomposed
into the eigenbasis of an operator Â,

|v〉 =
∑
i

ci |ai〉 where ci ∈ C . (2.13)

Here, |ai〉 are the eigenvectors of the operator Â with corresponding eigenvalues
ai. Quantum mechanical states are normalized, i.e. for the prefactors ci, the
so-called probability amplitudes, the following relation applies:∑

i

|ci|2 = 1 . (2.14)
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2.2. Quantum mechanics in Hilbert spaces

Observables For quantum states and operators one can find the hermitian trans-
pose. In general the relation

(Â |v〉)† = 〈v| Â† (2.15)

holds. 〈v| is dual to |v〉 and is called a bra. It can often be represented as a
row vector. If Â = Â†, the eigenvalues of the operator are real; it is then called
a hermitian operator. In quantum physics those operators represent observables,
that is measurable properties of physical systems like the position, the momentum
or the spin of the system. The information about the possible measurement results
is contained in the eigenvalues of the operator, hence it makes sense that they are
real.

Position and momentum operator, wave function One of those operators is
the position operator x̂. A state |v〉 can be expanded in the basis of the position
operator as

|v〉 =

∫
dx |x〉〈x| |v〉 . (2.16)

The inner product
〈x|v〉 := ψv(x) (2.17)

is called the wave function of the state |v〉 in position space. The wave function
for the momentum space can be found by Fourier transforming the wave function
of the position space.

Density matrix, pure and mixed states Another representation for a quantum
state is the density matrix ρ̂. For a so-called pure state |ψ〉 it is just

ρ̂ = |ψ〉〈ψ| . (2.18)

This matrix ρ̂ represents a quantum ensemble, where all physical systems can be
described by the state |ψ〉. Because this state is known, the density matrix does
not contain any new information about the ensemble. Now imagine an ensemble
where a fraction p1 is represented by a state |ψ1〉, while another fraction p2 is
represented by |ψ2〉. Such an ensemble is called mixed state. For a mixed state
the state vector is unknown and one can only use the density matrix to describe
the system. It has the form

ρ̂ =
∑
i

pi |ψi〉〈ψi| (2.19)

where
∑

i pi = 1.
A density matrix is always positive semi-definite, hermitian and it satisfies

Tr[ρ̂] = 1. For pure states Tr[ρ̂2] = 1 while for mixed states Tr[ρ̂2] < 1.

9



2. Weak values and related concepts

Product and entangled states Consider a quantum system A |ψ〉A in the
Hilbert space HA and a system B |ψ〉B in a Hilbert space HB. A composite
system |ψ〉AB is a state in both Hilbert spaces. This is denoted with the tensor
product:

|Ψ〉AB ∈ HA ⊗HB . (2.20)

Using the basis {|n〉A}
dA
n=1 of HA and basis {|m〉B}

dB
m=1 any composite state can

be written as

|Ψ〉 =

dA∑
n=1

dB∑
m=1

cn,m |n〉A ⊗ |m〉B . (2.21)

It is in general not possible to represent the composite system as a state

|Ψ〉AB = |ψA〉 ⊗ |ψB〉 , (2.22)

hence in general cn,m 6= cncm. If it is possible, |Ψ〉 is a product state. In this case
cn,m = cncm. A state which can be represented as a sum of product states

ρ̂AB =
∑
i

piρ̂
i
A ⊗ ρ̂iB (2.23)

is a mixture of product states, called a separable state. Any other state

ρ̂AB 6=
∑
i

piρ̂
i
A ⊗ ρ̂iB (2.24)

is an entangled state. Operators can also be a composite of two operators acting
on two Hilbert spaces,

Ô = ÔA ⊗ ÔB acting on HA ⊗HB . (2.25)

Here, ÔA acts on system A and ÔB acts on system B. Note that the above defi-
nitions can also be extended to compositions of n systems. [17]

Qubits, Pauli matrices and Bloch sphere For a two dimensional system, a
two-level system, one defines two basis states[

0
1

]
:= |0〉 ,

[
1
0

]
:= |1〉 . (2.26)

The linear combination of those, often called qubit,

|ψ〉 = cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉 (2.27)

can describe any state in this two dimensional system. Here, θ is a parameter
determining the probability amplitude of the state and ϕ is a phase. A basis for

10



2.2. Quantum mechanics in Hilbert spaces

operators acting on this state is {1, σ̂x, σ̂y, σ̂z}, the identity 1 and the three Pauli
matrices σ̂x, σ̂y, σ̂z. Their matrix form is

1 =

[
1 0
0 1

]
, σ̂x =

[
0 1
1 0

]
, σ̂y =

[
0 −i
i 0

]
and σ̂z =

[
1 0
0 −1

]
. (2.28)

The eigenvalues of the Pauli matrices are either +1 or –1. For different angles θ
and phases ϕ the qubit |ψ〉 can become the eigenvector for one of those matrices.
The eigenvectors (also called eigenstates) for the σ̂z matrix are just the states |0〉
and |1〉, corresponding to the eigenvalues +1 and –1.

For the other matrices we find:

EVσx+ := |+〉 =
1√
2

[
1
1

]
=

1√
2

(|0〉+ |1〉) (2.29)

EVσx− := |−〉 =
1√
2

[
1
−1

]
=

1√
2

(|0〉 − |1〉) (2.30)

EVσy+ := |+y〉 =
1√
2

[
1
i

]
=

1√
2

(|0〉+ i |1〉) (2.31)

EVσy− := |−y〉 =
1√
2

[
1
−i

]
=

1√
2

(|0〉 − i |1〉) (2.32)

A possible realization of such a two-level system is polarized light, which was
explained in Section 2.1. There, one defines linear light with horizontal polar-
ization as the first eigenstate of the Pauli-z-matrix, |0〉 := |H〉 and the second
eigenstate as linear light with vertical polarization, |1〉 := |V 〉.

The eigenstates of the Pauli-x-matrix are often called |P 〉 (“Plus”) and |M〉
(“Minus”) in quantum optics. Decomposed into the basis vectors |H〉 and |V 〉
they are written as

|P 〉 =
1√
2

(|H〉+ |V 〉) and |M〉 =
1√
2

(|H〉 − |V 〉) . (2.33)

This state describes linear polarized light which has an angle +45◦ or −45◦ to
horizontally polarized light.

Circular polarized light corresponds to the eigenvectors of the Pauli-y-matrix.
It is referred to as |R〉 for right-handed polarization and |L〉 for left-handed po-
larization. It can be written as

|R〉 =
1√
2

(|H〉+ i |V 〉) and |L〉 =
1√
2

(|H〉 − i |V 〉) . (2.34)

To understand better how those states look and how they behave one often
uses the Bloch sphere, see Fig. 2.5. In this sphere any qubit is represented as a
vector from the origin to the surface of the sphere. Any linear polarized light is

11



2. Weak values and related concepts

Figure 2.5.: A Bloch sphere. The red vector represents an arbitrary state |ψ〉 =
cos
(
θ
2

)
|H〉+eiϕ sin

(
θ
2

)
|V 〉, where |H〉 denotes horizontal polarization of light and

|V 〉 vertical polarization. θ is a parameter determining the probability amplitude
of the state and ϕ is a phase. The states |P 〉 and |M〉 represent light with plus
and minus polarization. |R〉 and |L〉 represent circular light. Any other vector on
the surface of the sphere represents elliptical light.

represented as a vector in the z-x plane of the coordinate system, while circular
light are the two vector along the y-axis of the sphere. Elliptical light is represented
by any other vector on the surface of the sphere.

For pure states the point that defines the end of the state vector always lies
on the surface of the sphere, whereas for mixed states this point lies inside the
sphere.

2.3. Von Neumann quantum mechanical
measurements

Just like classical systems, quantum systems can also be measured. A model for
such measurements was first introduced by John von Neumann [1]. However,

12



2.3. Von Neumann quantum mechanical measurements

the quantum mechanical measurement process has been subject to debates and
discussions since the first days of quantum mechanics [18, 19]. [16] and [20] provide
a good overview about quantum mechanical measurements and have been used
to for the following summary.

2.3.1. Projective measurements

Assume that we want to measure an observable Â of a state |ψ〉. The outcomes of
the measurement are the eigenvalues of the observable ai, and the state after the
measurement is the corresponding eigenvector |ai〉. It is clear that the minimal
measurement result is the minimal eigenvalue of Â, and the maximal measurement
result is the maximal eigenvalue.

In general a quantum mechanical operator Â can be represented as

Â =
∑
i

aiP̂i (2.35)

with P̂i being the projection operator on the subspace of eigenstates with eigen-
value ai [20]. The probability to find measurement result ai when performing a
measurement is given by

pi = Tr
[
P̂iρ̂
]
, (2.36)

which leaves the system in the state

ρ̂i =
P̂i ρ̂ P̂i

Tr
[
P̂i ρ̂

] (2.37)

after the measurement.
The expectation value of operator Â is given by

〈Â〉 = Tr
[
ρ̂Â
]

(2.38)

which is bounded by the minimal and maximal eigenvalue of Â.
It is important to note that the measurement does not leave the system in the

initial state but fundamentally alters the system. This reduction of the state
to one eigenstate of the system is under discussion since the very early times
of quantum mechanics. For standard quantum mechanics the change is purely
probabilistic and called the “collapse of the wave function”, as introduced by von
Neumann [1]. There exist several alternative theories. For example, the pilot
wave theory by de-Broglie and Bohm [21] describes actual particles governed by
a pilot wave. The position of the particle is a “hidden variable” that determines
the movement of the particles on trajectories [22, 23]. This way, the theory and
also the results of a measurement is deterministic.
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2. Weak values and related concepts

Another interpretation is the many-worlds interpretation of quantum mechanics
[24]. In this description a measurement branches the words: In one world one
measurement result is recorded, in another world the measurement has a different
outcome [19].

2.3.2. Indirect measurement

In classical experiments the system is often not measured directly but instead a
measurement device is used. The shift the meter displays correlates with a change
of the system. For example, a voltage is measured by connecting a battery to a
measurement device, whose needle moves. In quantum measurements one can do
the same: A quantum system is coupled to a measurement device which is read
out. This measurement scheme was originally presented by John von Neumann
[1].

In this scheme, it is assumed that at a time t = 0 the system and the mea-
surement device (which is called pointer) are in two uncorrelated pure states
|ψ〉 ∈ Hsystem and |Φ0〉 ∈ Hpointer living in different Hilbert spaces. After some
time the system and the pointer become correlated via a unitary transformation

Û = exp

−i ∫ t2

t1

dt g(t)︸ ︷︷ ︸
:=ε

Â⊗ B̂

 acting on Hsystem ⊗Hpointer . (2.39)

In this equation g(t)Â⊗ B̂ = Ĥ is the Hamiltonian of the interaction. Â acts on
the states in Hsystem and B̂ acts on the states in Hpointer. The factor ε specifies
the interaction strength, i.e. how much the system is coupled to the pointer, with
g(t) ∈ R being the coupling rate [20]. For convenience reasons we set here, and
in the rest of the thesis that ~ = 1. The coupling leads to the final state

|Ψf〉 = Û
[
|ψ〉 ⊗ |Φ0〉

]
∈ Hsystem ⊗Hpointer . (2.40)

Afterwards the pointer observable is measured and provides the information of
the system.
|Ψf〉 will get a simpler form if observable B̂ and its conjugate Ĉ is considered.

Then, using the spectral form of Â and the composition of |ψ〉 into eigenstates of
Â one finds

|Ψf〉 = exp
[
−iεÂ⊗ B̂

]∑
i

ci |ai〉 ⊗ |Φ0〉

=
∑
i

ci |ai〉 ⊗ exp
[
−iεaiB̂

]
|Φ0〉 . (2.41)
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2.3. Von Neumann quantum mechanical measurements

This result reveals that the interaction changes the system and performs a shift
e−iεaiB̂ on the pointer state. It also shows that the pointer state is a superposition
of different pointer states all corresponding to a different measurement outcome
ai.

Now we can measure observable Ĉ. To facilitate the calculation the identity is
expanded in the eigenbasis of the the operators B̂, Ĉ,

1 =

∫
b

db |b〉〈b| , 1 =

∫
c′

dc′ |c′〉〈c′| (2.42)

assuming a continuous eigenspace, therefore using integrals rather than sums.
Moreover, we use that for conjugate operators 〈b|c〉 = 1√

2π
eibc:

|Ψf (c)〉 = 〈c|Ψf〉 = 〈c|
[

exp
[
−iεÂ⊗ B̂

]∑
i

ci |ai〉 ⊗ |Φ0〉
]

=
∑
i

ci |ai〉 exp[−iεaib]
∫
c′

dc′
∫
b

db 〈c|b〉 〈b|c′〉 〈c′|Φ0〉

=
∑
i

ci |ai〉
∫
c′

dc′
∫
b

db
1

2π
exp[−i(c′ − (c− εai))b] 〈c′|Φ0〉

=
∑
i

ci |ai〉
∫
c′

dc′ δ
(
c′ − (c− εai)

)
Φ0(c′)

=
∑
i

ci |ai〉Φ0(c− εai) . (2.43)

Crucially, we see that in the final state the pointer wave function has shifted by εai.
This shift represents the change, the system wave function has experienced. Each
possible pointer wave function is centered around the eigenvalue of the operator Â
that a direct measurement on Â would yield. We can also see that the the pointer
can not be shifted further than εamin or εamax, where amin, amax are the minimal
and maximal eigenvalue of operator Â. This agrees with the theory of protective
measurements.

Any quantum operator Ĉ carries an uncertainty ∆Ĉ =

√〈
Ĉ2
〉
−
〈
Ĉ
〉2

. If

the distance between the different eigenvalues ai is smaller than the uncertainty
∆Ĉ, the wave packets Φ0(c − εai) and hence the measurement results ai cannot
be distinguished any more. To be able to perform meaningful measurements we
therefore need to make sure that the wave packets do not overlap, which is the
case when

|ε|δa� ∆Ĉ (2.44)

with δa being the minimal distance between two eigenvalues ai. If this condition is
fulfilled, that is if the coupling strength ε is large, such a measurement is called a
“strong measurement”. A projective measurement on Ĉ will yield the the outcome
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2. Weak values and related concepts

ai with a probability of |ci|2 [23]. The pointer will be one single state centered
around εai [23]. This illustrates the change of the system after the measurement,
that is the collapse in the framework of standard quantum mechanics, or the
branching of the worlds when following the many-worlds theory.

When ε is small, which is the case when

|ε|δa < ∆Ĉ (2.45)

the measurement is called “weak measurement”. Since the uncertainty of Ĉ is
larger than the shift of the pointer one single measurement will give almost no
information, however disturbing the system very little [25]. One has to perform
measurements on a larger ensemble instead, and calculate the average of the results
[20].

2.4. Pre- and postselected systems

This section describes an alternative, time-symmetric description of quantum me-
chanics, first introduced by Aharonov, Bergman and Lebowitz [26]. In this de-
scription not only the inital state of a system is know, but also the final state of
the system. This has several important consequences for the outcomes of mea-
surements.

2.4.1. The two-state vector formalism

In standard quantum mechanics, just the initial state of some system is known
which then evolves in time according to the Schrödinger equation. The final
state of the system is not known before the end of the evolution. Measurements
in standard quantum mechanics are not deterministic, resulting in a final state
which cannot be calculated before the measurement is performed [15]. The theory
is therefore time asymmetric.

Aharonov, Bergman and Lebowitz introduced a new description of quantum
mechanics, which is time symmetric [26]. In their description a system is described
by both the inital state of a system and the final state, the two-state vector

〈φ| |ψ〉 . (2.46)

|ψ〉 is the initial state of the system and evolves forward in time, just as in the
standard formalism of quantum mechanics. 〈φ| however is the final state and
consequently evolves backward in time. In the example of an interferometer |ψ〉
evolves from the laser to the detector, while 〈φ| evolves from the detector towards
the laser. The description is therefore called “two-state vector formalism” (TSVF).

In this formalism, the system is “preselected” to be in an initial state |ψ〉 and is
“postselected” to a final state 〈φ|. This corresponds to a projection onto the post-
selected state |φ〉, such that other states the initial state could have evolve to are
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2.4. Pre- and postselected systems

not considered to be part of this pre- and postselected system. In a measurement
process, the information encoded in them is hence thrown away.

Measurements of pre- and postselected systems can be strong or weak [20]. In
this thesis, we shall only be concerned with weak pre- and postselected measure-
ments, henceforth referred to as “weak measurements”.

2.4.2. Weak values as outcomes of weak measurements

An extension of the TSVF is the so called “weak value” formalism, first intro-
duced by Yakir Aharonov, David Z. Albert and Lev Vaidman in 1988 [2]. They
showed that for weak measurements on a pre- and postselected system the mea-
sured results can be far beyond the range of measurement results that a standard
measurement would yield.

The weak value formalism is at first analogue to the indirect standard mea-
surements with the system being coupled to a measurement device, the pointer,
see Section 2.3. On the system of the entangled state, however, a postselection
is performed, after which only the final pointer state is considered. The whole
measurement scheme is depicted in Fig. 2.6.

pointer

interaction

postselectionsystem

Figure 2.6.: Scheme of interaction of a pre- and postselected weak measurement.
A quantum mechanical system is prepared in an inital state |ψ0〉, the preselection.
A pointer is prepared in an initial state |Φ0〉. A unitary interaction Û couples the
system with the pointer. A postselection with state |φ〉 is then performed on the
entangled state, after which only the final pointer state |ΦF 〉 is considered.

