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Abstract

Measurement of average Bohmian trajectories of photons
in a double slit interferometer

Maria Galli
Chair of Prof. Dr. Hänsch

Research group of Prof. Dr. Harald Weinfurter
Internal supervision of Dr. Simone Cialdi

Bohmian mechanics, a non-local, hidden-variable interpretation of quantum mechanics, allows
the description of quantum particle trajectories, otherwise forbidden in the standard approach to
quantum mechanics. The non-local character of Bohmian trajectories can be investigated with
a pair of entangled photons and a double slit interferometer. The first photon is sent through
the double slit apparatus and its trajectories are observed under different measuring conditions
chosen for the second photon. The goals of this thesis are the creation of the most crucial part
of the experimental setup, i.e. the double slit interferometer, and the measurement of average
Bohmian trajectories in the region behind the double slit.

The double-slit setup has been created exploiting the anisotropy of birefringent crystals, which
separate a single incoming beam into two beams, orthogonally polarised. In the interference region
of this double-slit apparatus, the velocity field of a continuous-wave laser beam has been measured
by means of weak measurements. This measurement method allows to extract information from
the system leaving it almost unaltered, at the expense of the amount of information extracted. A
process of averaging over many such measurements of velocity is therefore required.

Average trajectories of photons have been successfully reconstructed. Their behaviour corre-
sponds to the predictions of Bohmian theory; in particular, the retained interference pattern is
evidently recognisable in the density distribution of the observed average trajectories.
The significance of average trajectories and the real nature of Bohmian trajectories are still under
investigation. With the results achieved in this thesis, the most relevant part of a new experiment
is ready to provide further insights on the non-locality of Bohmian mechanics.

i





Acknowledgements

The realization of this project has been possible and enjoyable because it was shared, profes-
sionally and personally, with people that on various fronts and at different times provided their
worthy contribution.

Friendly thanks go to Prof. Dr. Harald Weinfurter both for his contagious enthusiasm
for scientific research, which made me yearning to write my thesis in his group, and for his
personal care of his students. I really appreciated the stimulating, warm and welcoming working
environment created also by the other components of the xqp group at LMU München.

In particular, I’m very grateful to Jan Dziewior and Lukas Knips for their friendly and
qualified assistance which made the work pleasant every day. Thanks to Jan for the inspiring and
formative conversations, for his daily assistance in any concern and for the positive and smiling
attitude towards our work. And thanks to Lukas for generously and patiently sharing his wide
knowledge, for his constant availability and his rare attention and kindness with which he took
care of my work and my stay.

I’d like to thank also my Italian professors at the Università degli Studi di Milano. Their
qualified work and their availability for occasional deeper discussions during my university years
let me have the opportunity to build a basis of knowledge and skills for further projects, such as
this thesis. In particular, grateful thanks go to Dr. Simone Cialdi, who, with patience, precision
and care, introduced me to the world of quantum optics.

I also feel deeply grateful to my parents who always encouraged my personal growth and
education. Heartfelt thanks to my sisters, Giulia and Sofia, for their support during those years
in any circumstances and for their visits in Munich which made me whole. Grateful thanks to
Leonardo for standing by me with affection during this time, making the daily life pleasant and
cheerful. To my friends in Italy, especially the ones at the Physics department with which I
shared amazing university years, and to my friends in Munich, which made my stays abroad lively
and personally enriching.

Finally I acknowledge the Erasmus scholarship, which supported this thesis project and allows
students to experience international collaborations at an early stage of their education.

iii





Contents

Abstract i

Acknowledgments iii

Introduction viii

1 Bohmian Mechanics 1
1.1 Problems and limitations in orthodox Quantum Mechanics . . . . . . . . . . . . 1
1.2 Introduction to Bohmian Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 An ontological basis for the Quantum Theory . . . . . . . . . . . . . . . . 3
1.2.2 A Non-local Hidden Variable Theory . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Wave function and particles in motion . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Determinism and Randomness in BM . . . . . . . . . . . . . . . . . . . . 10

1.3 Particle trajectories in Bohmian Mechanics . . . . . . . . . . . . . . . . . . . . . 13

2 Weak Measurements & Weak Values 15
2.1 Weak Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Pre- and Postselected Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 The Two-State Vector Formalism . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Measurements on pre- and postselected systems . . . . . . . . . . . . . . . 21

2.3 Weak Value: outcome of weak measurement on PPS systems . . . . . . . . . . . 22
2.3.1 Definition of Weak Value . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Unusual properties of Weak Values . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Experimental realization of weak PPS measurements . . . . . . . . . . . . 24
2.3.4 Applications of Weak Values . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Measuring Bohmian trajectories via weak measurement . . . . . . . . . . . . . . 25