In the description both the system to be measured and the pointer state are
prepared in an initial state |ψ0〉 ∈ Hsystem respectively |Φ0〉 ∈ Hpointer. A unitary
operation

Û = exp
[
−iεÂ⊗ B̂

]
acting on Hsystem ⊗Hpointer (2.47)

couples the system to the measurement device, as in Section 2.3. Again, Â is a
self-adjoint observable of the system, while B̂ is an operator acting on the pointer
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2. Weak values and related concepts

system. ε ∈ R indicates the strength of the coupling. After the coupling we are
left with an entangled state

|Ψf〉 = Û
[
|ψ0〉 ⊗ |Φ0〉

]
(2.48)

which is the final state Eq. 2.41 of the indirect von Neumann measurement.

In the TSVF framework the entangled state is now projected on a the postse-
lected state of the system |φ〉 ∈ Hsystem. After this projection only the final state
of the pointer is regarded. The final state of the pointer can be written as [27]:

|ΦF 〉 = N 〈φ|
[
Û |ψ0〉 ⊗ |Φ0〉

]
= N 〈φ|

[
exp
(
−iεÂ⊗ B̂

)
|ψ0〉 ⊗ |Φ0〉

]
ε�1
≈ N 〈φ|

[(
1− iεÂ⊗ B̂

)
|ψ0〉 ⊗ |Φ0〉

]
= N 〈φ|ψ0〉

(
1− iε〈φ| Â |ψ0〉

〈φ|ψ0〉
B̂
)
|Φ0〉

≈ exp

(
−iε〈φ| Â |ψ0〉

〈φ|ψ0〉
B̂

)
|Φ0〉 , (2.49)

N is a suitable normalization factor. The approximation holds only for weak
coupling regimes, where ε� 1, hence for weak measurements.

This formula contains the so called “weak value”

Aw :=
〈φ| Â |ψ0〉
〈φ|ψ0〉

(2.50)

of the pre- and postselected system. If |φ〉 = |ψ0〉 the weak value becomes the
expectation value of operator Â, Aw = 〈Â〉, which is bounded by the minimal and
maximal eigenvalue of Â. However, when |φ〉 is almost orthogonal to |ψ0〉, the
denominator of the weak value becomes almost zero, hence Aw becomes very large.
This is a crucial point of the weak value formalism, because then measurement
results can become very large, as we see now.
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2.4. Pre- and postselected systems

To see how much the pointer has shifted after the interaction we can perform
a measurement on the pointer variable Ô acting on Hpointer. For this, we just
calculate the expectation value of the observable with the final state of the pointer:

〈Ô〉 = 〈ΦF | Ô |ΦF 〉
= 〈Φ0| eiεA

∗
wB̂ Ô e−iεAwB̂ |Φ0〉

ε�1
≈ 〈Φ0| (1+ iεA∗wB̂) Ô (1− iεAwB̂) |Φ0〉
= 〈Φ0|Ô|Φ0〉+ iεA∗w 〈Φ0|B̂Ô|Φ0〉 − iεAw 〈Φ0|ÔB̂|Φ0〉+O(ε2)

= 〈Φ0|Ô|Φ0〉+
1

2
iεA∗w

[
〈Φ0| [B̂, Ô] |Φ0〉+ 〈Φ0| {B̂, Ô} |Φ0〉

]
+

1

2
iεAw

[
〈Φ0| [B̂, Ô] |Φ0〉 − 〈Φ0| {B̂, Ô} |Φ0〉

]
= 〈Φ0|Ô|Φ0〉

+iεRe[Aw] 〈Φ0| [B̂, Ô] |Φ0〉+ ε Im[Aw] 〈Φ0| {B̂, Ô} |Φ0〉 . (2.51)

Note here that we assume that B̂† = B̂, that is B̂ is hermitian. The shift the
pointer experiences due to the interaction can then be expressed as the difference
between the initial pointer position and its final position:

δO = 〈ΦF | Ô |ΦF 〉 − 〈Φ0| Ô |Φ0〉
= iεRe[Aw] 〈Φ0| [B̂, Ô] |Φ0〉+ ε Im[Aw] 〈Φ0| {B̂, Ô} |Φ0〉 . (2.52)

Unlike in a standard measurement, Eq. 2.52 is not dependent on an eigenvalue
of operator Â but only on its weak value Aw. This means that the measurement
result is not necessarily bounded by the minimal and maximal eigenvalue, but
could lie beyond - when the denominator in Eq. 2.50 becomes large, i.e. when the
states are are almost orthogonal. This can be assured by pre- and postselecting
the system in an appropriate manner.

The uncertainty of each measurement device is much larger than the measured
value Aw [2]. However, performing measurements on a large ensemble decreases
the uncertainty, allowing to determine the value of Aw accurately [28].

We see that we can strongly shift the pointer of the measurement device δO
by postselecting on a final state that is almost orthogonal to the initial state
of the system. We can amplify the pointer shift this way, in contrast to the
standard measurement scheme where the pointer shift is bounded by the minimal
and maximal eigenvalue of operator Â. This way even very small interactions ε
can be detected.

2.4.3. Weak value amplification

Eq. 2.52 shows that the pointer shift of the measurement device can be amplified
by pre- and postselecting the system in a smart way. This characteristics is
harnessed by a method called “weak value amplification” (WVA) [29]:
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2. Weak values and related concepts

In weak value amplification experiments pre- and postselection weak measure-
ments are performed in such a way that the pointer shift of the measurement
device is big. An experiment employing this fact was proposed in the original
weak value article [2], by presenting a measurement on a spin-1

2
-particle which

would yield 100 as a result. The first experimental realization was [3], which
demonstrated an amplification of a small beam separation.

To understand this phenomenon better, it is worth to consider classical waves
or probability distributions. In Fig. 2.7 two intensities with Gaussian distribution
in position space, Ψ1(x − d) and Ψ2(x + d) are shown. Their center of mass, i.e.
their expectation values are indicated by dashed lines. They have been slightly
shifted by ±d from position x = 0. When the Gaussians have a phase difference of
π they interfere destructively, resulting in a Gaussian of low intensity, as depicted
by the solid red line in Fig. 2.7. When the intensity is rescaled, it becomes
visible that its center of mass lies far beyond the centers of mass of the individual
Gaussians. Hence, the deflection that the two Gaussians experienced is amplified.
This scenario can occur, for example in a interferometer, where both arms are
slightly misaligned.

-4 -2 0 2 4

x

in
te

n
si

ty

intensity beam Ψ1(x-d)

intensity beam Ψ2(x+d)

total intensity

rescaled total intensity

Figure 2.7.: Weak value amplification demonstrated with two Gaussian wave
packages. The blue and green wave packages have been slightly shifted by ±d
from position x = 0. The solid red line is their destructive interference. When
rescaled it becomes visible that the expectation value for the combined intensity
lies far beyond the expectation values of the two individual wave packages.

This classical description is similar to the quantum mechanical weak value am-
plification of Eq. 2.52. Assume that the blue and green curve is the pointer of the
standard measurement scheme of Eq. 2.43, which is a sum of Gaussians slightly
shifted by some small interaction. Since the shift is much smaller than the width
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2.4. Pre- and postselected systems

of the pointer, it can hardly be detected. In a weak measurement the destructive
interference is introduced by postselecting the system on a state almost orthogo-
nal to the preselected state. This results, due to the entanglement of the system
and pointer states, in a shift of the pointer according to the weak measurement
scheme in Eq. 2.52.

Weak value amplification allows to enhance small interactions and measure
them precisely. However, one has a price to pay, namely, throwing away much of
the ensemble in the postselection process. This has led to a controversial debate
about the merits of weak value amplification. In Section 3.3 the ongoing debate
about the merits of weak value amplification is presented.

In this thesis a weak value amplification experiment is discussed in detail. The
goal is to precisely measure beam deflections using weak value amplification. In
Section 3.3 the experiment is compared to other measurement methods, e.g. using
a lens to detect the deflection.
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3. Interferometric measurement
device for small beam deflections

Interferometers are optical devices that make beams or particles interfere. This
chapter describes a widely used interferometer, the Mach-Zehnder interferometer,
quantum mechanically and summarizes a gedankenexperiment utilizing quantum
mechanical interferometers. It nicely shows where the idea for our experiment
comes from. The model for the experiment is derived afterward using the descrip-
tion of the Mach-Zehnder interferometer. At the end of the chapter, the expected
performance of the experiment is compared to alternative measurement methods
that do not make use of weak value amplification with regard to noise.

3.1. How interferometers relate to the past of a
particle

This section shortly introduces the quantum mechanical description of a Mach-
zehnder interferometer. Then, the debate on a gedankenexperiment utilizing
nested Mach-Zehnder interferometers is presented.

3.1.1. Quantum mechanical description of a Mach-Zehnder
interferometer

An interferometer is an optical device which divides a light beam in two or more
beams and overlaps them again, resulting in an interference of the two beam [10,
11]. Often, one of the beams obtains a phase difference that can be manipulated,
resulting in a changing of the interference pattern.

In a Mach-Zehnder interferometer (MZI), as pictured in Fig. 3.1, the beams are
divided by a beam splitter. The two beams are then each reflected at a mirror,
before they are overlapped at a second beam splitter. At both output ports of
the interferometer behind the beam splitter an interference emerges. It can be
detected on a screen.

In general, the amplitude both beams in the interferometer have can be con-
trolled, for example by adjusting the reflectance and transmittance of the beam
splitter. Furthermore, the two beams have a relative phase if the two arms exhibit
a path difference. This phase can be changed by, for example, inserting a glass
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3. Interferometric measurement device for small beam deflections

beam splitter
mirror

Figure 3.1.: A Mach-Zehnder interferometer. A beam is divided at a beam
splitter. The two resulting beams are each reflected at a mirror before they are
overlayed at a second beam splitter. This results in an interference at both output
ports of the interferometer.

plate into one of the arms of the interferometer or by slightly moving one of the
mirrors.

Using the formalism of quantum mechanics one can write the state of any inter-
ferometer as a sum of orthogonal states describing the arms of the interferometer
[30]. In particular, the state of a quantum system inside a Mach-Zehnder inter-
ferometer is written as

|ψ〉 = cosα |A〉+ sinαeiϕ |B〉 (3.1)

where the particle being in the arms of the interferometer is described by two or-
thogonal states |A〉, |B〉. The parameter α adjusts the amplitude of the two beams
and ϕ is the relative phase between the two beams. Note that this representation
equals the representation of a qubit in Eq. 2.27.

The state of the particle in the output ports of the interferometer can be de-
scribed by two orthogonal states

|C〉 =
1√
2

(|A〉+ |B〉) (3.2)

|D〉 =
1√
2

(|A〉 − |B〉) . (3.3)
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3.1. How interferometers relate to the past of a particle

With those states the intensity IC/D of the interfering beams at the output ports
can be determined to be:

IC/D = Tr[|ψ〉〈ψ| · |C/D〉〈C/D|]

=
1

2
[1± 2 cosα sinα cosϕ] . (3.4)

IC + ID = 1 because energy is conserved. For ϕ = 0 and α = π
4
|C〉 is often called

the “bright port” and |D〉 the “dark port”.
In this equation we can see that the interference changes with the amplitudes

and, more importantly, with the phase between the two beams. For certain ϕ the
intensity is bright, while for others it is dark. The contrast of I is the greatest
when both beams have the same amplitude, that is when α = π

4
. A measure of

this contrast is the visibility of the interferometer

V =
Imax − Imin

Imax + Imin

. (3.5)

Here, Imax and Imin are defined as the maximal and minimal intensity over a period
of ϕ. Using Eq. 3.4 this can be simplified to

V = 2 cosα sinα . (3.6)

For interferometric experiments a visibility close to V = 1 is desirable, as then the
interferometer is perfectly aligned and tuned.

Particles in an interferometer might have more degrees of freedom than only
the path-degree of freedom, that is being in the arms |A〉, |B〉. Other degrees of
freedom might be longitudial or transversal spatial modes, polarization or certain
spectra. If these degrees of freedom are the same for both arms at the output
they can be ignored, if they differ they have to be taken into consideration. The
state of the system inside the MZI can then be written as

|ψ〉 = cosα |A〉 ⊗ |χA〉+ sinαeiϕ |B〉 ⊗ |χB〉 . (3.7)

In this equation |χA〉 and |χB〉 conflate all possible additional degrees of freedom.
The intensity at the output ports is then calculated [30]:

IC/D = Tr
[
|ψ〉〈ψ| ·

(
|C/D〉〈C/D| ⊗ 1

)]
=

1

2
[cos2 α + sin2 α± cosα sinαeiϕ 〈χA|χB〉

± cosα sinαe−iϕ 〈χB|χA〉]

=
1

2

[
1± 2 cosα sinα cosϕRe[〈χA|χB〉]

]
=

1

2

[
1± 2 cosα sinα cosϕ 〈χA|χB〉

]
(3.8)
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if one includes the additional phase obtained from 〈χA|χB〉 into the relative phase
ϕ. Then, the factor 〈χA|χB〉 := γ ∈ [0, 1] defines the overlap or coherence of the
two beams. It modulates the visibility to become

V = 2γ cosα sinα . (3.9)

Here, we can see that the visibility or the contrast is affected by the overlap of
the degrees of freedom of the beams. This is important to note, as changes of the
degrees of freedom can also decrease the visibility of the system.

3.1.2. The debate on the past of a particle

With the quantum mechanical description of the Mach-Zehnder interferometer it
is possible to describe the debate surrounding another, more fundamental use of
the weak value formalism.

Lev Vaidman argues that particles leave a “weak trace” where they have been
due to the interaction with their environment [31]. Take for instance test particles
placed near all possible paths of a photon. When the photon passes, Vaidman
argues, a test particle gets a kick due to a local interaction with the photon,
while it remains in its position when the photon does not pass it [31, 32]. The
interaction is weak, so that the state of the test particles is only slightly disturbed.
In this setting, the test particles act as the pointer of a measurement device [31]
of a weak measurement. Hence, reading out all test particles provides information
about the path of the photon because the trace the photon left is encoded in the
test particles. Therefore, it is possible to determine the past of a particle [32].

Vaidman argues that the path of a pre- and postselected quantum particle can
be described in the two-state vector formalism, namely that this quantum particle
has been in all regions where the forward and backward-evolving wavefunctions
overlap [32]. This weak trace is proportional to the weak value of the projection
operator of the particle on a certain location since the interaction is local [31].
Therefore, by calculating the weak value, it is possible to determine the path a
photon took: If it vanishes, the photons did not leave a trace there, that is it has
not been there in the past, while it has been there when the weak value does not
vanish.

This has counterintuitive consequences, explained in [31] with a gedankenex-
periment. There, a nested interferometer is built: In one arm of a MZI another
MZI is inserted. The inner interferometer is tuned such that its lower output port
experiences total destructive interference, i.e. that in the arm of the outer inter-
ferometer behind it there is no light, see Fig. 3.2. At the three possible outputs
of the interferometer, detectors are installed that click whenever they detect a
photon.

Now, if only detector D3 clicks, it is intuitive to assume that the photon passed
through the beam splitter and then through the inner interferometer. Equiva-
lently, for the click of the detector D1, D2 we intuitively assume that the photon
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Figure 3.2.: A nested MZI. The lower output of the inner interferometer is tuned
to destructive interference. The picture is taken from the paper which was the
first formulation of the gedankenexperiment [31].

has only been in path A because the inner interferometer is tuned such that in
path E is no light, i.e. a photon cannot be there. Hence, the only way it could
possibly reach the detector would be through path A of the outer interferometer.

The weak values, however, tell a different story. In the two-state vector formal-
ism the state inside the nested interferometer is

〈φ| |ψ〉 =
1√
3

(〈A|+ 〈B| − 〈C|) 1√
3

(|A〉+ |B〉+ |C〉) (3.10)

where the signs have been acquired due to phase shifts when reflecting from a
mirror. Therefore, the weak value for a projector on arm A, PA = |A〉〈A|, is

(PA)w = 〈φ|P̂A|ψ〉
〈φ|ψ〉 = 1, for a projection on arm B it is (PB)w = 1, for a projection

on C it is (PC)w = −1 and for projections on D and E it vanishes.
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We expected that the weak value of arm A would be non-vanishing. Surprisingly
the weak values for arms B and C, that is the arms of the inner interferometer, also
do not vanish, while the weak values for the arms D and E are zero as expected.
This means that, according to Vaidman, the particle has been inside the inner
interferometer but not in the paths connecting the inner interferometer with the
outer one, as it has left no weak trace there!

Figure 3.3.: The weak trace of the nested interferometer when detector D1 or
D2 clicks. A trace can be observed in arm A as expected, but surprisingly also in
the inner interferometer. The picture is taken from [31].

In Fig. 3.3 the overlap between the forward-evolving wave function and the
backward-evolving wave function is shown. They overlap in the arms of the inner
interferometer but not in the arms connecting the inner interferometer to the outer
one. Hence, as calculated, the weak value of the projection onto the arms does not
vanish. This effect can be explained well in the standard formalism of quantum
mechanics. The weak coupling slightly changes the destructive interference so
that a tiny part of the wave can leak into the arm E [33].