3 The Double-Slit Experiment in the frame of Bohmian Mechanics 27
3.1 Wave-particle dilemma and explanation . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Standard Quantum Mechanics dilemma . . . . . . . . . . . . . . . . . . . 28
3.1.2 Bohmian Mechanics explanation . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 First observation of average trajectories . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Surrealistic trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Accusation of surrealism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Discussion and state of the art . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Mathematical description of the possible scenarios . . . . . . . . . . . . . . . . . 37
3.4.1 Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

v



vi CONTENTS

3.4.3 Surreal Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 This experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Creation of the setup 43
4.1 General description of the setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Shaping the Gaussian beam: lenses . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Birefringent crystals as double-slit . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Basic theoretical principles and simulations . . . . . . . . . . . . . . . . . 45
4.3.2 Experimental realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Implementation of the Weak Measurement . . . . . . . . . . . . . . . . . . . . . . 50
4.4.1 Description of the measurement . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.2 YVO crystal as entangling medium . . . . . . . . . . . . . . . . . . . . . . 53

5 Measurement results 55
5.1 Realistic initial pointer state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Average trajectories of photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Conclusions 59

A Definition of the geometrical parameters of the slits 61

B Discussion of alternative setups 63

Bibliography 65



Introduction

Many different interpretations of the quantum theory have been proposed since its first
conception in the 1920s. Among them, the Copenhagen interpretation [1, 2] has become the
most widely recognised. Nevertheless, being affected by some fundamental issues (such as the
measurement problem), it is not completely satisfactory. Bohmian Mechanics [3, 4] is a relevant
alternative interpretation of the quantum theory. It is a non-local and realistic theory based on
hidden variables: the real particles positions. This framework allows conceiving the concept of
quantum particle trajectories, which is not permitted in the Copenhagen approach. Still, the two
interpretations are totally compatible from an empirical point of view, since they provide exactly
the same statistical predictions for the measurement results.

In 1992, the reality of Bohmian trajectories has been questioned by Englert et al. [5] with
the proposal of a gedanken experiment. Quantum optics and the theory of weak measurements
provide a suitable physical system and the needed operational tools that make the implementation
of this gedanken experiment possible [6]. The Bohmian velocity of entangled photons in a double
slit apparatus can be weakly measured and thence the Bohmian trajectories reconstructed. In
2016, an experiment was performed which claims to confute the objection raised by Englert [7].

Our planned experiment is a test of the gedanken experiment and a further investigation
of Bohmian trajectories in this situation. It is performed under the following conditions (see
Fig.1). A pair of path-polarization entangled photons is given: the first photon is sent through a
double slit interferometer while on the second one, outside the interferometer, a measurement
of polarization is performed. In our experiment those polarization measurements on photon 2
will be performed under conditions which have never been realized before, namely at different
moments with respect to photon 1 crossing the interference region and in different polarization
bases. How will those different measurement settings influence the trajectories of the photon in
the interference region?

Figure 1: Schematic representation of the experimental setup.
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The particular goal of this thesis is firstly setting up the entire branch of the apparatus that
concerns the photon whose trajectories are measured. Namely: shaping the beam, creating the
double slit using birefringent crystals and implementing the weak measurement of the Bohmian
velocity. Secondly, with this setup completed, measuring the Bohmian trajectories in the interfer-
ence region of the double slit apparatus.

The plan of this thesis is as follows. In the first Chapter an introduction to Bohmian mechanics
will be given, with the goal of describing the concept of single particle trajectory; in fact, single
photon trajectories will be the object of investigation of the experiment. In the second, the theory
of weak measurements will be presented, which provides the possibility for the experimental
measurement of the particle trajectories. The double-slit experiment, exemplary demonstration
of the explanatory power of Bohmian mechanics, as well as fundamental building-block of our
experiment, will be discussed in Chapter 3. The creation of the setup will be described in Chapter
4, while measurement data, analysis and insights will be presented in Chapter 5. Final remarks
will be reported in the Conclusions.



Chapter 1

Bohmian Mechanics

At the foundation of Quantum Mechanics (QM), the Copenhagen interpretation established
itself despite its manifest unresolved issues. Bohmian Mechanics (BM) manages to get rid of
counterintuitive interpretations of quantum phenomena considering QM as a theory describing
real particles in motion. Although the two interpretations give the same statistical predictions
to experimental results, the ontological basis provided by BM to the quantum theory paves
the way for explanations of phenomena that in the orthodox QM are relegated to the realm of
impossibility, such as the description of single particle trajectories. Despite its alluring intuitive
nature shown in some respects, BM remains a fringe theory. After all, in BM one has to accept
a non-local behaviour of the wave function, which causes influences on the particle trajectory
in some region of space after some manipulation of the wave function in a well separated other
region of space.