The gedankenexperiment was implemented in the laboratory by building a
nested interferometer [34], as seen in Fig. 3.4. The mirrors of the interferometer
are slightly vibrated with different frequencies, changing the path of the beams.
Hence, the photons get a momentum kick from the local interaction with the mir-
ror. On the detector the momentum kick is visible as an intensity change, which
corresponds to the frequency of the vibration. Thus the photons reveal their in-
teraction with the mirror. Consequently, the photons act as the pointer of the
measurement device in this setting [32, 34].

In the experiment the frequency of the mirror wiggling was detected in the
detector intensity. If the photons carried the frequency of one of the mirrors
they were said to have been near the mirror. For the nested Mach-Zehnder with
destructive interference at the output of the inner interferometer the result from
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3.1. How interferometers relate to the past of a particle

Figure 3.4.: The experimental realization of Vaidmans Gedankenexperiment.
Mirrors are slightly vibrated and the resulting position change of the photons
is read out as a frequency. The red line indicates the forwards evolving wave
function and the green line the backward-evolving wave function. The result
reveals no signal at the frequency of mirrors E and F. The picture is taken from
[33].

the gedankenexperiment and the experiment in the laboratory agreed: In the
detected signal the frequency of the mirrors of the inner interferometer was found,
but not the frequency of the mirrors E and F connecting the inner interferometer
to the outer one, as seen in Fig. 3.4 [34]. It was concluded that the photons have
indeed been inside the inner interferometer but not in the arms connecting it with
the outer one.

Both the gedankenexperiment and the experiment have sparked a longer debate
[35–41]. One very prominent critique comes from Alonso and Jordan [42]. There,
they argue that putting a Dove prism into one arm of the inner interferometer
does not change the weak values of the projectors in an aligned interferometer.
But now, when vibrating the mirrors, a frequency from mirror E can be seen in
the signal [42], as shown in Fig. 3.5.

A Dove prism acts as a parity operator, reflecting a beam deflection around its
axis [42]. Hence, the misalignment in mirror E is reflected due to the Dove prism.
Thus, the interferometric stability of the interferometer is broken [42], resulting
in the signal of mirror E appearing at the detector. However, following the weak
trace argument, it is also thinkable that the past of the particle has been changed
by the Dove prism [42]. If the Dove prism is inside the interferometer, the particles
have not been at mirror E, but when it is inserted they have been at mirror E.
Can a Dove prism really have this significant effect?
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3. Interferometric measurement device for small beam deflections

Figure 3.5.: The modified setup including a Dove prism of the experiment as
proposed by [33]. A Dove prism is placed in the inner interferometer, resulting in
the vibration of mirror E being detected. The picture is taken from [42].

In a response Vaidman et al. [33] argue that Alonso and Jordan have inter-
preted the result wrongly. The slight misalignment at mirror E introduces a small
orthogonal component to the spatial mode of the photons, changing it from |χ0〉
to 1√

1+ε2
(|χ0〉 + ε

∣∣χ⊥〉) with
〈
χ0

∣∣χ⊥〉 = 0. Inserting the Dove prism into this

slightly misaligned interferometer indeed reveals a small presence of order ε2 of
the photons at mirror E [33], as claimed by [42], when calculating the weak value
of the projector at mirror E with the resulting forward- and backward-evolving
wave function. However, the weak trace results from all local interactions. In the
case of the Dove prism the photons do not only interact with the mirror but also
with the Dove prism, which mirrors the orthogonal mode, resulting in a change.
Since the spatial mode of the photons acts as the pointer of the measuring device,
the pointer is changed during this interaction. As a result, the faithful readout
of the pointer, which should measure the weak interaction, is spoiled [33]. Hence,
it is not enough to only consider the weak value of the projection on mirror E,
but another operator Ô connecting the modes |χ0〉 and

∣∣χ⊥〉 has to be taken into

account [33]. Calculating the weak value of the combined operator ÔP̂E reveals a
presence of order ε at mirror E [33].

This explains why a signal of mirror E can be found when inserting a Dove
prism. However, all other detected signals have been of order 1, while a wiggling
of mirror F would also yield a signal of order ε [33]. How come only the signal
at mirror E is detected? Arguably, the sensitivity towards mirror E has been
enhanced, which results in a detected signal of order 1, while the true presence at
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3.2. Model for interferometric measurement device

mirror E was of order ε2. Considering also the interaction with the Dove prism,
the presence is of order ε [33]. Vaidman et al. conclude that the particles have
not been at mirror E but left a tiny trace there. However, changing the pointer
by inserting the Dove prism enhanced the sensitivity of the detector for mirror E,
which resulted in a stronger signal [33]. If the pointer was a test particle located
at mirror E, the measurement would yield a presence of ε2, which would not be
detected.

They also state that the interferometer has become very sensitive towards mis-
alignment of the incoming beam [33]. From this characteristic the idea for the
experiment presented in this thesis arose: What if only the inner interferometer
and mirror E are considered? Wiggling mirror E, that is changing the incident
beam of the interferometer, should not yield a detectable signal. However, plac-
ing a Dove prism inside the interferometer should make the change of the incident
beam observable at the detector due to the reflection of the orthogonal mode

∣∣χ⊥〉.
The signal should be enhanced, as it was the case in the nested interferometer.

This results in several possible applications: First, in such an experiment, the
enhancement of the signal at mirror E could be demonstrated. Second, the am-
plified signal could be evaluated to measure the deflection of the incident beam
precisely. And third, since the deflection of the beam occurs before the interfer-
ometer, the setup could work as a “spying device”, amplifying a signal created
outside of the measurement device.

The following section models this proposed experiment theoretically. Further-
more, Chapter 4 explains the experimental implementation.

3.2. Model for interferometric measurement device

This section describes the model for the experimental setup. The main idea,
with the experimental details being explained in Chapter 4, is the following: An
mirror is slightly shifted, deflecting an laser beam by distance d and angle θ, as
demonstrated in Fig. 3.6. This deflection can be determined using the method of
weak value amplification. Therefore an interferometric setup is built as a mea-
surement device. Instead of building the interferometer around the interaction,
i.e. the displaced mirror so that the interaction happens inside the measurement
device (as it was often deployed, see e.g. [5]) the interaction shall now take place
outside of the interferometric measurement device. The setup is essentially the
inner interferometer with mirror E of the (gendanken-)experiment introduced in
Section 3.1.2.

The model for the setup has already been described in my bachelor thesis [43],
using a Mach-Zehnder interferometer. Here, we will quickly summarize the model
and write it down for the specific case of an interferometer with polarized arms,
as we have chosen in our experiment. In this case we have to calculate with a
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3. Interferometric measurement device for small beam deflections

θ

θ

d
d

Figure 3.6.: A laser beam is sligthly defected by an angle θ and a distance d due
to a mirror being shifted.

four-dimensional state, rather than a two-dimensional state, but the results for
the weak value and the pointer deflection formula will be the very same.

If a beam enters a perfectly aligned interferometer the two resulting beams in
the two arms have the same path length and interfere at the same spot again
behind the interferometer. Therefore, even if the incident beam is displaced both
resulting beams will have the same optical path because they experience the same
initial deflection, as seen in Fig. 3.8a. This does not result in a change of the
interference at the output, hence the weak value amplification method cannot be
used. To use weak value amplification one has to deflect one beam relative to each
other.

This can done by inserting a Dove prism into one of the arms of the interferom-
eter. A Dove prism mirrors a beam along its axis, which means that a beam with
spatial displacement d and angular displacement θ will get an displacement −d
and −θ, as shown in Fig. 3.7. Deflection d = 0 and θ = 0 are hereby defined as the
beam propagating perfectly on the axis of the Dove prism. At the output port one
beam will have a deflection d and θ due to the initial deflection, while the other
beam will experience a displacement −d and rotation −θ due to the action of the
Dove prism as seen in 3.8b. Two spatially separated beams are hence overlapped
behind the interferometer, resulting in an change of the initial interference.

In Fig. 3.7 a deflection in x-direction is shown. It is important to note that
deflections in y-direction are not mirrored by the Dove prism. The Dove prism in-
troduces a spatial offset to the beam, without changing the propagation direction.
Hence, to mirror y deflections the Dove prism has to be rotated by 90◦.

In the experiment presented in this thesis the spatial mode of the laser beam
is modeled as the pointer of the weak value formalism. This means that the
deflection of the spatial mode of the laser beam outside of the interferometer is
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3.2. Model for interferometric measurement device

-d 
-θθ d 

Figure 3.7.: A dove prism mirrors a beam along its axis. A beam with initial
deflection d and θ will have a deflection −d and −θ after the Dove prism.

modeled as a deflection of the pointer. This pointer deflection is described as a
change of the initial pointer state |Φ0〉, as in [8, 33]:

|Φ0〉 → |Φ′〉 = η(|Φ0〉+ ε
∣∣Φ⊥〉) (3.11)

where
〈
Φ0

∣∣Φ⊥〉 = 0, ε ≥ 0 for simplicity and η = 〈Φ′|Φ0〉 = 1√
1+ε2

is the overlap
between the initial and deflected mode. We assume that the outside interaction
can be written as an operator

e−iB̂ = exp
[
−i(εxk̂ − εkx̂)

]
. (3.12)

where εx is the spatial deflection of the beam and εk is the angular deflection of
the beam. Here, as in Chapter 2 we set that ~ = 1.

The initial state of the system, i.e. the interferometer is given by

|ψ〉 = cosα |H〉 ⊗ |A〉+ sinα |V 〉 ⊗ |B〉 . (3.13)

Here, to create this state, incoming light with polarization |V 〉 was rotated to
cosα |H〉+ sinα |V 〉 with a half-wave plate. The polarizing beam splitter behind
it then splits the beam into two beams, resulting in the given entangled state,
where the horizontal component travels in an arm labeled “A” and the vertical
component in an arm labeled “B”.

The deflected pointer state enters the interferometer and therefore the total
state of system and pointer can be written as a state

cosα |HA〉 ⊗ |Φ′〉+ sinα |V B〉 ⊗ |Φ′〉 . (3.14)

Therefore, after the beam has entered the interferometer both arms of the in-
terferometer experience the same deflection and overlap at the same spot on the
output port. In this case the weak value amplification cannot be used.
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3. Interferometric measurement device for small beam deflections

beam splitter
mirror

(a)

beam splitter
mirror

Dove prism

(b)

Figure 3.8.: (a) In
an aligned interferome-
ter both arms will have
the same optical path,
even if the incoming
beam is initially dis-
placed. (b) Inserting a
Dove prism into one of
the arms will introduce
a relative deflection be-
tween the two resulting
beams.

The interaction with the Dove prism inserted into arm j ∈ {A,B} of the inter-
ferometer can be modeled as a unitary

Û = 1⊗ P̂i ⊗ 1+ 1⊗ P̂j ⊗ D̂ acting on

Hpolarization ⊗Harm ⊗Hpointer = Hsystem ⊗Hpointer . (3.15)

In this equation i, j ∈ {A,B}, i 6= j. (1⊗ P̂i) := P̂i is the projector acting on arm
i, where it leaves the polarization unaffected. Because it is a projector P̂i+ P̂j = 1

holds. D̂ is an hermitian operator describing the action of the Dove prism in arm
j: The Dove prism leaves a beam which propagates on its axis unaffected, and will
mirror any propagation off the axis. In terms of the initial and deflected pointer
we can model the operator as

D̂ |Φ0〉 = |Φ0〉 (3.16)

D̂
∣∣Φ⊥〉 = −

∣∣Φ⊥〉 (3.17)
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3.2. Model for interferometric measurement device

which also implies that

D̂ |Φ′〉 = D̂e−iB̂ |Φ0〉 = ηD̂(|Φ0〉+ ε
∣∣Φ⊥〉) (3.18)

= η(|Φ0〉 − ε
∣∣Φ⊥〉) = eiB̂ |Φ0〉 (3.19)

as calculated in [43].
After the beam has left the Dove prism the total state of system and pointer is

expressed as a state

Û [|ψ〉 ⊗ |Φ′〉] = cosα |HA〉 ⊗ |Φ′〉+ sinα |V B〉 ⊗ D̂ |Φ′〉 (3.20)

given that the Dove prism is inserted into arm B. If it was in arm A the Dove
operator D̂ would be found in the first term, which would lead to the same density
matrix.

Eq. 3.20 is an entangled state between the Hilbert space of the system and the
Hilbert space of the pointer. The reduced state of the system is therefore a mixed
state. The equation for the weak value Eq. 2.50 can however only be used for pure
states. The weak value of an arbitrary operator Â for the case of mixed states is
given in [8] as

(Â)w =
Tr
[
|φ〉〈φ| Âρ̂

]
Tr[|φ〉〈φ| ρ̂]

. (3.21)

We therefore need to find the density matrix of the system to calculate the weak
value. The density matrix ρ̂system := ρ̂ of the system can be found by calculating
the partial trace for the pointer over the total system Eq. 3.20:

ρ̂ = Trpointer[ρ̂total]

= cos2 α |HA〉〈HA|+ cosα sinαγ |HA〉 〈V B|
+ cosα sinαγ |V B〉 〈HA|+ sin2 α |V B〉〈V B| . (3.22)

In this expression γ is the overlap between the two shifted beams, which is

γ = 〈Φ′| D̂ |Φ′〉 = e
− 2ε2x

w2
0 e−

1
2
w0ε2k . (3.23)

It can be calculated using the initial Gaussian pointer state in position space

Φ0(x) = N exp
(
− x2

w2
0

)
and in momentum space Φ0(k) =M

√
w2

0

2
exp
(
−1

4
w2

0k
2
)
.

Behind the interferometer a postselection on state

|φ〉 =
1

2
(|H〉+ eiϕ |V 〉)⊗ (|A〉+ |B〉) (3.24)

is performed. In our interferometric setup the relative phase between the two
beams is introduced just after the interferometer with a quarter-wave plate and a
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3. Interferometric measurement device for small beam deflections

linear polarizer. This is effectively a postselection onto the given state, which is
why we introduce the phase in the postselection state |φ〉. Using Eq. 3.21 we can
calculate the weak values for the operators P̂A and P̂B:

(PA)w =
1 + tanαγeiϕ

1 + tan2 α + 2 tanαγ cosϕ
(3.25)

(PB)w =
1 + cotαγe−iϕ

1 + cot2 α + 2 cotαγ cosϕ
. (3.26)

Performing a postselection on the state |φ〉 will yield the final state of the
pointer:

|ΦF 〉 = N 〈φ| (Û
[
|ψ〉 |Φ′〉])

= N 〈φ|
(

[1⊗ (1− P̂j)⊗ 1+ 1⊗ P̂j ⊗ D̂
]
|ψ〉 ⊗ |Φ′〉

)
= N 〈φ|ψ〉

[
1− 〈φ|1⊗ P̂j |ψ〉

〈φ|ψ〉
+
〈φ|1⊗ P̂j |ψ〉
〈φ|ψ〉

D̂
]
|Φ′〉

= N 〈φ|ψ〉
[
1− (Pj)w1+ (Pj)wD̂

]
|Φ′〉

= |Φ0〉+ ε
∣∣Φ⊥〉− 2ε(Pj)w

∣∣Φ⊥〉 . (3.27)

The shift of the expectation of an arbitrary pointer observable Ô can be calcu-
lated to be

δO = 〈ΦF | Ô |ΦF 〉 − 〈Φ0| Ô |Φ0〉
= 2εRe[〈Φ0| Ô

∣∣Φ⊥〉]− 4εRe[(Pj)w 〈Φ0| Ô
∣∣Φ⊥〉] . (3.28)

Normalizing
∣∣Φ⊥〉 with respect to |Φ′〉 and |Φ0〉 yields

∣∣Φ⊥〉 =
i〈B̂〉01− iB̂

∆B
|Φ0〉 , (3.29)

where 〈B̂〉0 = 〈Φ0| B̂ |Φ0〉 and ∆B2 = 〈B̂2〉0−〈B̂〉20. Using this it is possible to find
that

〈
Φ⊥
∣∣Φ′〉 = ηε = ∆B. Neglecting higher orders of εx and εk the relationship

between ε and ∆B is ε
∆B
≈ 1.