1.1 Problems and limitations in orthodox Quantum
Mechanics

Still being the most widely accepted understanding of QM, the Copenhagen interpretation
is affected by some intrinsic significant problems. Here a couple of them will be presented
and others will be encountered in following Sections as further motivations for the proposal
of an alternative interpretation of the quantum theory; namely the unnecessary assumptions
which induce limitations not inherently required by the quantum theory (Section 1.2.1) and
the ambiguous position of the border between what can still be treated as classical and what
necessarily requires a new quantum description (Section 1.2.2).

What is Quantum Mechanics about?

Orthodox quantum mechanics is not about what there is. It’s just about wave functions and
the deriving probabilities of measurement outcomes. It would seem clear that quantum mechanics
is fundamentally about atoms and electrons, quarks and strings. But, as an inquisitorial Goldstein
asks [8], if these entities are not somehow identified with the wave function itself, then where
are they to be found in the quantum description? The wave function is, in fact, not a wave in
anything real, but just a mathematical tool that rules the statistics of the experiment results.

In orthodox QM, the statistics of the experiment results is “everything that can be meaningfully
said about a physical system” [9]. Even though the possible existence of an objective reality is not
denied, it is not the goal of standard QM to provide a description of this reality [9]. According to

1



2 CHAPTER 1. BOHMIAN MECHANICS

Bohm et al. [10], the basically new feature of the quantum theory, on which most interpretations
- among which the standard one - agree, is that in this theory “there is no way even to conceive
of the individual actual system, except insofar as it manifests itself through the phenomena that
are to be observed in such a process of measurement”. The founding fathers of the orthodox QM
insisted that in the absence of measurement, an unobserved system is only a suite of possibilities
of the various states that the system could take in case a measurement was made. No observables
at all are taken seriously as describing objective properties, as actually having values whether or
not they are or have been measured. Summarizing, physical systems have no precisely definable
reality themselves. To talk about them, one has to rely on measurements and on the statistics of
their results.

The measurement problem

Quantum mechanics is all and just about probabilities of measurement results, and still the
so-called “measurement problem” is probably the greatest conceptual difficulty that plagues
quantum mechanics. The objection known as the “measurement problem” is essentially as follows
[8]. Quantum theory provides two rules for the evolution of the wave function of a quantum
system: a deterministic dynamics given by Schrödinger’s equation when the system is not being
measured or observed, and a random collapse of the wave function to an eigenstate of the measured
observable when it is. However, quantum theory does not explain how to reconcile these two
apparently incompatible rules. And it is in fact difficult to motivate the idea that different laws
than those governing all other interactions should govern those interactions between system and ap-
paratus that we happen to call measurements. Hence the apparent incompatibility of the two rules.

Here is a short analysis of a measurement of a quantum observable assumed to have a non-
degenerate spectrum of eigenvalues n and normalized eigenstates ψn(x) [11]. Let the initial wave
function of the observed system be

ψ0(x) =
∑
n

cnψn(x), (1.1)

and φ0(y) the one of the measuring apparatus, also denoted as “pointer”. Then the initial
wave function of the combined system reads

Ψ0(x, y) = φ0(y)
∑
n

cnψn(x). (1.2)

After the two system have interacted, by linearity of the unitary evolution, the final wave
function Ψt of the system and apparatus is itself a superposition:

Ψt(x, y) =
∑
n

cnψn(x)φn(y), (1.3)

where φn(y) are the different wave packets of the relevant parameters of the apparatus that
correspond to the possible results of the measurement. Of course, for a proper measurement
to be made, the packets φn(y) must be distinct and non-overlapping. This corresponds to the
condition for the φn(y) to have disjoint supports in the configuration space of the apparatus:

supp(φi) ∩ supp(φj) = ∅, i ̸= j. (1.4)

However, the fact that the pointer ends up pointing in a definite direction, even a random one, is
not discernible in this final wave function. Insofar as orthodox QM is concerned, we have arrived
at the measurement problem.
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1.2 Introduction to Bohmian Mechanics
Why not just have real waves that push around real particles? This is Bohmian Mechanics,

also known as pilot-wave theory. In it, the wave function is the mathematical representation of
an objectively real field [3]. This field guides the motion of a real particle that has a definite
location at all times. Importantly, the wave function in pilot-wave theory evolves according to the
Schrödinger equation. Sharing BM and orthodox QM the fundamental Schrödinger equation, the
two theories make exactly the same probabilistic predictions for the measurement results. Despite
this essential mathematical consistency, BM distinguishes itself for its fundamental conviction
that “it is not necessary to give up a precise, rational and objective description of individual
systems at a quantum level of accuracy” [3].

1.2.1 An ontological basis for the Quantum Theory
“As an alternative to the positivist hypothesis of assigning reality only to that which we can

now observe, we wish to present here another hypothesis...based on the simple assumption that
the world as a whole is objectively real and that, as far as we know, it can correctly be regarded
as having a precisely describable and analyzable structure of unlimited complexity”.