Making use of these relationships the pointer shift for the spatial displacement
x̂ and the angular displacement k̂ can be calculated by plugging these operators
into Eq. 3.28. We arrive at

δx = εx − 2εx Re[(Pj)w] + 4εk Im[(Pj)w]∆x2 (3.30)

δk = εk − 2εk Re[(Pj)w]− 4εx Im[(Pj)w]∆k2 . (3.31)

Since in the actual experiment we will introduce a beam deflection both in x-
direction and in y-direction, we have to extend the model to three dimensions. We
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3.2. Model for interferometric measurement device

Figure 3.9.: On the screen the pointer shift is expressed as δ ~R, which is a com-
bination of a shift in x- and a shift in y-direction. Each shift is furthermore a
combination of spatial displacement δx = δkx

|~kx|
, δy = δky

|~ky |
and angular displacement

δθx, δθy. z is the distance from the waist of the beam to the detectors. The small
picture in the right corner depicts the deflection in only one dimension.

can model the interaction in x-direction as an operator B̂x = εxk̂x− εkxx̂ and the
y-direction interaction as B̂y = εyk̂y − εky ŷ. Both are independent of each other.
We further assume that a Dove prism is placed in each arm of the inferferometer
to measure the x and y deflection respectively. As the interaction operators are
independent of each other one can just act the two operators on the preselection
state Eq. 3.13 with the according unitary Û and calculate the shift of the pointer
state for x and y independently of each other. Assuming that the operator P̂A
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3. Interferometric measurement device for small beam deflections

determines the deflection in x direction and PB in y direction the results are given
as

δx = εx − 2εx Re[(PA)w] + 4εkx Im[(PA)w]∆x2 (3.32)

δkx = εkx − 2εkx Re[(PA)w]− 4εx Im[(PA)w]∆k2
x (3.33)

δy = εx − 2εy Re[(PB)w] + 4εky Im[(PB)w]∆y2 (3.34)

δky = εky − 2εky Re[(PB)w]− 4εy Im[(PB)w]∆k2
y . (3.35)

We can express the two dimensional pointer shift δ ~R detected at the screen
as a combination of a shift in x-direction and a shift in y-direction. Each shift
is furthermore a combination of a spatial displacement δx, δy and an angular
displacement

δθx =
δkx

|~kx|
, δθy =

δky

|~ky|
, (3.36)

as seen in Fig. 3.9. Considering the distance z from the waist of the beam to the
detector, we can therefore write the pointer shift as

δ ~R =

[
δx+ zδθx
δy + zδθy

]
. (3.37)

Using that the properties of the (Gaussian) beam

∆k2
x = ∆k2

y =
1

w0

, ∆x2 = ∆y2 =
w2

0

4
, zR =

πw2
0

λ
(3.38)

and the terms for the deflection

εx = dx , εy = dy , εkx =
2π

λ
θx and εky =

2π

λ
θy (3.39)

we arrive at the formula for the deflection:

δ ~R =

[
dx + zθx
dy + zθy

]
−
[
(2dx + 2zθx) Re[(PA)w]
(2dy + 2zθy) Re[(PB)w]

]
+

[
(2zRθx − 2 z

zR
dx) Im[(PA)w]

(2zRθy − 2 z
zR
dy) Im[(PB)w]

]
.

(3.40)

Alternatively, we can also model the deflection as the two arms of the inter-
ferometer being displaced, one in positive and one in negative direction. In this
case the interaction would be modeled by the interferometer, using the Pauli-z
operator σ̂z which displaces both arms inside the interferometer. The interaction
unitary is then given by

Ûσz = exp
[
−iσ̂z ⊗ B̂

]
acting onHsystem ⊗Hpointer (3.41)

where B̂ = εxk̂ − εkx̂ as in the model presented.
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3.3. Comparison with alternative measurement methods

This model is equivalent to the model presented above. This can be seen by
transforming the total interaction of the model presented previously, Ûe−iB̂ into
the interaction that uses the Pauli-z operator:

Ûe−iB̂ =
[
P̂A ⊗ 1+ P̂B ⊗ D̂

]
e−iB̂

= P̂A ⊗ e−iB̂ + P̂B ⊗ D̂e−iB̂

= P̂A ⊗ e−iB̂ + P̂B ⊗ eiB̂

=
∑

i∈{A,B}

P̂i ⊗ e−iaiB̂

= exp
[
−iσ̂z ⊗ B̂

]
= Ûσz . (3.42)

Here, we have used the spectral decomposition of σz,

σ̂z = P̂A − P̂B (3.43)

with its eigenvalues aA = +1 and aB = −1, corresponding to the projectors on
arm A and and B.

The deflection can also be modeled with an interaction

Û−σz = exp
[
−i(−σz)⊗ B̂

]
(3.44)

with eigenvalues aA = −1 and aB = +1. It corresponds to the beams being
deflected opposite to the deflection introduced by σ̂z. It is manifested in different
weak values:

(σz)w =
1− tan2 α + tanαγ (e−iϕ − eiϕ)

1 + tan2 α + 2γ tanα cosϕ
(3.45)

(−σz)w =
1− cot2 α + cotαγ (eiϕ − e−iϕ)

1 + cot2 α + 2γ cotα cosϕ
. (3.46)

The pointer shift for both interactions is given by

δR = dRe[Aw]− zRθ Im[Aw] + zθRe[Aw] +
z

zR
d Im[Aw] (3.47)

where Aw either (σz)w or (−σz)w.
Note that −(σz)w = (−σz)w, hence the pointer shift with weak value (σz)w has

opposite sign of the shift for weak value (−σz)w.

3.3. Comparison with alternative measurement
methods

Beam displacements do not necessary have to be measured using weak value am-
plification. In fact, building such an interferometric measurement device seems

39



3. Interferometric measurement device for small beam deflections

rather tedious compared to, for example, amplifying the displacement using a lens.
This section summarizes the controversial debate on the merits of weak value am-
plification. Subsequently, three different measuring methods are described and
their advantages scrutinized.

3.3.1. The debate on the merits of weak value amplification

Weak value amplification allows to enhance small interactions and measure them
precisely. Many experiments have successfully made use of this principle, for
example [4–9].

However, one has a price to pay, namely, throwing away much of the ensemble
in the postselection process. This has led to a controversial debate about the
merits of weak value amplification.

All studies about weak value amplification and postselected weak measurements
agree that weak value amplification does not increase the signal-to-noise ratio
compared to strong measurements [44, 45]. Some studies question the usefulness of
weak value amplification as a whole, arguing that postselection does not enhance
the precision of a measurement and weak measurements are not more precise
than strong measurements [46]. According to [47] weak-value amplification is
suboptimal for detecting or estimating interaction parameters.

Others point out the technical advantages weak value amplification might have:
Certain technical noises could be suppressed using weak value amplification [44,
45, 48], a result which has also been challenged [49]. Weak value amplification
experiments use low intensities to gain high amplification and could therefore use
highly sensitive detectors, as they would not be saturated [44, 45, 49, 50]. Weak
value amplification could also increase the sensitivity of the detector [50]. [45] also
argues that weak value amplification allows using beams with a larger radius. [51]
present a simple example where weak value amplification makes measurement of
an otherwise inaccessible physical parameter possible.

The following subsections compare the weak value amplification experiment of
this thesis with two alternative measurement methods in regard of noise.

3.3.2. Signal-to-noise ratio for three methods

Signal-to-noise ratio The signal-to-noise ratio (SNR) is a quantity which speci-
fies the quality of a signal compared to the present background noise. The higher
the SNR the clearer the signal is.

In general the signal-to-noise ratio is defined as the ratio of the signal power to
the noise power [12],

SNR =
Isignal

Inoise

. (3.48)

A SNR > 1 means that a signal rises above the noise, which is desirable.
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3.3. Comparison with alternative measurement methods

The signal-to-noise ratio for the displacement measurement of a Gaussian in-
tensity distribution I(x) = 1√

2πσ
exp(−x2/2σ2) is given by [45, 52]:

SNR =

√
2Nd√
πσ√
N

=

√
2

π

√
Nd

σ
(3.49)

where N is the number of photon counts at the detector, d is the projection of the
displacement on the detector and σ is the beam radius of the intensity distribution
at the detector. Note that the beam radius is defined as the standard deviation of
the intensity distribution. In Eq. 3.49 we see that the noise scales with

√
N . This

can be attributed to the fact that photon number counting constitutes as a Poisson
process [12]. Eq. 3.49 can also be understood as the beam radius σ introducing the
noise: An intensity distribution with large extent cannot be measured as precise
as an intensity distribution with small extent.

It is important to note that the intensity distribution for a Gaussian beam as
defined in Eq. 2.4 is I =

√
2√

πw(z)
exp(−2x2/w(z)). The beam radius at the detector

is defined as twice the standard deviation, w(z) = 2σ. With this definition the
SNR can be expressed as

SNR =

√
8

π

√
Nd

w(z)
. (3.50)

In this equation z is the distance from the waist of the beam to the detector.
The goal of the experiment modeled in Section 3 is to measure small beam

displacements d and θ. The signal-to-noise ratio is now compared for the weak
value amplification method presented in this thesis and two alternative methods.

Far field measurement: Measurement of beam in far field If one slightly
deflects the beam by an angle θ and puts up a detector in the far field at distance
L the deflection of the beam constitutes a position change on the detector, as seen
in Fig. 3.10. For small angular displacements the distance to the initial position
is Lθ. Assuming that the beam is deflected at the waist, the waist at the detector
w(L) is w(L) =

√
w2

0 + L2θ2
div, having used that θdiv = w0/zR. For large L we can

approximate that w(L) = Lθdiv. With this the signal-to-noise ratio becomes

SNRfarfield =

√
8

π

√
NLθ

Lθdiv

=

√
Nθ

θdiv

. (3.51)

Note here that SNRfarfield > 1 if
√
Nθ > θdiv. This is the case for large

deflections θ and a collimated beam with a small divergence angle, or a large
number of detected photons. For large divergence angles the deflection gets lost
in the uncertainty of the beam.
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3. Interferometric measurement device for small beam deflections

L

Lθθ

θ

Figure 3.10.: Without any additional components the beam deflection θ is de-
tected as a position change Lθ on a screen at distance L in the far field.

Lens measurement: Amplification of deflection with lens Another method
uses a lens with focal length f to amplify the beam deflection, as depicted in
Fig. 3.11. The detector can then be put closer to the mirror that introduces
the beam displacement. At the waist of the beam the angular deflection is the
initial deflection θ. The lens is placed so close to the detector that the spatial
displacement at the waist can be neglected. The detector is placed at the focus
of the lens, because there the angular displacements of a beam become visible.
The angular displacement is detected as a shift fθ on the sensor because the lens
images the deflection and amplifies it therefore. Any spatial beam displacements
are not visible in the focus. The waist of a Gaussian beam after a lens is fw0/zR.
Putting this into Eq. 3.50, we get

SNRlens =

√
8

π

√
Nfθ
fw0

zR

=

√
8

π

√
Nθ

θdiv

(3.52)

which is the same SNR as for the first method. This result is interesting, as it
shows the effect of a lens: Angular displacements of a naked beam can hardly be
seen in the near field, whereas spatial deflections are seen in the near field and
get lost in the far field due to the divergence of the beam. A lens images the
angular deflection to the near field. In contrast, spatial deflections imaged with
the lens cannot be detected in the focus of the lens, but rather behind the focus
- the spatial deflection is imaged into the far field.

Weak value amplification: Amplification of deflection with weak value am-
plification The third method to measure the beam displacement is the interfero-
metric weak value amplification method presented in Section 3. The displacement
detected at the screen is a function of the weak value Aw. In weak value amplifica-
tion only a fraction of photons contribute to the signal, because the postselection
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f

fθ

θ θ

Figure 3.11.: When using a lens with focal length f the beam deflection θ is
detected as a position change fθ on a screen close to the lens.

ignores most of the detectable photons. This is in contrast to the two other mea-
surement methods, where all photos reaching the detector contribute to the signal.
Hence, using weak value amplification the photon number at the detector N has
to be rescaled by the postselection probability, which is given by

Pps = | 〈φ|ψ〉 |2 (3.53)

with the initial state of the system |ψ〉 and the final state |φ〉 onto which the
system is projected.

The signal-to-noise ratio of any weak value amplification method is at best as
high as the signal-to-noise ration of the two other methods, often worse. Intuitively
this is understood by considering a weak value amplified pointer shift of dAw,
where d is the deflection of the far field measurement and Aw is the weak value.
This is the case if the weak value is real, as then the pointer shift Eq. 2.52 simplifies
to that form. The signal-to-noise ratio is calculated by substituting d by dAw and
N by PpsN into Eq. 3.50:

SNRwva =

√
8

π

√
NPps dAw

w(z)
=

√
8

π

√
NPps d

〈φ|Â|ψ〉√
Pps

w(z)
=

√
8

π

√
N d 〈φ| Â |ψ〉

w(z)
(3.54)

The parameter 〈φ| Â |ψ〉 can be made 1 for two level systems [9, 44]. In this case
the SNR for weak value amplification is as good as the SNR when measuring the
beam in the far field or when amplifying the deflection with a lens. If 〈φ| Â |ψ〉 < 1
it is worse.

This can be demonstrated with the experiment introduced in Section 3. The
shift detected at the detector is given by Eq. 3.47,

δR = (x+ zϑ) Re[(σz)w] + (
z

zR
x− zRϑ) Im[(σz)w] . (3.55)
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L

δRθ

θ

Lf
z

w0

z=0

Lfθinterferometer

Figure 3.12.: Using interferometric weak value amplification the beam deflection
θ is detected as a position change δR on a screen. L is the distance between the
mirror and the screen, Lf the distance between the mirror and the waist of the
beam and z is the distance between the waist and the screen. At the waist the
beam is also spatially deflected by Lfθ.

It is crucial to understand that x and ϑ do not describe the deflection introduced
at the mirror, but the deflection of the waist of the beam to the initial position of
the waist. Therefore, z describes the distance from the waist to the detector, not
from the deflected mirror to the detector.

However, one can adjust the formula to a scenario where the beam is not de-
flected at the waist. Assuming that the beam is deflected by θ at the mirror.
Then, at the waist, the beam still has deflection θ. However, the waist is also
spatially deflected by Lfθ, where Lf is the distance from the mirror to the waist
as seen in Fig. 3.12. Assuming that the distance from the mirror to the detector
is L we can substitute Eq. 3.47,

δR = (x+ zθ) Re[(σz)w] + (
z

zR
x− zRθ) Im[(σz)w]

= (Lfθ + (L− Lf )θ) Re[(σz)w] + (
L− Lf
zR

Lfθ − zRθ) Im[(σz)w]

=
[
LRe[(σz)w] + (

(L− Lf )Lf
zR

− zR) Im[(σz)w]
]
θ , (3.56)

which is the pointer shift at the detector.
The postselection probability for the entangled system of Section 3.2 is calcu-

lated to be

Pps =
1

2
[1 + 2 sinα cosαγ cosϕ] . (3.57)
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Putting these two parameters into Eq. 3.50 we arrive at

SNRwva =

√
8

π

√
NPpsδR

w(z)

=

√
8

π

√
NPps

[
LRe[(σz)w] + (

(L−Lf )Lf

zR
− zR) Im[(σz)w]

]
θ

w(L− Lf )
.

(3.58)

It can be shown numerically that SNRwva ≤ SNRlens for some fixed param-
eters. For this, realistic values to the beam parameters w0 and λ and to the
deflection θ are assigned:

N = 1000 , w0 = 800µm , λ = 810 nm ,

zR =
πw2

0

λ
= 2.4823 m and Lf = 0.45 m . (3.59)

The deflection corresponds to a beam overlap of γ = 99.9% and a divergence angle
of θdiv = 322µrad.

Using Mathematica it is straight forward to maximize the function SNRwva

(α, ϕ, θ, Lf ) of Eq. 3.58 numerically for a certain domain: 0 < α < π
2
, 0 < ϕ <

2π, 0 < θ < 10µrad and Lf < L < 5 m. The maximal value of the function in
this range is

max
(
SNRwva(α, ϕ, L, θ)

)
= 1.54384 . (3.60)

for the values

α = 0.620209 , ϕ = 3.02789 , L = 5 m and θ = 10µrad . (3.61)

Here, it is important to note that Lf should not be chosen to be great, because
otherwise this method also incorporates the far-field method. In this scenario the
two methods would therefore not be comparable. It can be seen that the function
is maximized for the bound of L. This is surprising at first glance, since the beam
intensity is distributed over a larger beam diameter with increased distance and
therefore the signal should be lost in the noise at a certain distance. However, from
a theoretical point of view both the deflection d and the waist of the beam w0 in
Eq. 3.49 grow linearly with increasing distance of the detector, which results in the
signal-to-noise ratio approaching a constant. Therefore, the theoretical optimal
value for L might be found beyond 5 m, even though in experimental realization
it might approach zero with increasing distance.

It is also not surprising that the signal-to-noise ratio gets better for larger θ.
However, only in regions of weak interactions, that is where θ is small the effect
of weak value amplification occurs.
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3. Interferometric measurement device for small beam deflections

Calculating the signal-to-noise-ratio for the lens with the obtained parameter
for θ yields

SNRlens = 1.56576 . (3.62)

Clearly, this is higher than the maximal value the signal-to-noise ratio of the
weak value amplification method. Consequently, the signal-to-noise ratio of the
far field measurement and the lens measurement is better than the weak value
amplification.

In Fig. 3.13 the signal-to-noise ratio for the weak value amplification method
and the lens method are shown, dependent on the deflection θ. For the weak value
amplification the optimal parameters for α, L and the phase ϕ obtained by the
maximization are used. Clearly, for small deflections θ the signal-to-noise ratio
of the weak value method is comparable to the signal-to-noise ratio of the lens
method. Yet, for larger θ the SNR of the weak value amplification method becomes
smaller. Here, the weak value amplification effect vanishes, as the deflection is
not a weak interaction anymore.
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ℛwva (L=5.m, α=0.62,

φ=3.03)

Figure 3.13.: SNR dependent on the deflection θ for the lens method and the
weak value amplification method. As parameters Lf = 0.45 m, w0 = 800µm,
λ = 810 nm and θ = 5µrad are chosen as realistic laboratory values. The best
α, L and phase ϕ are chosen for the weak value amplification plot. SNRwva

remains comparable to SNRlens for small deflections, but becomes smaller for
larger deflections. Here, the weak value amplification effect vanishes.

In Fig. 3.14 the signal-to-noise ratio of a lens and of the weak value method is
shown. In principle the pointer shift can have negative sign, but because the SNR
is greater than zero the absolute value of the pointer shift is used for the calcu-
lation. As parameters Lf = 0.45 m, w0 = 800µm, λ = 810 nm and θ = 5µrad
are chosen. For the different detector positions L the optimal α is calculated and
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3.3. Comparison with alternative measurement methods

used. One can see that the weak value amplification method performs differently
for several positions L, the SNR however never exceeds the SNR of the lens.

0
π

2
π

3 π

2
2 π

0.0

0.2

0.4

0.6

0.8

φ



ℛ

ℛlens

ℛwva (L=Lf, α=0.76)

ℛwva (L=zR, α=0.69)

ℛwva (L=5m, α=0.67)

ℛwva (L->∞, α=0.66)

Figure 3.14.: SNR dependent on the phase ϕ. The curves show the SNR for
different detector positions L. As parameters Lf = 0.45 m, w0 = 800µm, λ =
810 nm and θ = 5µrad are chosen as realistic laboratory values. The best α for
each detector positions is L calculated. SNRwva remains smaller than SNRlens

for the L that are considered.

Apparently, the SNR differs for different positions L of the detector. In Fig. 3.15
the SNR is shown for a lens and for the weak value method with several phases ϕ.
For each ϕ the best α is calculated. For the blue line both α and ϕ are optimized,
which yields a phase of close to π. The other parameters are the same as for
Fig. 3.14. The SNR of the weak value amplification method never exceeds the
SNR of the lens.

3.3.3. Technical noises

We have seen that the signal-to-noise ratio of the weak value amplified beam
deflection measurement is never better than amplifying the deflection with a lens
or measuring it in the far field. Yet, weak value amplification has an advantage
compared to the other two methods: technical noise of the optical components
can be suppressed.

Technical noise is introduced by the technical components of a measurement
device. It is for example a limited detector resolution or noise caused by random
jiggling of the components from temperature changes or air fluctuations.

The weak value method is now compared with regard to technical noise with the
two alternative methods discussed in the above section. The analysis follows the
one of [48]. In this section the technical noise is modeled as additional shifts on
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ℛwva (φ=0, α=0.)

ℛwva (φ=π, α=0.79)

ℛwva (φ=3.12, α=0.66)

Figure 3.15.: SNR dependent on L. The curve show the SNR for several phases
ϕ. As parameters Lf = 0.45 m, w0 = 800µm, λ = 810 nm and θ = 5µrad are
chosen as realistic laboratory values. α is optimized for each phase. SNRwva

remains smaller than SNRlens for the L that are considered, even when both α
and ϕ are optimized (blue line).

the detector introduced by the components of the measurement system. However
in a realistic laboratory environment a modulation introduced by the detector
would rather correspond to, for example, a limited detector resolution due to a
certain pixel size. This shift shall be denoted with δxi, where i is a placeholder
for the different shifts observed.

The goal is to measure the shift introduced by a beam displacement θ, δxθ. Any
other δxi is technical noise introduced by the components of the measurement
setup.

Far field measurement For the far-field measurement only the detector can
introduce an additional shift. Any translation d′ = δxd of the detector, as shown
in Fig. 3.16, influences the detected shift. The ratio of the shifts δxθ and δdd is

Rfarfield =
δxθ
δxd

=
Lθ

d′
. (3.63)

We see that the deflection θ can only be detected when either δxd is small or
the deflection is big. Using a laser beam with a small waist and introducing only
a small deflection, the detector modulation might already make it impossible to
detect the signal. The modulations are less significant if a beam with a larger
waist is used.

Lens measurement In the measurement setup with the lens several modulations
can affect the signal δxθ = fθ. Detector modulations impact the signal the same
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L

θ

θ

detector

d'

Figure 3.16.: A beam is deflected by an angle θ, which is detected at the far
field at distance L. The detector introduces a noise δxd = d′.

way as in the far field measurement, δxd = d′. In addition the lens can be tilted,
introducing a shift δxq = fθq, as shown in Fig. 3.17. The ratio between the shift
we want to detect and the shift due to the noise is given by

Rd
lens =

δxθ
δxd

=
fθ

d′
(3.64)

Rq
lens =

δxθ
δxq

=
fθ

fθq
=

θ

θq
. (3.65)

In this measurement the beam waist at the detector is small, as the detector is
placed at the focus of the lens. Hence, detector modulations might be of the
same order as as the signal we want to measure. The method does not suppress
technical noise.

f
θ θ

detector

d'

θq

Figure 3.17.: A beam is deflect by an angle θ, which is amplified using a lens
with focal length f . The detector introduces a noise δxd = d′ and the lens a noise
δxq = fθq.

Weak value amplification This result is different for the weak value amplifi-
cation method. For a more general scenario assume the signal to be measured

49



3. Interferometric measurement device for small beam deflections

is given by δxθ = dAw whereas the detector signal is given by δxd = d′. The
technical noise ratio is therefore

Rd
wva =

δxθ
δxd

=
dAw
d′

. (3.66)

In this equation the deflection at the detector scales with the weak value Aw.
Therefore, for a large weak value, the signal scales better than the detector modu-
lation, outperforming the lens or far field measurement, where the detector jiggling
and the signal are of the same order of magnitude.

For the experiment of this thesis the signal we want to measure is given by

δxθ =
[
LRe[(σz)w] + (

(L−Lf )Lf

zR
− zR) Im[(σz)w]

]
θ. Calculating the ratio we arrive

at

Rd
wva =

δxθ
δxd

=

[
LRe[(σz)w] + (

(L−Lf )Lf

zR
− zR) Im[(σz)w]

]
θ

d′
. (3.67)

In Fig. 3.18 the ratios Rd
lens and Rd

wva are depicted in dependence of the phase
ϕ. For the lens a focal length of f = 0.5 m is chosen. A big detector modulation
of 100µm is assumed. The deflection of the beam is assumed to be θ = 50µrad,
which corresponds to a beam overlap of γ = 95%. The waist of the beam is placed
at Lf = 0.5 m. For the beam the parameters w0 = 800µm and λ = 810 nm are
chosen again, and for the parameter adjusting the beam amplitudes α = 44◦.

For those values Rd
lens = 0.25, which is shown as a black line in Fig. 3.18. The

beam overlap of γ = 95% is far from ideal, decreasing the visibility and hence also
decreasing the weak value. Still, for almost all ϕ the ratioRd

wva > Rd
lens, sometimes

even almost 16 times larger. This means that the weak value amplification method
suppresses technical noise of the detector very well.

In fact, the method is able to suppress all technical noise that appears behind the
interferometer. This is easy to see when assuming that d′ is not only the detector
modulation but some shift introduced by other components. These might for
example be a beam splitter which separates the beam behind the interferometer
output so that two detectors, one in the near field and one in the far field, can be
used. In this case Eq. 3.67 still holds. The modulations are small compared to a
displacement amplified by a large weak value.

The calculation for technical noise introduced by components inside the in-
terferometer is not as straight forward. These modulations could for example
stem from a shaky mirror or from the Dove prism being misaligned, introducing
a momentum kick into a beam that enters the Dove prism on the heights of its
axis.

All those modulations are weak value amplified. This is because the two beams
in the interferometer are spatially separated from each other. A small modulation
in one arm will not influence the other arm, hence the weak value amplification
works. A possible modulations is displayed in Fig. 3.19. Here, the Dove prism is
misplaced and introduces a additional angle θq.
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Figure 3.18.: The ratio of signal to noise introduced by detector modulations
dependent on the phase ϕ for different L. As parameters θ = 50µrad, Lf = 0.5 m,
f = 0.5 m, α = 44◦, w0 = 800µm, λ = 810 nm and a detection modulation
of d′ = 100µm are chosen. For almost all ϕ the the weak value amplification
method performs much better than the lens method, leading to stark suppression
of technical noise.

The modulation which stems from a misplaced Dove prism can be calculated
with an interaction

Û = P̂A ⊗ e−iεxq̂ + P̂B ⊗ 1 (3.68)

acting on a initial state |ψ〉⊗ |Φ0〉. Here, the Dove prism introduces a momentum
kick q into one arm and leaves the other arm unaffected (because it is only placed
in one arm). As before is useful to express the distance with respect to L: The
dove prism is placed at a position 0 < LD < Lf < L, and the distance from the
Dove prism to the waist is expressed as Lf − LD. Then the pointer shift can be
calculated to be

δxq =
(

(L− LD) Re[(P̂A)w] + (
(L− Lf )(Lf − LD)

zR
− zR) Im[(P̂A)w]

)
θq . (3.69)

We see that the modulation θq is indeed weak value amplified. The ratio between
the modulation δxθ and δxq is

Rq
wva =

δxθ
δxq

=

(
LRe[(σz)w] + (

(L−Lf )Lf

zR
− zR) Im[(σz)w]

)
θ(

(L− LD) Re[(P̂A)w] + (
(L−Lf )(Lf−LD)

zR
− zR) Im[(P̂A)w]

)
θq
.

(3.70)
The nominator and the denominator are of the same order. However, this ratio
is higher than Rq

lens for certain ranges, so that the weak value amplification still
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beam splitter
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θ
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Figure 3.19.: A beam is deflect by an angle θ, which is amplified using a interfer-
ometric weak value amplification setup. The detector introduces a noise δxd = d′

and the Dove prism a noise δxq ∝ θq.

performs better than a measurement with a lens. In Fig. 3.20 the noise ratios for
a lens respectively Dove prism modulation of θq = 100µm is shown. θ = 50µm
is chosen as the deflection to be measured, together with α = 44◦, w0 = 800µm,
λ = 810 nm. The Dove prism is placed LD = 0.4 m and the waist Lf = 0.5 m
behind the mirror. Evidently, for some ϕ the weak value method performs better
than the measurement with the lens. Sometimes the ratio is even larger than
1. However, in contrast to the modulations behind the interferometer, the weak
value amplification method does not perform much better.

For other modulations inside of the interferometer one arrives at the same con-
clusion, as modulation Eq. 3.68 can model any other modulation inside the inter-
ferometer.

3.3.4. Further comments on the methods

As we have seen, the signal-to-noise ratio of the weak value amplification method
is at best as good as the one of a magnifying lens or of a far field measurement. On
the other hand, it is possible to strongly suppress technical noise of components
behind the interferometer, which is not possible with the other methods. Thus,
since technical noise is part of any experimental setup, weak value amplification
has the potential to outperform the other methods.

Some more aspects of the weak value method are worth mentioning: It would
allow to employ detectors with larger pixel size. This follows from Eq. 3.65 and
Eq. 3.67 for the detector modulations: d′ could also be the pixel size. If it is larger
than the shift introduced by the lens, the shift remains unobservable, as it would
not go beyond the pixel width. The amplified shift of the weak value amplification

52



3.3. Comparison with alternative measurement methods

0
π

2
π

3 π

2
2 π

0.0

0.5

1.0

1.5

2.0

φ

ℛ

ℛlens (θq=100µm)

ℛwva (L=Lf, θq=100µm)

ℛwva (L=zR, θq=100µm)

ℛwva (L=5m, θq=100µm)

Figure 3.20.: The ratio of signal to noise introduced by the lens and the Dove
prism modulations dependent on the phase ϕ for different L. As parameters θ =
50µrad, α = 44◦, w0 = 800µm, λ = 810 nm and a lens respectively Dove prism
modulation of θq = 100µrad are chosen. The Dove prism is placed LD = 0.4 m
and the waist Lf = 0.5 m behind the mirror. For some ϕ the weak value method
performs better than the measurement with the lens, however not much better.

method could, in contrast, go beyond the pixel width and would be detected on
the neighboring pixel. Having a detector with a bad resolution would affect the
precision of both methods, but the weak value amplification method would suffer
less.

Weak value amplification is also more suitable to handle a highly sensitive
detector, which saturates at low intensities. The lens is used with an intensity
just before the detector saturates. Decreasing the intensity would then decrease
the precision of the measurement with the lens. Here lies another merit of weak
value amplification: As the amplification effect occurs in low intensities due to
the postselection, the detector does not saturate, and the precision is not affected
by reducing the intensity. If the detector saturates at intensity N of Eq. 3.49,
the weak value method allows to increase the intensity by a factor 1/Pps until the
detector saturates, with Pps being the postselection probability. This increases
the signal-to-noise ratio by a factor 1/

√
Pps

Another aspect is that the weak value amplification method allows the detec-
tion of both position shifts and angular deflections in one measurement. This
is because the shift at the detector, wherever it is placed, contains amplification
of both deflections. With the two alternative methods this is more challenging
because the detector has to be placed at different positions for the position shift
detection and the momentum shift detection. In general, it could be implemented
by splitting the beam behind the displacement or the lens, and putting up two
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3. Interferometric measurement device for small beam deflections

screens. However, this would very likely introduce new technical noise, decreasing
the precision.

Using two detectors is likewise possible in the weak value amplification method,
with the difference that additional noise introduced by, for example, a beam split-
ter behind the interferometer is suppressed. If one detector is placed in the near
field and the other in the far field, two sets of data can be obtained simultaneously
for one deflection measurement. With the distance between both detectors, the
position of the beam waist can be extracted from the data with a fit. This is
another merit of the weak value amplification method.

In addition, a related experiment should be mentioned. In [53] angular beam
displacements were measured precisely by evaluating the fringe pattern at the
output of an interferometer. Interestingly, the interferometer was very small, con-
sisting of only a polarizing cube beam splitter, a right-angle prism and a cube cor-
ner reflector. With this sensor, angular deflections of up to 1µrad were observed.
This experiment demonstrates that, in principle, our weak value amplification
measurement device could be compressed to a much smaller setup, combining the
advantages of the compact lens method with the merits of weak value amplifica-
tion. It would also be interesting to demonstrate if postselecting would enhance
the precision of the sensor used in [53].

In conclusion, none of the presented methods always outperforms the other
methods. Using a lens to magnify the deflection is a compact setup with a signal-
to-noise ratio as good as detecting the beam in the far field. However, detector
jitter cannot be suppressed. The weak value amplification method has a signal-
to-noise ratio performing often worse than the one of the measurement with the
lens. Conversely, however, this means that the method can become just as good
as the lens while technical noise behind the interferometer is strongly suppressed.
Additionally, the position of the beam waist can be determined using two de-
tectors. The setup presented here is a rather large prototype with many optical
components, but it could possibly be compressed when using an interferometer as
[53]. Then, the susceptibility to noise could be reduced even further, resulting in
a precise measurement device.
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4. Experiment

This chapter explains the experimental realization in detail. Instead of a Mach-
Zehner interferometer, we have chosen an Sagnac-like interferometer since a Sag-
nac-like interferometer is constructed such that the two arms of the interferometer
use the same optical components, which increases its stability.

As explained in Chapter 3, the interferometer is also implemented in polar-
ization space. Hence, the interferometer and the postselection were set up in
polarization space, which made the alignment more difficult. In this chapter we
will discuss difficulties we encountered and how we were able to overcome several
of them. For the remaining ones we propose solutions.

Finally, we devise an algorithm to fit the theoretical model derived in Chap-
ter 3 to empirical data. We present preliminary laboratory data of a deflection
measurement relative to the Dove prisms and discuss the results.

4.1. Optical components

The behavior of the optical components in the experimental setup are essential for
the experiment. As mentioned in Chapter 2 light has several polarization states,
visualized as qubit states on the Bloch sphere. In the so-called “Jones calculus”
[54] optical components are represented using matrices. Acting of those matrices
on the qubit states will result in a new qubit state, representing the change light
undergoes when passing optical components [11].

4.1.1. Linear polarizer

A linear polarizer is an optical component that blocks light of a certain linear
polarization, while it lets light of other polarizations pass through. This way,
unpolarized light is transformed into light with a well-defined polarization, or
light of a certain polarization can be transformed to another polarization [11, 13].

The matrix for a general polarizer with the transmission axis tilted by an angle
of θ to the horizontal axis of light is written as [13]:

P (θ) =

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

]
. (4.1)

Here we see that if θ = 0◦ then P = |H〉〈H|, thus the polarizer only selects
horizontally polarized light. It acts as a projector on one specific vector, the |H〉-
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state. Vice versa, for θ = 90◦ the polarizer only transmits vertical light, becoming
an projector on the |V 〉-state. For θ = ±45◦ the polarizer selects light with |P 〉,
respectively |M〉-polarization.

The linear polarizer does not change the polarization of circular polarized light.
This becomes evident when the matrix acts on one of the two circular polarization
states, e.g. |R〉. The resulting state is a state

P (θ) |R〉 =
1√
2

[
cos2 θ + i cos θ sin θ
cos θ sin θ + i sin2 θ

]
. (4.2)

Taking a look at the intensity of this state, I ∝ |P (θ) |R〉 |2 = 1
2

= 1| |R〉 |2 we see
that it remains constant: It is half of the initial amplitude.

Malus’s law for linear polarizers [10, 11] explains this result. It states that a po-
larizer placed into polarized light with angle θ to the initial polarization direction
of the light transmits I0 cos2 θ of the initial intensity of the light. Since circular
polarized light changes the polarization direction over one period, describing a
circle, the angle θ changes. The intensity is then just calculated with the average
value of cos2 θ, which is 1

2
.

For elliptical light however, the intensity fluctuates. Over one period the elec-
trical field vector changes its length, describing an ellipse. Hence, for different
angles different fractions of horizontal and vertical light is transmitted, resulting
in an intensity modulation.

4.1.2. Half-wave plate

A wave plate alters the polarization of light that travels through it [11]. Wave
plates have two axes, with different refractive indices. Light on one axis therefore
travels faster than the light on the other axis, resulting in a phase shift between
the two components of light. The axis with lower refractive index, that is, where
the light travels faster, is called the “fast axis” [13].