D. Bohm, 1952 [4]

When David Bohm first proposed his interpretation of the quantum theory [3], he pointed out
that an assumption at the base of the usual interpretation is indeed unnecessary. According to
this assumption, the most complete possible specification of an individual system is in terms of a
wave function that determines only the probabilities of results of actual measurement processes.
Considering this assumption leads to limitations inherent in the conceptual structure of the
standard interpretation of QM. Among them, the uncertainty principle and the conviction that a
reasonable understanding of the world is impossible.

Bohm strongly criticized this unnecessary restriction required by Copenhagen approach to
QM and he showed that, in fact, there is no need to stick to the usual interpretation of QM and
to accept the limitations that come along with it, since its fundamental assumption is actually
not necessary [3].

The theory that Bohm had in mind was a theory in which objective and precisely definable
description of reality is possibile also at the quantum level of accuracy. After all, “the problem of
objective reality at the quantum level is at least in principle not fundamentally different from
that at the classical level” [4].
Thus he suggested a realistic interpretation of the quantum theory in which the wave function
is regarded as a real entity and the classical idea of real particles having a definite position at
all times is preserved. Taking both wave and particle to be objectively real -whether they are
observed or not1- is the core of the “suggested interpretation of the quantum theory in terms
of hidden variables” first proposed by Bohm in 1952 [3, 4]. A more detailed description and
development of its ontological basis was later published in the 1980s [10].

So Bohmian Mechanics was conceived: a quantum theory about particles in motion, that spells
out what it is about. The new suggested interpretation provides a broader conceptual framework
than the usual interpretation, because it makes possible a precise and continuous description of

1“It seems to be much simpler ... to assume an objective universe, with its particles and with its wave functions,
which is not dependent on observers”, Bohm et al. [10].
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all processes, even at a quantum level. Thanks to its clear ontology, it leaves therefore no place
for paradoxes and release the quantum theory from the forementioned limitations imposed by the
orthodox interpretation. Moreover, its broader conceptual framework admits into the theory the
existence of entities that cannot be observed yet. This is a good working hypothesis, since, as
Bohm himself asserts [3], the purpose of a theory is not only to correlate the results of observations
that we already know how to make, but also to suggest the need for new kind of observations and to
predict their results. It must be considered that what experimental physics can measure depends
not only on the technological development of the available apparatuses, but also on the suggestions
and the intuitions provided by the reference theory, which determines the kind of inference that
can be used to connect the directly observable state of the apparatus with the state of the system
of interest. In other words, our epistemology is determined to a large extent by the existing theory.

1.2.2 A Non-local Hidden Variable Theory
Bohmian mechanics is the most famous and best developed hidden-variable theory for quantum

physics. It postulates the existence of both a quantum wave and particles. The exact positions of
these particles are the additional “hidden” variables compared to the usual quantum physical
description. Note that position is commonly the only property considered as a hidden variable in
BM. Other degrees of freedom, such as spin, are regarded as property of the wave function and
not of the particle [11, 12].

Statistical physics grounds

The fact that the standard formulation of QM is based on the wave function and on variables
adopted from classical physics makes the quantum theory inexact and inaccurate [13]. Those
macroscopic classical variables can however be replaced by a quantum analogue of microscopic
classical variables [14]. In this sense, Bohm’s proposal is to do it like Boltzmann taught us: just
as gas molecules move in a box guided in their motion by classical laws, so the N particles of a
quantum system are to be regarded as real particles with precisely defined trajectories, guided in
their motion by the wave function. Such an approach would lead to a more precise theory; it
would be, according to Bell, the way “towards an exact Quantum Mechanics” [15]. In terms of
hidden variables and with the words of Bohm himself:

“As a matter of fact, whenever we have previously had recourse to statistical theories, we have
always ultimately found that the laws governing the individual members of statistical ensemble
could be expressed in terms of just such hidden variables. From the point of view of macroscopic
physics, the coordinates and momenta of individual atoms are hidden variables, which in a
large scale system manifest themselves only as statistical averages. Perhaps then, our present
quantum-mechanical averages are similarly a manifestation of hidden variables, which have not,
however, yet been detected directly”.

Bohm, 1952 [3]

Access key to a complete description of quantum phenomena

In order to build confidence in the hidden variable model - showing the great potential that
the hidden variable approach could have in a better description of reality -, Bohm proposed an
analogy with the early forms of the atomic theory [3].
In that case the existence of atoms was postulated in order to explain certain large-scale effects
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that could also be correctly described in terms of existing macrophysical concepts without the
requirement of any reference to atoms; ultimately, however, effects were found which contradicted
the predictions obtained by extrapolating certain purely macrophysical theories to the domain of
the very small, but which could be understood correctly in terms of the assumption that matter
is composed by atoms.