A half-wave plate (HWP) rotates the linear polarization of light along some
angle. The matrix for a general half-wave plate with the fast axis tilted by an
angle θ to the horizontal axis of light is [13]:

H(θ) =

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]
. (4.3)

We see that for θ = 0◦ it leaves horizontal light unaffected and it introduces a
global phase of π to vertical light. It changes plus polarization to minus polariza-
tion and vice versa. For θ = 45◦ horizontal light is rotated to vertical light and
vertical to horizontal. Plus stays plus and minus gets a global phase of π. For
both angles right handed light changes to left handed light and vice versa, with
the light obtaining additional phases for θ = 0◦.
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4.1.3. Quarter-wave plate

A quarter-wave plate (QWP) changes linear polarized light to elliptical polariza-
tion and elliptical polarized light to linear polarization [11]. Its matrix is [13]:

Q(θ) =

[
cos2 θ − i sin2 θ (1 + i) sin θ cos θ

(1 + i) sin θ cos θ sin2 θ − i cos2 θ

]
(4.4)

where θ again denotes the angle of the fast axis to the horizontal axis of light.
For θ = 45◦ the quarter-wave plate changes horizontal light to right handed

light and vertical light to left handed light. Plus polarization remains unchanged,
minus acquires an additional global phase of −π/2. Right handed light is changed
to vertical light and left handed light to horizontal light.

For an arbitrary linear polarization the action of the quarter-wave plate is as
follows

Q(45◦)[cosα |H〉+ sinα |V 〉] =
1√
2

[
cosα exp

(
−iπ

4

)
|R〉+ sinα exp

(
i
π

4

)
|L〉
]

' 1√
2

[
eiα |H〉+ ie−iα |V 〉

]
, (4.5)

omitting the global phase, which is elliptically polarized light.

4.2. Interferometric setup

This section describes the the fundamental idea of the experimental setup. We
motivate our choice of a Sagnac-like configuration over a Mach-Zehnder interfer-
ometer and give the technical specifications of the setup.

4.2.1. Sagnac-like configuration

For the experiment we have chosen a Sagnac-like interferometer. In a Sagnac
interferometer [55] a beam splitter splits a single beam into two beams. They
then travel in opposite directions through the interferometer, hitting the same
three mirrors until they reach the beam splitter again. Usually, in a Sagnac
interferometer both beams travel along exactly the same path and thus hit every
component at the same place [11].

This has two advantages over a Mach-Zehnder interferometer, which was used
for the theoretical calculations. Firstly, a Sagnac-like configuration is easier to
align. In usual Sagnac setups the two beams overlap and therefore have the exact
same path length. The different phase between the two beams can, for example, be
introduced by rotating the whole interferometer [55, 56]. For our experiment we
need to spatially separate the arms of the interferometer to be able to insert Dove
prisms in both of the arms. Separation of the beams can be achieved by moving the
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first or third mirror so that the position on the beam splitter for the incoming and
outgoing beam is no longer identical. The beams still hit the same components on
spots close to each other. Fluctuations and irregularities on the components, like
expansions of components, will therefore affect both beams, making a Sagnac-like
interferometer easier to align than a Mach-Zehnder interferometer.

Furthermore, this configuration is rather stable against phase fluctuations be-
cause fluctuations change the path length of both arms, and therefore they do
not introduce phase changes. In a similar setup to the one presented in this
thesis, Dziewior et al. [8] used a Mach-Zehnder interferometer to measure small
beam displacements. In it, even small fluctuations of the mirror changed the path
length in only one arm and thus changed the phase, which was not wanted. To
overcome this obstacle, Dziewior et al. had to obtain data over a full period of the
phase. They were able to eliminate the phase fluctuations by post-processing the
data. Another method, even more cumbersome, would be to stabilize the phase
fluctuations.

In order to deliberately change the phase in the interferometer, as we want to do
it, one could, for example, place and rotate a thin glass plate in one of the arms.
In our experiment we introduce a phase behind the interferometer by projecting
on certain polarizations, which is described in the following section.

4.2.2. Plan for experimental setup

These considerations motivate the fundamental idea for the experimental setup.
The first steps of implementing the setup are described in detail in Zerweck’s
Bachelor thesis [57]. Fig 4.1 shows the plan with all the components to be ex-
plained in this section (with the labels used in the figure in brackets). The setup
was implemented this way initially. However, several components had to be al-
tered when they showed erroneous behavior. All alterations are explained in the
following sections.

In the experiment a laser with wavelength 810 nm is used. A photodiode is
placed on a laser stage in front of the experiment to serve as a reference to sub-
tract laser fluctuations. It is therefore called reference diode. The light for the
experiment itself is coupled into a fiber. The collimator, where the beam enters
the experiment, is set so that the emergent Gaussian beam is collimated, i.e. that
it has the minimal beam divergence.

A half-wave plate (HWP 1) is placed after the collimator to rotate the polariza-
tion to maximize the output intensity. Moreover, two mirrors are placed behind
the collimator. They change the propagation direction of the beam so that the
available space on the optical table can be used optimally. Both will introduce
the weak spatial and angular deflection we want to measure when the whole ex-
periment is set up. While setting up the interferometer, they are placed so that
the beam travel parallel to a row of holes on the optical table.
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linear polarizer 2
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position resolving 
detector NEAR
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BS

position resolving 
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Figure 4.1.: The originally planned experimental setup with all components.

A polarizer (linear polarizer 1) behind the second mirror polarizes the beam.
We chose vertical polarization. Behind it, a variable half-wave plate (HWP 1) is
placed. Together with a polarizing beam splitter (PBS) right behind it, it sets
the amplitudes of the two resulting beams: In the polarizing beam splitter the
horizontal component of light is transmitted (the resulting arm is labeled “A”),
while the vertical component is reflected (the resulting arm is labeled “B”). With
the half-wave plate the ratio of horizontal polarization versus vertical polarization
is adjusted, and therefore the amplitudes of the resulting polarized beams in the
interferometer are set. The state of the interferometer is described by

|ψ〉 = cosα |H〉 ⊗ |A〉+ sinα |V 〉 ⊗ |B〉 , (3.13 revisited)
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with the polarization degree of freedom and the path degree of freedom. Note that
using a polarizing beam splitter has the effect that the interferometer effectively
has only one output port. When the beams enter the polarizing beam splitter
again, the horizontal beam enters from below (in the bird’s eye perspective in
Fig. 4.1) and is transmitted, while the vertical beam enters from the right and
is reflected by 90◦, hence leaving the interferometer at the same output than the
horizontal beam. The outer port remains dark (except for imperfections).

We use a a retroreflecting prism instead of two mirrors to facilitate setting up
and aligning the interferometer. Two reflecting surfaces are attached with a 90◦

angle, such that a beam will be reflected back parallel to the incident direction.
A third mirror (mirror 3) is then set up so that it separates the beams inside the
interferometer. A large separation is obtained using a 2 inch mirror. Slight tilts
of the mirror can introduce misalignment to the interferometer.

After the polarizing beam splitter the two beams overlap again, forming the
state of Eq. 3.13. They do not have any phase difference, and they do not inter-
fere, as they have opposite polarization. Tracing out the polarization degree of
freedom demonstrates this: The result is a mixed state cos2 α |A〉〈A|+sin2 |B〉〈B|.
Projecting on an output and calculating the intensity at the output, as in Eq. 3.4
results in I = 1. The intensity is not dependent on a phase between the two
beams; therefore the beams do not interfere.

To see an interference, it is necessary to project on a polarization. This is done
by placing a quarter-wave plate (QWP) and a linear polarizer (linear polarizer
2) behind the polarizing beam splitter. If the optical axis of the quarter-wave
plate is set with an angle of 45◦ to the horizontal polarization, all states of linear
polarized light, except for plus and minus polarization, are converted to elliptically
polarized light, as explained in Section 4.1. The quarter-wave plate consequently
introduces an arbitrary phase difference between the horizontal and vertical light,
which leaves the interferometer.

The linear polarizer behind the quarter-wave plate projects the elliptical light
on a certain polarization, as seen in Section 4.1. Rotating the polarizer projects
on different states. This means that with the rotation of the polarizer, the phase
between the two arms can be controlled, and rotating the polarizer changes the
resulting interference.

With this combination of quarter-wave plate and linear polarizer, we are con-
sequently able to interfere the two beams, to change the phase between the two
arms, and thus change the resulting interference. In other words, we can posts-
elect on a state |φ〉 = 1

2
(|H〉 + eiϕ |V 〉) ⊗ (|A〉 + |B〉) where the phase ϕ can be

chosen arbitrarily.
The projection performed by the quarter-wave plate and polarizer is therefore

expressed as

|φ〉〈φ| = 1

4

[
(|H〉+ eiϕ |V 〉)(〈H|+ e−iϕ 〈V |)

]
. (4.6)
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Now calculating the intensity with Eq. 3.4 yields

I = Tr[|φ〉〈φ| |ψ〉〈ψ|] =
1

4
[1 + 2 cosα sinα cosϕ] , (4.7)

clearly showing a phase dependency. The arms interfere as a result of the projec-
tion.

In Fig. 4.2 the postselection state |φ〉 = |H〉 + eiϕ |V 〉 is represented on the
Bloch sphere. It is a vector in the x-y plane of the coordinate system. The state

|φ′〉 = cos
(
ϕ′

2

)
|H〉 + sin

(
ϕ′

2

)
|V 〉 is the state we detect behind the polarizer. ϕ′

is the rotation angle of the polarizer towards the horizontal axis. The quarter-
wave plate maps |φ′〉 on the postselection state |φ〉, where ϕ = π

2
− ϕ′, using the

convention of Section 4.1. This way, the rotation of the polarizer sets the phase
of the postselection state.

Figure 4.2.: The postselection represented in the Bloch sphere. |φ〉 = |H〉 +

eiϕ |V 〉 is the postselection state in the x-y plane. The state |φ ′〉 = cos
(
ϕ′

2

)
|H〉+

sin
(
ϕ′

2

)
|V 〉 is the state detected behind the polarizer. The quarter-wave plate

maps |φ ′〉 on |φ〉 which the following relation: ϕ = π
2
− ϕ′.

We want to observe the interference both in the near and in the far field. There-
fore, the light is split after the polarizer with a regular, non-polarizing beam split-
ter. One beam is then detected at a position sensor close by, the near detector,
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while the other beam travels across the table to a retroreflecting prism (not pic-
tured in Fig. 4.1) and back again before it arrives at another position sensor, the
far detector.

When the rest of the setup is finalized, the two Dove prisms are placed in the
arms of the interferometer. The Dove prism in arm A (Dove prism A) is placed
such that it mirrors the deflection in y-direction. The prism in arm B (Dove prism
B) is rotated by 90◦ around its axis, hence lying on its side, so that it reflects the
deflection in y-direction.

4.2.3. Technical specifications and motorization of setup

In our experiment it is essential to rotate the linear polarizer to different angles
while continuously measuring the position of the beam. We call this a “phase
scan”, as the phase ϕ of the postselection state is changed. The term “full phase
scan” therefore means that the phase of the postselection state is changed over a
whole period of ϕ. This phase scan could, in principal, be done by rotating the
polarizer by hand and taking a picture with a CCD camera for each angle, as it
was done in [57]. Then, the center of masses can be computed from the pictures
and plotted versus the angles. However, rotating a polarizer by hand precisely
and processing many pictures is tedious and time-consuming.

Therefore, the experiment was motorized and can now be controlled with a com-
puter program written in C++ by Jan Dziewior, a software called “experimental
control”. Both the half-wave plate that sets the beam amplitudes, as well as the
linear polarizer have been mounted into motorized rotary stages and connected
to the software. A third motor was placed in such a way that it can block one
of the interferometer arms, the other arm, or no arm at all. Blocking one arm
makes it possible the compare the weak value amplification method with the far
field method described in Section 3.3.

The position sensors and the reference diode are connected to a voltmeter.
From the voltages obtained from the position sensor, the position of the beam
is calculated with the software. The operating mode of these sensors will be
explained in more detail in Section 4.5. The voltages recorded at the reference
diode are used to eliminate the laser signal from fluctuations.

The experiment control software is able to rotate the polarizer while simulta-
neously reading out the position of the beam. It then stores the data in a file,
which lists the angle of the polarizer, the x position, the y position and the total
intensity in a table. This file can then be evaluated with an external program.
We wrote MATLAB scripts for this purpose.
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4.3. Fit algorithm for deflection measurement

The goal of the finalized setup is to measure small beam displacements d and
deflections θ that occur outside of the beam, by making use of two Dove prisms.
Without them, an outside deflection cannot be detected. However, we can still
measure deflections inside the interferometer which allowed us to develop a fitting
procedure that facilitates the evaluation of any displacement measurement data
in our experiment, analogue to the alignment method presented in [8].

The goal is to determine the deflection by fitting the theoretical model to the
data obtained in a full phase scan of the phase ϕ. The deflection can also be
determined by measuring the center of masses for both single beams in the inter-
ferometer, when the other arm is blocked. From the difference of the center of
masses at the near and far detector the angle can be calculated. This corresponds
to the far field method of Section 3.3 and allows a comparison with the results
obtained from the fit.

The measurement consists of three steps: First, one arm of the interferomenter
is blocked and the position and intesity of the remaining single arm is measured at
the near and far detector. Then, the other arm is blocked and the measurement
repeated. Finally, both beams are unblocked, revealing the interference at the
detector. The half-wave plate in the postselection setup is rotated over a full
period of the phase ϕ and for each ϕ the position of the center of mass of the
interference is recorded, together with the beam intensity at the center of mass.
For each detector one set of data is obtained from the measurement, containing
the x and y position of the beam and the beam intensity.

The angular deflection can be determined from the single beams. The center of
masses of the beams have a distance lnear and lfar at each detector. The angle θ
between the two beam is derived as

θ = arctan

(
|lfar − lnear|

L

)
(4.8)

where L is the distance between the two detectors. Since this method only depends
on the center of masses of the single beams, which can be measured precisely at
high intensity, the angles obtained from the calculations are rather trustworthy.
Hence, these results are used to verify the correctness of the results obtained from
the fit.

To determine the deflection from the interference the equation for the pointer
deflection derived in Chapter 3 is fitted to the data set. Depending on the position
of the deflection it makes sense to use different models. The outside deflection
can be modeled with both equations from Chapter 3, Eq. 3.40 with the projection
operator on arm j, (P̂j)w, here written in 2 dimensions only

δR = d+ zθ − (2d+ 2zθ) Re[(P̂j)w] + (2zRθx − 2
z

zR
d) Im[(P̂j)w] (3.40 revisited)
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or Eq. 3.47 which uses the weak value (σz)w,

δR = dRe[(σz)w]−zRθ Im[(σz)w]+zθRe[(σz)w]+
z

zR
d Im[(σz)w] . (3.47 revisited)

Due to the geometry of the Sagnac-like setup, where the two beams hit the same
components, it makes sense to model the inside deflection with Eq. 3.47 as well.
Deflections affecting only one arm are modeled similar to the technical noise mod-
ulations in Eq. 3.68, resulting in a pointer shift similar to Eq. 3.47, but with the
weak value of a projector on the arm, (PA)w or (PB)w, rather than (σz)w. One
could also use Eq. 3.47 again, but taking a factor 1/2 into account, since only one
arm of the interferometer is deflected, not both.

Since the deflection in x and y position can be modeled to be independent of
each other, the 2 dimensional models can be fitted to both the data for x and y
direction. For the model Eq. 3.40 one should take into account that for x and y
deflection either the projector on arm A or arm B is used.

The fit function is dependent on several parameters. Most are known or can
be calculated from the measurement, only three are determined by the fit. The
properties of the beam are known: The waist is w0 = 800µm and the wave length
λ = 810 nm. This corresponds to a Rayleigh length of zR = 2.4 m and a beam
divergence of θdiv = 300µrad.

From the ratio of the intensities in the single arms the parameter α can be
determined. As the intensity (given as a voltage) for arm A is VA = cos2 α and
the intensity in arm B is VB = sin2 α,

α = arctan

(√
VB
VA

)
. (4.9)

From the intensities of the interference the visibility, Eq. 3.5, of the system can
also be deduced for both near and far detector:

V =
max(Vsum)−min(Vsum)

max(Vsum) + min(Vsum)
. (4.10)

Ideally, the visibility for both detectors is the same. Using V = 2γ cosα sinα,
Eq. 3.9, the overlap of the two beams, γ is calculated:

γ = V 1

2

1

cosα sinα
= V 1 + tan2 α

2 tanα
. (4.11)

The intensity distribution with respect to the phase ϕ follows a sinusoidal curve.
The phase scan does not necessarily start at ϕ = 0, depending on the position of
the polarizer. Hence, fitting a sinus curve to the intensity determines the phase
offset.

Now, only three parameters remain: the deflection parameters d and θ and the
distance from the waist to the detector z. There are two options to perform the
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(a)

(b)

Figure 4.3.: The simulated
center of mass of the interfer-
ence for a deflection of dx =
50µm, dy = 320µm, θx =
26µrad and θy = 15µrad.
(a) shows the ellipse at a de-
tector with distance 0.3 m to
the waist and (b) for a de-
tector with 2.573 m from the
waist. The colors illustrate
the phase between the inter-
fering beams.

fit: The first method fits the model to the data of the near and of the far detector
independently, which gives d, θ and z for each detector. Ideally, the obtained
deflections are the same for each detector. The two obtained positions from the
waist to the detector znear and zfar locate the waist at the same position in a good
fit.

The second method uses the known distance L between the near and far detector
and fits therefore only one z position. The position of the near detector is expressed
as znear, while the position of the far detector is zfar = znear +L. In the fit, function
δR(z, ϕ, ...) is fitted to the data from the near detector, while simultaneously a
function δR(z+L, ϕ, ...) is fitted to the data from the far detector. In the process
the distance between the near fit and the far fit is minimized with respect to both
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the data points obtained from the near detector and the far detector. This way,
only one set of fit parameters d, θ and z is obtained from the fits to the two
datasets of the near and far detector.

Both alternative fit procedures should determine the same deflections and waist
position. However having two methods offers the possibility to compare the results
and determine if one methods gives more reliable results.

We have generated a data set theoretically for a beam with a deflection dx =
50µm, dy = 320µm, θx = 26µrad and θy = 15µrad. The distance for the waist
to the detector was chosen as znear = 0.3 m and zfar = 2.573 m. α is chosen to be
43.5◦. The generated ellipse is shown in Fig. 4.3 for both detectors. The red and
blue x-es indicate the center of mass for a singe beam when the other arm of the
interferometer is blocked. The colorful crosses indicate the interference pattern
where the phase between the two beams is encoded in the color of the cross. A
weak value amplification effect is visible, as in regions of destructive interference,
that is where the phase ϕ is close to π, the distance between the center of mass
of the ellipse and the single beams is greater than the distance between the two
single beams.

Fig. 4.4 shows the calculated x (blue dots) and y positions (red dots) of the
interference dependent on the phase ϕ. An amplification of the deflection is visible
around ϕ = π. The solid lines are the fits of the model to the data, using the fit
algorithm which minimizes the two fit functions δR(z, ϕ, ..) and δR(z + L, ϕ, ...)
with respect to both data sets.

The fit calculates a deflection of

Near, Far

dx [mm] 0.04994

dy [mm] 0.32063

θx [mrad] 0.26164

θy [mrad] 0.15094 .

(4.12)

Notice that this fit method yields one set of fit parameters for both data sets.
The detector positions with respect to the waist is found as znear = 0.30146 m
and zfar = 2.54846 with the x position data. The y position data yields znear =
0.30925 m and zfar = 2.55625 m. The difference between the results amounts to
0.0078 m for both detector positions, less than one centimeter. Alpha was found
to be α = 43.5◦.

These results agree with the chosen deflections, the chosen detector positions
and the chosen α.
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(a)

(b)

Figure 4.4.: The simulated
positions of the center of
mass of a interference for a
deflection of dx = 50µm,
dy = 320µm, θx = 26µrad
and θy = 15µrad, depen-
dent on the phase ϕ. (a)
shows the ellipse at a detec-
tor with distance 0.3 m to
the waist and (b) for a de-
tector with 2.573 m from the
waist. The colors illustrate
the phase between the inter-
fering beams. The dots in-
dicate the data points, while
the solid lines are the model
fitted to the data.

4.4. Avoiding fringes introduced by polarizing beam
splitters

As it was stated in Zerweck’s Bachelor thesis [57] several polarizing beam split-
ters (PBS) have been analyzed. All showed some irregularities and unexpected
misbehavior. Some showed the best contrast when they had an angle towards the
beam larger than 45◦. The beam splitter we then wanted to use introduced some
fringes into the vertically polarized beam.

We therefore set up another beam splitter. This one is also a cubic beam
splitter. Those beam splitters consists of two glass prisms attached to each other.
Unfortunately it turned out that is also introduces fringes in the reflected beam.
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A possible explanation for the fringe pattern is that the surfaces where the
two prisms are glued together might be imperfect. The reflection on the surface
possibly introduces the fringe pattern into the beam.

Since we use a polarizing beam splitter the interferomter has effectively only
one output port. Behind it, the horizontal beam was transmitted twice through
the polarizing beam splitter, while the vertical beam was reflected twice. We
put a half-wave plate with angle 22.5◦ inside the interferometer, which allowed to
detect light also at the dark port. Behind it, both beam have been transmitted
and reflected twice.

At the dark port no fringe pattern was visible. We conclude that the second
reflection of the vertical beam caused the issue, which is avoided when using the
other output port.

We therefore placed a half-wave plate inside the interferometer which rotates
the beam polarizations |H〉 → |V 〉 and |V 〉 → |H〉. This way, no fringe pattern is
introduced any more. In order to guarantee large beam separation and not block
one of the arms with the wave plate mount we use a relatively large wave plate
and cut the mount on one side.

4.5. Intensity dependence of the voltmeter

In our experiment we want to be sensitive in regions of low intensity, because with
destructive interference the weak value amplification is the highest. We also want
to have a good visibility, possibly close to 1, since the quality of the amplification
is dependent on the visibility, as seen in Eq. 3.9. Therefore, we need to trust the
position sensor in a large intensity range. The maximal intensity we can achieve
in the experiment is 4 V, which means a voltage corresponding to a minimum
intensity of 0.04 V (1% of the total voltage) would result in a visibility of 98%,
which would yield a satisfying amplification. Above 0.04 V the position detection
hence shouldn’t introduce errors or inaccuracies, else the measurement results
cannot be used. For this reason having a reliable position detection even in low
intensity is essential for the experiment to work.

Unfortunately, we noticed that when reducing the intensity of the beam the
detected position of the beam changed, even when all other components are not
changed. For intensities lower than 0.1 V the center of mass seems to start moving,
up to 2 mm to its initial position, as seen in Fig. 4.5.

The position of the beam is measured using a position resolving detector from
Thorlabs [58], which is a 2D tetra lateral effect sensor. A schematics of such a
sensor is shown in Fig. 4.6. The detection area of the sensor is a small chip with
a resistive layer, consisting of a cathode and an anode on each side (labeled A, B,
C, D in the figure). Incident light creates a photocurrent, which is detected by the
electrodes. The position of the light beam is then calculated from the signal at
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Figure 4.5.: For intensities lower than 0.1 V the detected position of the beam
seems to move up to 2 mm.

each electrode, as the length to the electrode is proportional to the resistance of
the layer [59]. The position (x, y) = (0, 0) is defined as the middle of the detector.

The voltages created from the photocurrent in x direction, y direction and the
total voltage, which is the sum of the x and y voltage, can be calculated from the
signal detected at the electrodes. They are given as [59]:

Vx = (VA + VD)− (VB + VC) (4.13)

Vy = (VA + VB)− (VC + VD) (4.14)

Vsum = VA + VB + VC + VD . (4.15)

The position of the center of mass of the beam is then calculated with the
voltages for x respectively y direction, the sum voltage and the resistance lengths
Lx, Ly of the sensor [59]:

x =
LxVx
2Vsum

y =
LyVy
2Vsum

. (4.16)
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These formulas directly reveal a possible source for errors. If the voltages are
erroneous both nominator and denominator propagate an error. With the variance
formula for error propagation the error for the position x is calculated to be

∆x =
LxVx
2Vsum

√
∆V 2

x

V 2
x

+
∆V 2

sum

V 2
sum

(4.17)

where ∆Vx is the error of Vx and ∆Vsum is the error of Vsum. The measured position
x′ is the sum of the actual position x and the error ∆x, which is a function of the
actual voltages and their uncertainties:

x′ = x+ ∆x = x
(

1 +

√
∆V 2

x

V 2
x

+
∆V 2

sum

V 2
sum

)
. (4.18)

Clearly, for low intensities the errors have a stronger effect on the measured posi-
tion. Therefore, the position measurement for low intensities is more flawed than
for high intensities.

A

B

C

D

Lx

Ly
(0,0)

y
x

Figure 4.6.: Schematics of a 2D
tetra lateral effect sensor to detect
the position of a light beam. A, B,
C, D are the electrodes that detect
the photocurrent created by incident
light.

Since, unfortunately, only the possibly
inaccurate voltages are known and not the
correct voltages, the actual position x can-
not be determined from the data sets we
obtained. However, from practical experi-
ence it is known that the position for high
intensities is measured correctly. Under
this assumption the following analysis was
made.

The Thorlabs sensors have resistance
lengths of Lx = Ly = 10 mm [58]. The
voltages Vx, Vy, Vsum are read out by a volt-
meter and from them the positions of the
beam are calculated with Eq. 4.16 by the
experiment control software. The volt-
meter can also be accessed directly. We
first read off the positions calculated with
the software and then accessed the volt-
meter directly to investigate the quality of
the voltmeter.

In our lab we have three different volt-
meters, which we all tested. Two of them
are common ground voltmeters, the third
one is a differential voltmeter. Common
ground voltmeters are grounded and the voltage is measured as the difference
of the potential of the ground and another point. Differential voltmeters are not
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4.5. Intensity dependence of the voltmeter

grounded, hence the voltage is measured as the difference between to points which
can float around. One speaks of a floating voltage [60].

The voltmeter we used initially, which showed position errors of up to 2 mm,
was a common ground voltmeter. We then tested another voltmeter of the same
kind. This one showed position errors of up to 3000 mm, starting at 0.6 V.

We then tested another voltmeter, this time a differential voltmeter thoroughly
and compared the findings to the ones of the initially used voltmeter. To test the
voltmeters we compared data obtained from several measurement devices with
each other. One measurement device was a power meter, which is able to measure
the power of an optical signal in watts. The other measurement device was a
multimeter, which is, like the voltmeter, able to read off the voltages detected at
the position sensors.

With this method we were able to inspect several aspects at the same time.
In a good voltmeter we assume that with decreasing total voltage the voltages in
the channels for x and y position also decrease linearly. To see if the voltmeter
behaves linearly the voltage of the reference diode was plotted against the intensity
measured with the power meter. The reference diode is able to detect voltages up
to 9 V. While the reference diode behaved linearly up to 8 V for the differential
voltmeter, as shown in Fig. 4.7a, it was only linear until 4 V for one of the common
ground voltmeters which we tested, showed in Fig. 4.7b. This is a good indicator
that the last voltmeter might not behave correctly.

(a) (b)

Figure 4.7.: (a) The reference voltage depending of the power of the beam mea-
sured with a power meter for the differential voltmeter and (b) for a common
ground voltmeter. The common ground voltmeter shows a linear behavior only
until 4 V.

As a second step the voltages of the several channels were plotted against the
total voltage, the reference diode voltage or the intensity measured with the power
meter. This way we were able to tell if the individual channels of the voltmeter
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showed non-linearities. For the two common ground voltmeters this was indeed
the case, while the differential voltmeter showed only linear behavior. In Fig. 4.8
the voltages from the various channels are depicted depending on the reference
voltage. Clearly, one common ground voltmeter behaves non-linear, as shown in
Fig. 4.8b, while the other two voltmeters seem to behave in a linear way.

(a) (b)

(c)

Figure 4.8.: (a) The voltmeter channels depending on the beam intensity mea-
sured with a power meter for the differential voltmeter, (b) The voltmeter channels
depending on the beam intensity for one common ground voltmeter and (c) the
voltmeter channels depending on the reference diode voltage for the other com-
mon ground voltmeter. The first common ground voltmeter shows non-linearities.

We didn’t continue the testing of the common ground voltmeter with showed
position offsets of up to 3000 mm, because this clearly does not behave accurately
given the detector size of 1 cm2. We continued the measurement with the other
two voltmeters that didn’t show this huge position offsets. We measured the
voltages at the position sensors with a multimeter. It has three channels, hence
we were able read out the x, y and sum voltage of the near detector. We attached
the multimeter to the voltmeter channels of the near detector to measure these
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voltages simultaneously. From Eq. 4.17 it becomes clear that for small voltages
even small errors influence the signal drastically. Therefore, the substraction of the
background is very important. In Fig. 4.9 the effect of the background subtraction
is shown. If the background is not subtracted the positions obtained from the
voltmeter start to drift already at 0.2 V. The readout with subtracted background
and the readout from the multimeter stay stable until very low voltages.

Figure 4.9.: The positions for the x-near channel calculated with the multimeter
and the voltmeter. The blue markers indicate voltmeter data without the back-
ground being subtracted, the yellow ones with background subtraction.

Finally, having ruled out one voltmeter and having compared the quality of the
two remaining voltmeters we analyzed the starting point of the position drift in
more in detail. This was done by measuring the position for certain intensities
with both voltmeters. The result is shown in Fig. 4.10. The positions obtained
with the common ground voltmeter (vM08) are marked with crosses, while the
positions obtained from the differential voltmeter (vM04) are marked with x-es.
It is clearly visible that at intensities of 0.02 V the positions obtained with the
common ground voltmeter have drifted up to 0.2 mm, while the positions for
the differential voltmeter have drifted less than 0.05 mm. Hence, the positions
calculated with the differential voltmeter seem to be reliable for a lower voltage.
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Figure 4.10.: The positions obtained with the common ground voltmeter vM08
(crosses) and with the differential voltmeter vM04 (x-es). It is visible that at
intensities of 0.02 V the positions obtained with the common ground voltmeter
have drifted up to 0.2 mm, while the positions for the differential voltmeter have
drifted less than 0.05 mm.

As a result of the analysis we now make use of the differential voltmeter for the
experiment.

4.6. Calibration of the postselection unit

In order to achieve a reliable weak value amplification, the postselection is cru-
cial. On the one hand it is important that the postselection state is well defined.
On the other the spatial mode, acting as the pointer, should not be altered by
the postselction. Unfortunately the postselection utilizing waveplates, which we
initially chose, showed both of these problems.

The postselection unit initially consisted of a quarter-wave plate and a linear
polarizer. With both components it is possible to project on the desired post-
selection state, as explained in Section 4.2. If one arm of the interferometer is
blocked, i.e. only one beam with either horizontal or vertical polarization propa-
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gates in the interferometer, the light is transformed to circular polarized light by
the quarter-wave plate, while the amplitude cosα or sinα remains the same.

This has two consequences. Firstly, since we only have one beam at the out-
put, there is no interference. Rotating the polarizer will therefore not change the
center of mass of the intensity distribution. Secondly, the amplitude of the inten-
sity distribution should remain constant, as the linear polarizer just reduces the
intensity of circular light by one half, like explained in Section 4.1.

These expectations did not match with the actual behavior of the postselection
unit. We observed that the center of mass of the intensity distribution changed for
different angles of the polarizer when one arm of the interferometer was blocked,
resulting in an circular structure on the screen, as seen in Fig. 4.11a, Fig. 4.11b.
Moreover, we observed that the intensity oscillated periodically, see Fig. 4.11c,
Fig. 4.11d. We performed several measurements in a short period of time, which
all yielded these findings, pictured as different curves in Fig. 4.11.

(a) (b)

(c) (d)

Figure 4.11.: For different angles of the polarizer the position of the center of
mass changes (a) in the near and (b) in the far field. An intensity modulation is
also visible (c) in the near field and (d) in the far field.
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4.6.1. Position changes from rotation of optical components

One possible explanation for the movement of the beam when rotating the po-
larizer or the halt-wave plate is that these optical components are not plain but
slightly wedge-shaped. If the facettes of an optical component are parallel, the
beam passes through without getting an angle towards its initial propagation di-
rection. If the facettes are not parallel, according to Snell’s law [10] an angle is
introduced to the beam. When rotating the component the angle of the beam
towards the surface changes, therefore the propagation direction of the beam
changes, which can be seen as a position change of the beam on the screen.

The manufacturer of the wave plates specifies a beam defection of up to one
angular second. Given the distance from the wave plate to the far detector of
about 2.5 m this corresponds to a beam deflection of 12µm, which is around one
third of the deflection we measured.

With Snells’ law and geometrical considerations it is possible to find an expres-
sion for the angle θ of the beam after passing through the wave plate dependent
on the angle α of the surface of the wedge for a straight incident beam:

θ = n(1− 1

n
)α . (4.19)

Here, n is the refraction index of the component. This allows to calculate the
diameter x of the structure on the screen, which is given by x = zθ where z is the
distance to the screen.

Taking rough approximations for the parameters from our findings, namely
x = 100µm for the diameter, z = 2.5 m and n = 1.5 we arrive at an angle for the
wedge of α = 0.005◦. This means that even small deformations of the wave plate
could cause a relatively large beam movement.

Another possible explanation is that the optical components are mounted such
that they change their angle to the beam for different positions. When rotating
them, this results in different positions offsets to the initial beam propagation,
which can be detected on the screen as an circular structure. It is also quite
possible that the reason is a combination of both, a component with irregular
facettes which changes its angle towards the beam with different positions.

To find out weather one component minimizes the circular structure visible
at the screen we testes several available components. All four linear polarizers
we examined showed the same behavior. The polarizer with the best behavior
created structures with a approximate diameters of 5.7µm for x- and 6.8µm in
y-direction. In the far field the structure had diameters of approximately 31.3µm
and 45.0µm.

For the polarizer with the worst behavior we got structures with near field
diameters of (8.7µm, 9.1µm) and far field diameters of (110.2µm, 109.8µm).
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We observed that the diameters of all structures in the far field are roughly
10 times the diameters in the near field, which corresponds well to the distance
between the near and far detector of around 218 cm.