Similarly, Bohm suggested that if there are hidden variables underlying the quantum theory,
it is quite likely that in the atomic domain they will lead to effects that can also be described
adequately in the terms of the usual quantum mechanical concepts; while in a domain associated
with much smaller dimensions the hidden variables may lead to completely new effects not
consistent with the extrapolation of the present quantum theory down to this level.

These hidden variables could not just allow to go beyond the ranges of applicability of
standard QM, but they would also, in principle, “determine the precise results of each individual
measurement process2. In practice, however, ...the observing apparatus disturbs the observed
system in an unpredictable and uncontrollable way, so that the uncertainty principle is obtained as
a practical limitation on the possible precision of measurements. This limitation is not, however,
inherent in the conceptual structure of [Bohmian] interpretation. ... [In fact,] simultaneous
measurements of position and momentum having unlimited precision would be in principle
possible” via a suitable mathematical reformulation of the quantum theory which is consistent
with Bohmian interpretation but not with the usual one [4].

Non-locality

Pretty soon after de Broglie first proposed pilot-waves, the revered mathematician John von
Neumann published a proof showing that hidden variable explanations for the wave function
couldn’t work. With it he claimed to have proven that Einstein’s dream of a deterministic com-
pletion of quantum theory was mathematically impossible [16]. That proclamation contributed to
the long shelving of pilot-wave theory. Physicists and philosophers of science almost universally
accepted von Neumann’s claim. For example, Max Born asserted that no hidden parameters can
be introduced with the help of which the indeterministic description could be transformed into a
deterministic one. Hence if a future theory should be deterministic, it cannot be a modification
of the present one but must be essentially different.

But in fact, von Neumann did not develop the argumentation exhaustively: it turned out
that the restriction against hidden variables only applies to local hidden variables. So there
can’t be extra information about a specific region of the wave function that the rest of the wave
function doesn’t know. This was figured out pretty soon after Von Neumann’s paper by the
German mathematician Grete Hermann. However her refutation wasn’t noticed until it was
re-derived by John Bell in the 1960s with the article “On the Problem of Hidden Variables in
Quantum Mechanics” in which he demonstrates that von Neumann’s axioms are unreasonable [12].

With the words of Braveman and Simon [17], “for entangled quantum states, actions performed
on one particle can have an instantaneous effect on the motion of another particle far away”. This
feature motivated Bell to study the question whether all hidden-variable theories that reproduce
the statistical predictions of QM have to be nonlocal. The question was affirmatively answered by
Bell’s theorem [18], ruling out local hidden-variable models. This helped the revival of Bohmian
mechanics, because it doesn’t use local hidden variables: its hidden variables are global3. The

2see Section 1.2.4 for more details
3The nonlocal character of BM was recognized by Bohm as early as 1952 in [4], where he already showed that
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entire wave function knows the location, velocity, and spin of each particle. Not only does the
entire wave function know the properties of the particles, but the entire wave function can be
affected instantaneously. So a measurement at one point in the wave function will affect its shape
elsewhere. This can therefore affect the trajectories and properties of particles carried by that
wave, potentially very far away (examples of this interesting behaviour are discussed in Chapter 3).

It should be emphasized that the instantaneous influences experienced by individual Bohmian
particles cannot be used for superluminal signaling [17, 10]. The reason for this lies in the
fragility of the nonlocal quantum connections. Although the total system is instantaneously
interconnected, nevertheless, the actual behaviour of long-range quantum connections is too
fragile to be controllable in ways required for transmitting a signal.

1.2.3 Wave function and particles in motion
Bohmian mechanics is a non-relativistic theory describing the behaviour of a system of N

point-like particles which move in physical space R3 along trajectories.
A complete description of the system, in BM, is not provided by the wave function alone. In
this hidden-variable theory, in fact, the state of this system is described by both a wave function
ψ = ψ(q1, ...,qN ) = ψ(q), a complex (or spinor-valued4) function on the configuration space R3N

of possible configurations q of the system, and the actual configuration Q defined by the actual
positions Q1, ...,QN of the particles [19, 8].
Wave function and particles are two distinct, coexisting and strictly related entities. In BM, also
known as pilot-wave theory, the wave function guides the particle in its motion.

Two defining equations

There are two equations at the basis of BM: one describes the evolution of the wave function,
the other the motion of the particle. They are so fundamental that, according to Dürr and Teufel
[19], understanding what BM says about the world is just a matter of analysis of those equations.

Schrödinger equation for the wave function

As in standard QM, the wave function

ψ : R3N × R → C
(q, t) ↦→ ψ(q, t)

(1.5)

evolves in time according to the Schrödinger equation:

i~
∂

∂t
ψ(q, t) =

[
− ~2

2m∇2 + V (q)
]
ψ(q, t) , (1.6)

where the operator in square brakets is the Hamiltonian of the system.

With the Schrödinger equation at the basis of both Copenhagen and Bohmian interpretations of
QM, the two theories share the same mathematical tools and therefore lead to the same statistical

von Neumann’s proof that quantum theory is not consistent with hidden variables does not apply to Bohmian
interpretation, because the hidden variables contemplated in the latter depend both on the state of the measurement
apparatus and the observed system and therefore go beyond certain von Neumann’s assumptions.

4Spinor-valued wave functions must be considered in quantum mechanics to describe electrons and other
quantum particles that have additional degrees of freedom, such as spin.
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prediction of experiments results, i.e. they are empirically equivalent. Though, as Dürr et al. re-
mark [20], BM is the natural embedding of Schrödinger equation when we insist upon the simplest
ontology - particles described by their positions - and look for a natural evolution for this ontology.

Guiding equation for the particle

The motion of a particle in physical 3-dimensional space is entirely guided by the wave function.
For this reason, Bohmian mechanics is also known as pilot-wave theory. The wave function ψ(q, t)
defines the particle velocity field vψ(q, t) on configuration space in the following way [19]. Let’s
recall the quantum flux or probability current jψ, introduced by Madelung early in 1926 [21]:

jψ = ~
2im (ψ∗∇ψ − ψ∇ψ∗) = µ Im [ψ∗∇ψ] , (1.7)

where µ is an appropriate dimension factor and Im denotes the imaginary part.

Considering

∇ · jψ = ∇ · jψ

|ψ|2
|ψ|2 =: ∇ · vψ |ψ|2, (1.8)

one obtains the vector field

vψ(q, t) = jψ(q, t)
|ψ(q, t)|2 = µ Im

[
ψ∗(q, t)∇ψ(q, t)

|ψ(q, t)|2

]
, (1.9)

which is the field of the Bohmian velocity for the particles in the system.

The integral curves along the vector field (1.9) are seen, in Bohmian mechanics, as the possible
particle trajectories. For this reason, (1.9) is a fundamental equation in the pilot-wave theory,
known as the “guiding equation”.

In cases in which ψ(q, t) is a scalar function, namely when it describes particles without spin,
the expression for the particle velocity can be reduced to

vψ(q, t) = µ Im
[

∇kψ(q, t)
ψ(q, t)

]
. (1.10)

Considering an analogy with classical fluid dynamics, it becomes clear why in BM Eq. 1.9
should be regarded as the natural, direct, obvious choice for the velocity [14, 8]. Its definition is
in fact the ratio of the quantum probability current j to the quantum probability density ρ = |ψ|2,
just as in classical fluid dynamics j/ρ is the formula for the velocity of a fluid.

The double interpretation of the wave function

The first step towards an interpretation of the wave function was made by Born who, applying
the time-dependent Schrödinger equation to a scattering problem, discovered the powerful
empirical meaning of the wave function as a “probability amplitude”. In fact, through its modulo
squared |ψ(q, t)|2, the wave function delivers the theoretical predictions for the probability of
finding the particle at position q at time t.
This intuition was corroborated establishing an identity for any solution of the Schrödinger
equation. This identity involves the “probability density” |ψ(q, t)|2 and has the form of a
continuity equation. It is the quantum flux equation
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∂|ψ|2

∂t
+ ∇ · jψ = 0 , (1.11)

where jψ is the probability current introduced in (1.7).

Bohmian mechanics pushes the argument further, managing to give the wave function a second,
more fundamental meaning.
As seen above, in BM a vector field for the particle velocity (1.9) is defined. This definition is
essentially built on the wave function. Integral curves along this vector field constitute the particle
trajectories. Particles moving along these trajectories are thus guided by the wave function, since
the vector field is induced entirely by the wave function. In BM then, more than the statistical
prediction of measurement results, the prevalent role of the wave function is the definition of the
vector field through which the wave function can guide the particle in its motion [3, 10, 19].

The quantum potential

Another interesting derivation of BM can be developed introducing the so-called quantum
potential, a mathematical tool which provides a pictorially powerful and intuitive description of
the way the wave function fulfils its role of guiding the particle in its motion5. The derivation and
a discussion of its most relevant features will be presented here. An application of its descriptive
power will be presented in Section 3.1.2, in a discussion of the double-slit experiment.

Derivation. Besides the analogy with the classical fluid velocity, there are several other
ways to introduce BM [14]. The way Bohm himself adopted [3] was a derivation of his theory
through the concept of the quantum potential. With such an approach it would have been easy
to capture the intuition of physicist, based on classical physics.