Our analysis also included half-wave plates. In order to use a half-wave plate
in the postselection unit we exchanged the rotatable linear polarizer with a rotat-
able half-wave plate and an fixed linear polarizer. This setup is able to perform
the same postselection as quarter-wave plate and linear polarizer. The quarter-
wave plate introduces a relative phase between the vertical and horizontal beam,
resulting in elliptical light. The HPW then changes the ratio of horizontal and
vertical polarization in the light, effectively changing the phase between the the
beams for different orientations. The linear polarizer then projects onto a certain
polarization, performing the postselection. By rotating the half-wave plate we are
therefore able to perform a full phase scan.

We tested this setup for five half-wave plates in total. Four of them introduced
position modulations into the beam. The wave plate with the best behavior
created circular structures with diameters (5.4µm, 5.0µm) near and (39.1µm, 37.7
µm) far. We measured the wave plates several times, opening and closing the
blinds of the optical table in between. We wanted to see if this would change the
positions drastically, which was not the case.

The wave plate with the worst behavior created structures with diameters
(75.3µm, 725.5µm) near and (331.1µm, 1169.1µm) far. The other two wave
plates created structures slightly bigger than the structure of the best compo-
nent.

The fifth wave plate showed unexpected behavior. In some position it created a
big structure with a diameter of around 100µm in y direction. In another position,
found by chance, it did not create an circular structure at all (except for noise).
The intensity fluctuation however remained.

From this fact we assume that it is possible to find an optimal position for the
wave plate which minimizes the position change. If the waveplate is mounted such
that its angle to the beam changes, leading to a change of the introduced position
offset the optimal position is in the middle of the wave plate. It is also possible
that the facettes of the optical components are parallel at a certain position, which
could be found by systematic investigation.

We therefore mounted the half-wave plate on a rotation and translation stage.
This allows to measure the deflection caused by the wave plate systematically
for different positions and angles to the beam. The wave plate was moved to five
different positions in equidistant steps of 0.5 mm. For each position the wave plate
was then rotated up to ±5◦. For each position and angle we then scanned the
phase and evaluated the resulting structure.

With these results it was possible to determine the best position of the wave
plate, which would create the smallest structure. If the beam hits the wave plate
in the center and has (almost) no angle towards it, no circular structure is cre-
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ated. The position of the beam still fluctuates around, but randomly and not
systematically. We can therefore conclude that this is noise, most likely due to for
example laser fluctuations or air movement. If the beam however hits close to the
edge of the wave plate and has a larger angle to it, a circular structure is created.

Fig. 4.12 shows some result of the measurement series in the near and far field.
At positions 4, 5, 6 the beam has a small angle to the wave plate and hits in the
middle. The beam fluctuations are caused by noise. At positions 9 and, more
drastically, 10 circular structures with diameters of up to 100µm in the near field
are visible. When the data was taken for those positions, the beam had a larger
angle to the half-wave plate and, for position 10, almost hit the edge of the wave
plate.

(a) (b)

Figure 4.12.: Position fluctuations caused by the half-wave plate for different
angles of the half wave plate to the beam, (a) in the near field and (b) in the far
field.

Concluding, hitting the wave plate close to the middle did eliminate the position
changes when rotating the wave plate, possibly because it is mounted such that
the angle to the beam changes. Also, the facettes of the wave plate might be more
parallel in the middle, thus only creating a circular structure if the laser beam
does not hit its middle.

Unfortunately placing the half-wave plate in a good positions did not eliminate
the intensity modulations. This suggest that these fluctuations are caused by the
quarter-wave plate.

4.6.2. Polarization analysis and postselection state

A possible explanation for the intensity modulation for different phases is that
the quarter-wave plate does not work perfectly. A quarter-wave plate with angle
45◦ has the plus and minus polarization as eigenaxis, which means that it does
not alter plus and minus polarized light passing trough the wave plate. Therefore,
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in order to set the quarter-wave plate to 45◦ it was put in between an plus and
a minus polarizer, and fixed so that the intensity behind the minus polarizer is
minimal. This way one can assure that the quarter-wave plate rotates light indeed
between the plus and minus polarization. However, the rotation on other states
might not work equally well, so that the quarter-wave plate transforms horizontal
and vertical light to elliptical light rather than circular light. The overlap of
the polarizer state and the state of light after traversing the quarter-wave plate
is therefore not one half, independently of the angle of the polarizer as it is for
circular light, but it now depends on the angle of the polarizer. The postselection
is therefore not performed on an arbitrary state in the x-y plane of the Bloch
sphere, |φ〉 = |H〉+ eiϕ |V 〉 anymore. Rather, a postselection on a state

|φ ′〉 =
√
f(ϕ) |H〉+ eiϕ

√
1− f(ϕ) |V 〉 , (4.20)

is performed, which lies in a plane tilted to the x-y plane. f(ϕ) is a function
depending on the phase. This postselection on a different state leads to intensity
fluctuations when a beam with only horizontal or vertical component passes the
postselection unit.

Another possible explanation is that the polarization inside the interferometer
changes. If a considerate amount of vertical light travels in the horizontal polarized
arm of the interferometer rotating the polarizer or half-wave plate would also result
in an intensity fluctuation.

We therefore checked whether the polarization is rotated inside the interferom-
eter. This was accomplished by determining at which angles a variable polarizer
projects to horizontal and vertical polarization in a beam in front of the inter-
ferometer and in the two polarized beams inside the interferometer. We then
compared the findings. The angles were the same up to 1◦, which is possibly due
to the inaccuracy of the measurement method. We also observed that the inten-
sity modulation remained when a horizontal polarizer was placed right in front of
the quarter-wave plate.

This result shows that the polarization stays stable and well-defined in a pure
state while passing the interferometer. We can therefore exclude polarization
drifts as a reason for the modulations in the intensity while changing the phase.

Therefore it is indeed very likely that the intensity modulations are caused by
the quarter-wave plate not performing the correct postselection. As a consequence
we can neither use the unit with the quarter-wave plate and linear polarizer, nor
the quarter-wave plate - half-wave plate - linear polarizer unit for the postselection,
as it does not perform the postselection on the right state.

In order to change the phase between the beams we hence have to use another
method. Several methods are possible. It is, for instance, possible to change the
phase between the beams with two yttrium-vanadate (YVO) crystals. One of
these birefringent crystals separates the beams while the other, placed parallel to
the first one, combines the two resulting beams again. Due two the different paths
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the two beams travel a relative phase is introduced, changing with different angle
of the YVOs to the beam. A major disadvantage of this method is that aligning
the two YVOs so that they are parallel is rather tedious. Both YVOs could be
mounted on the same rotation stage, so that they would not move relative to each
other once the alignment is done.

Another idea would be to change the phase with a liquid crystal phase retarder.
A liquid crystal phase retarder is made out of liquid crystal molecules. The
alignment of the molecules changes with an applied voltage, changing the effective
retardance of the system [61]. The liquid crystal is placed between two linear
polarizers of perpendicular polarization. From the input and output intensities the
retardance for different applied voltages is determined [62]. With this knowledge
the desired phase can be set by applying a certain voltages. We are currently
setting up such a device and will hopefully soon be able to postselect the correct
polarization without changing the position of the beam.

4.7. Deflection measurement relative to Dove prism

During the process of setting up the experiment we used the fit algorithm to
evaluate many measurements of the deflections inside the interferometer. We
also used the method when aligning the Dove prisms, taking preliminary data of
deflections relative to the Dove prisms.

By introducing the Dove prisms to the aligned interferometer, they introduce a
deflection inside the interferometer. When changing to the reference frame of the
Dove prism, however the Dove prisms mirror the deflections a beam carries. We
can therefore say that we have measured the deflection of the beams relative to
the Dove prisms.

A Dove prism has an axis, around which a displacement is mirrored, as explained
in Chapter 3. However, only deflections in one direction are affected by the prism.
Therefore, two prisms are introduced into the interferometer, to be able to measure
both deflections in x and y direction.

The two Dove prism are inserted to the setup as shown in Fig. 4.1. The Dove
prism in arm A is placed so that it reflects the beam deflection in y-direction
(y-Dove prism). The prism in arm B reflects the deflection in x-direction (x-Dove
prism). The y-Dove prism is placed on a translation stage which moves in the
y-direction of the setup. This way, the axis of the prism can be placed on the
height of the beam, and by rotating the prism along the x-axis it can be aligned.
However, the mount also allows to rotate the prism around the y-axis, which
introduces a offset in x-direction to the beam. The offset can be compensated
by the Dove prism in arm B. It is mounted on a translation stage moving in x-
direction. This way the axis of the prism can be placed on the height of the beam,
while also compensating for the offset introduced by the other prism. Rotation
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(a)

(b)

Figure 4.13.: The position
of the center of mass of the
interference pattern is de-
picted for different phases ϕ.
(a) shows the data obtained
from the detector in the near
field, (b) the data from the
detector in the far field.

around the y-axis allows to align the prism. The mount of the prism cannot be
rotated around the x-axis, hence no additional offset in y-direction is introduced.

The Dove prisms are then aligned by translating and rotating them relative to
each other. Due to the different degrees of freedom the alignment is not straight
forward, but feasible with iterative steps.

In Fig. 4.13 the result of a phase scan for beam deflections relative to the Dove
prisms is shown. It depicts the center of mass of the intensity distribution on the
position detector in the far field. The red and blue x-es correspond to the positions
of the single arm. The colorful crosses correspond to the center of mass of the
interference. The color indicated the phase ϕ between the interfering beams.

81



4. Experiment

Clearly, the the center of mass lies for several phases ϕ between the position of
the single arms. This is the region of constructive interference, when ϕ is close to
0 or 2π. In this region the amplification is not very large, as predicted by the weak
value formalism. The distance of the center of mass to the single beam positions
is much larger for other ϕ. Take for instance the dark blue markers in Fig. 4.13b.
There, the interference is destructive, the phase is around ϕ = π. The distance
to the blue marker is almost three times the distance between the blue and red
marker. This indicates an amplification of factor 3.

In Fig. 4.14 the projection of the positions shown in Fig. 4.13 on the phase ϕ
is depicted, together with the obtained fits from the fit algorithm which fits the
model independently to the data sets from the near and far detector. The blue
markers correspond to the x positions and the green markers to the y positions.
The solid lines are the fits to the theoretical model.

Evidently, the fits are not very close to the data points. This is also visible
regarding the fit parameters. The fit determines the deflections for the near field
and far field detector to be

Near Far

dx [mm] 0.02356 0.00888

dy [mm ] 0.03851 −0.12989

θx [mrad] 0.00463 0.02419

θy [mrad] 0.03906 0.05236 .

(4.21)

Apparently, the results for near and far field differ significantly from each other.
Calculations from the single beams reveal relative angles between the beams

θx = 0.00310 mrad , (4.22)

θy = 0.07556 mrad . (4.23)

We see that the differences between the angles for x position is one order higher
than the angle calculated from the single beams. This shows that the fit results
are imprecise or error-prone. For the y-direction the difference and the angle
calculated from the single beams are of the same order. In a good measurement
the results for the near and far field data should be close to each other, ideally
the same.

Apparently, the fit does not not work as desired. A reason seems likely: As
described in Section 4.6 due to faulty behavior of the quarter-wave plate the
postselection is not performed on the desired state |φ〉, but on another state. Since
the model postselections on the desired state, model and empirical data do not
match, resulting in a discrepancy, as observed for the preliminary data. However,
we have showed that displacements relative to the Dove prism can indeed be weak
value amplified, as seen in Fig. 4.13.
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(a)

(b)

Figure 4.14.: The projec-
tion of the x and y positions
of the center of mass of the
interference pattern on dif-
ferent phases ϕ. The mark-
ers are the data points taken
in the measurement. The
solid lines are the fits to the
theoretical model. (a) shows
the data obtained from the
detector in the near field, (b)
the data from the detector in
the far field.

We are currently calibrating a liquid crystal retarder to overcome the obsta-
cles caused by the quarter-wave plate. Once this is done we hope that we can
perform a correct postselection, which results in data matching to the theoretical
model. Then, fitting the model should determine the beam deflection correctly
and precisely.

Concluding, some more steps await their realization When the liquid crystal
retarder is set up we will align the Dove prisms again. While doing so we can
measure data for the beam displacement relative to the Dove prisms and therefore
examine if the fit algorithm provides the correct results. If this is confirmed and
the Dove prisms aligned, we will perform the actual measurement: The mirrors in
front of the interferometer will be displaced and tilted slightly. The measurement
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method should determine the deflections. Ideally, the fitted results match with
the deflections we introduced with the mirrors.

A step further is also planned: One of the outside mirrors shall be connected
to a piezoelectric crystal, which oscillates in accordance with an applied signal.
This signal could for example be a audio signal, like a song. The oscillation of the
mirror introduces different deflections to the interferometer. Setting the phase of
the postselection state |φ〉 so that the weak value amplification is high, we hope
to amplify the audio signal. If this is confirmed, the measurement setup presented
here would essentially work as a “spying device”.
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In the thesis, an experiment that is able to measure small beam deflections was
introduced. It builds on the method of weak value amplification to enhance the
precision of the measurement. In contrast to other weak value amplification exper-
iments, the interaction region is not inside the interferometer but outside, making
it possible to detect deflections and displacements of the beam which happen
outside of the measuring device.

The technique is implemented using a Sagnac-like interferometer with spatially
separated arms. In one of the arms of the interferometer a Dove prism is placed,
which mirrors a beam deflection along its axis. This way, the beams are deflected
relative to each other. The deflection manifests as a change of the resulting
interference of the overlapping beams, which, when properly evaluated, provides
information about the deflection and displacement.

We modeled the experiment in two dimensions and compared the expected
performance with respect to noise with two alternative measurement methods that
do not employ the concept of weak value amplification. The first method measures
the beam in the far field, while the second method uses a lens to amplify beam
deflections. We demonstrated numerically that the signal-to-noise ratio of the
weak value amplification method is at best as good as the one of the alternative
methods. However, we showed that the weak value amplification method can
suppress technical noise appearing behind the interferometer, which is not possible
with the alternative methods. Here, weak value amplification has the potential to
outperform the alternative methods.

We described the experimental realization in detail, including obstacles we en-
countered while setting up the experiment. For several, we explained how we
were able to overcome them. For others, we proposed solutions. Several optical
components showed unwanted behavior: The polarizing beam splitter in the inter-
ferometer introduced fringe pattern into the polarized beam, which was reflected
twice. A half-wave plate was placed in the interferometer, which changes the po-
larization of the beam. This way, both beams are reflected and transmitted once,
eliminating the fringe pattern. A half-wave plate deflected a beam differently for
different positions. This resulted in a position change on the detector for one
interferometer beam when the other beam was blocked. We hypothesize that this
stems from the wave plate having a wedge-shaped form or being mounted such
that its angle to the beam changes for different positions. To overcome the issue,
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we systematically investigated the deflection for different positions and found a
position where the beam passed the wave plate undeflected.

In the setup a voltmeter is used to measure the beam positions. The voltmeters
measured an apparent position deviation in regions of low intensities. We com-
pared three voltmeters that were at our disposal to find the one which measures
the smallest position drift.

A serious problem came up with the quarter-wave plate of the postselection
setup. Rotating the polarizer behind the wave plate changes the phase of the
interferometer, performing the postselection. For a horizontally polarized beam,
when the other beam in the interferometer was blocked, periodic intensity fluc-
tuations were observed for different phases, which should not be the case for the
desired postselection. Possibly, the quarter-wave plate changes horizontally and
vertically polarized light to elliptical light and not to circular light, as a perfect
quarter-wave plate would do. Postselection for different phases then results in dif-
ferent intensities. As a solution we proposed utilizing a liquid crystal retarder to
introduce the phase difference between vertical and horizontal light. It is currently
calibrated in the laboratory.

We also presented a fit algorithm to extract the deflections from empirical data.
We observed that for our preliminary laboratory data the results for the near and
far field differed. We attribute this error to the faulty behavior of the quarter-wave
plate, which is not captured by our model. Hence model and empirical data do
not match.

We expect that we will be able to perform a correct postselection as soon as
the liquid crystal retarder is implemented. We will then align the Dove prisms
again. Once this is done, we will determine small beam deflections to verify the
expected performance of the experiment.

A further step is also planned: One of the outside mirrors shall be connected to
a piezoelectric crystal, which oscillates in accordance with an applied signal. This
signal could, for example, be an audio signal, like a song. The oscillation of the
mirror introduces different deflections to the interferometer. Setting the phase so
that the weak value amplification is high, we hope to amplify the audio signal.
If confirmed, the measurement setup presented here would essentially work as a
“spying device”.
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A. Abbreviations

AAV Aharonov, Albert & Vaidman

BS beam splitter

LC liquid crystal

MZI Mach-Zehnder interferometer

HWP half-wave plate

PBS polarizing beam splitter

QWP quarter-wave plate

SNR signal-to-noise ratio

TSVF Two-state vector formalism

WV weak value

WVA weak value amplification

YVO yttrium-vanadate
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Gespräche über Physik und andere Themen.

– Tristan Zerweck für den produktiven Start am Experiment.

– Professor Lev Vaidman for fruitful and humorous discussions on various
topics related to this thesis.

– Emma Brink für die motivierenden Stunden gemeinsam beim Masterarbeit
schreiben in der Bib. Julia Kostin für den interessierten Besuch im Labor
und die nette Zeit zusammen in Garching. Sophie Atzpodien für das große
Interesse an und den vielen interessierten Fragen zu Weak Values.

– Jonas Zimmermann für die große Unterstützung und die sinnvollen Tipps,
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