The entire argument is pretty simple and straightforward [8, 22]: write the wave function in
the polar form ψ = R exp[iS/~], where the amplitude R and the phase S are real functions of
position and time. Then, the Schrödinger equation reduces to the following two equations:

∂S

∂t
+ (∇S)2

2m + V + U = 0 (1.12)

and6

∂R2

∂t
+ ∇

(
R2 ∇S

m

)
= 0 , (1.13)

where V is the classical potential and U is the quantum potential,

U = − ~2

2m
∇2R

R
. (1.14)

Eq. 1.12 is immediately recognized to be the classical one-particle Hamilton-Jacobi equation
for S with an additional term: a new quantity, the quantum potential U , appears alongside
classical quantities. This feature allows to retain the localized particle with well-defined positions

5Note that this can be done without any requirement of additional complexity, since the quantum potential
naturally derives from the Schrödinger equation.

6For a discussion of Eq. 1.13 as a continuity equation for ρ = R2, with ρ being a probability density, see “The
double interpretation of the wave function” in this Section.
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and momenta, while the novel aspects of the quantum phenomena can be accounted for in terms
of the quantum potential.

It is straightforward that in BM the classical behaviour is clearly approached when the
classical potential dominates over the quantum potential. That means that the magnitude of the
quantum potential provides a measure of the deviation of Bohmian mechanics from its classical
approximation.

Quantum potential as a guiding potential. With the conceptual tool of the quantum
potential derived above, it becomes easy to understand how in BM the wave function of an
individual particle is regarded as a mathematical representation of an objectively real and precisely
definable ψ−field which exert a force on the particle [3, 4].

In fact, what Bohm did next was using the modified Hamilton-Jacobi equation (1.12) to
define particle trajectories just as one does for the classical Hamilton-Jacobi equation, that is, by
identifying ∇S with mv, i.e., by setting dQ

dt = ∇S
m .

This is equivalent to the guiding equation for particles without spin derived above (Eq.1.9).
The resulting motion is precisely what would be obtained classically if the particles were acted
upon by the force generated by the quantum potential, in addition to the usual forces:

F = −∇V − ∇U. (1.15)

An interesting analogy with the electromagnetic field is proposed by Bohm in order to make
the idea of the ψ−field acting on the particle even clearer: “Just as the electromagnetic field
obeys Maxwell’s equations, the ψ−field obeys Schrödinger’s equation. In both cases, a complete
specification of the fields at a given instant over every point in space determines the values of the
fields for all times. In both cases, once we know the fields functions, we can calculate force on
a particle, so that, if we also know the initial position and momentum of the particle, we can
calculate its entire trajectory” [3].

New quantum features. Although at first sight it may seem that considering particles
acted on by a ψ−field is a return to the older classical ideas, this is indeed not the case: the quan-
tum potential is constitutively provided with novel features which cannot be associated with what
is generally accepted as the essential structure of classical physics. An interesting analysis of these
quantum features is carried out in [10, 22]. For a deeper understanding of the relation between wave
function and particle required in the next chapters, a couple of them will be presented here, as well.

A first property can be seen by noting that the quantum potential (Eq. 1.14) is not changed
when the field intensity ψ is multiplied by an arbitrary constant. This means that the effect
of the quantum potential depends only on its form and not on its strength, i.e. intensity, as
happens with classical waves. This suggests the idea that the ψ−field does not supply energy to
the particle, but just guides it: the particle moves under its own energy and the information in
the form of the quantum wave directs the energy of the particle7.

This induces dramatic consequences on the motion of the particle. First of all, it means
that particles moving in empty space under the action of no classical forces still need not travel
uniformly in straight lines. Moreover, since the effect of the wave does not necessarily fall off
with the intensity, even distant features of the environment can profoundly affect the movement,

7This feature of the quantum potential explains very clearly the fundamental and specific role performed by
the wave function in the Bohmian view of QM, which hence is called “Pilot-Wave Theory”.
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thence leading to non-local effects.

A second relevant feature of the quantum potential lies in its dependence on the quantum
state of the whole system, in a way that cannot be defined simply as a pre-assigned interaction
between all particles. The quantum interconnectedness, acknowledged by Bohm as the most
fundamentally new ontological feature implied by the quantum theory [10], has been extensively
and accurately described by Philippidis et al. in the work that first presented calculations and
pictorial representations of the quantum potential for the realistic situation of the double slit
experiment [22]. In their paper it is shown that the quantum potential combines properties of all
the participating elements - masses, velocities of particles, widths and separation of slits - in an
irreducible way.

1.2.4 Determinism and Randomness in BM
Determinism and randomness coexist in BM. How the conciliation of those opposite concepts

can be possible and which implications this fact brings about are the questions addressed in this
section.

Determinism

Bohmian mechanics is a realistic quantum theory. It happens to be deterministic, but this
is not an ontological necessity. The merit of BM, as stressed by Dürr and Teufel [19], is not
determinism, but the refutation of all claims that QM cannot be reconciled with a realistic
description of reality. Nonetheless, its determinism makes BM achieve remarkable and interesting
results.

Origin of causality in BM. The causal character of the Bohmian interpretation of QM
is a direct consequence of the two defining equations discussed in Section 1.2.3 [10, 11]. Since
the Schrödinger equation does not involve the particle positions Qi(t), it can be solved first and
determines the wave functions ψt for every time t, once an initial wave function ψt0 is specified
for an initial time t0. The wave function ψt determines in turn the vector field which always
guides the particle,

dQ

dt
= vψt(Q(t)). (1.16)

Regarding ψt as known, this is a time-dependent ordinary differential equation of first order.
As such, once the initial configuration Q(t0) is specified, Eq. 1.16 determines Q(t) for all times.
That is why BM is deterministic: once ψt0 and Q(t0) are specified, the entire history Q(t) is
completely determined by the defining equations (1.6) and (1.9).

The solution to the measurement problem. In Section 1.1 the measurement problem
was presented as one of the controversies of Copenhagen approach to QM. Which is now the
position of BM concerning this matter? Can Bohmian mechanics reconcile the two dynamical
rules for the wave function (the Schrödinger’s deterministic evolution and the random collapse)?
How does Bohmian mechanics justify the use of the “collapsed” wave function instead of the
original one? A positive response was provided in Bohm’s first papers on BM ([3], Section 7 and
mostly [4], Section 2), where it is said that the suggested interpretation is applied in the theory
of the measurement process itself as well as in the description of the observed system.
Just as in standard QM, also in BM the act of measurement on a system changes the wave
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function. In Bohmian theory, though, this change does not occur through a collapse that is
added to the theory, but is rather due to the evolution of the global wave function, describing
the interaction of the particle of interest with a measurement device that has its own Bohmian
degrees of freedom. What happens in the measurement process can better be regarded as a
mutual transformation of observed system and observing apparatus.

Consider the situation described in Section 1.1, the scene left at Eq. 1.3 with orthodox QM
stuck in the measurement problem. In this situation BM doesn’t run into any problem of this
kind, thanks to its realistic approach [10, 11]. As shown by Bohm and Hiley [23], by the time the
interaction is over, the “apparatus particles” must have entered one of the wave packets φn(y),
say packet m, and will have zero probability of leaving it. The other wave packets (which do not
overlap with this one containing the particles) are regarded as “constituting inactive or physically
ineffective information” [10]. In BM, in fact, the information enclosed in a wave function becomes
active only through a particle that expresses it in its motion. Therefore, these “empty” wave
packets carry an information that will always remain just potentially active. This information
does not contribute to the determination of the quantum potential, which is determined only
by the packet ψm(x)φm(y). Thus, from now on, all the “empty” wave packets can be ignored
[10]. Also at subsequent times, in fact, the development of a significant overlap between the wave
packet φm(y) and all the others is prevented by the “effects of decoherence” [8].

Then, in a natural way, without the need for any collapse ever to occur, the state of the
system at the end of the interaction is described by the conditional wave function

ψt(x) = Ψt(x, Yt) =
∑
n

cnψn(x)φn(Yt) = cmψm(x)φm(Yt), (1.17)

when the final configuration of the apparatus Yt ∈ supp(φm), i.e. when m is registered.

Randomness

As mentioned, this same deterministic theory gives rise to probabilistic prediction for the
measurement results. The grounds of the random character inherent in BM has to be found
in statistical physics: as Dürr asserts, “In truth, quantum randomness is good old Boltzmann
statistical equilibrium, albeit for a new mechanics” [19].

Intuitive origin of randomness in BM. In principle, the final result of a measurement
is determined by the initial form of the wave function of the combined system (particle and
measurement apparatus) and by the initial position of the particle and the apparatus variable.
In practice, however, we cannot predict or control the initial particle positions with complete
precision, hence regarded as hidden variables. Therefore, all that we can predict is that in an
ensemble of similar experiments performed under equivalent initial conditions, the probability
density is |ψ|2; from this information we are able to calculate only the probability of a given
outcome. With this argument Bohm [3, 4] demonstrated that a hidden variables theory, with an
underlying deterministic model in which quantum randomness is ascribed to ignorance about the
initial configuration of particles in the experiment, is perfectly compatible with the predictions of
quantum theory.

An example of this reasoning in a real situation was given in a later article [10], considering
the double slit experiment: once the quantum field ψ is specified, the result of each experiment is
in principle determinate and depends only on the initial condition of the particle. This initial
condition will however fluctuate from one case to the next, because the particle emerges from a
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source (e.g., a hot filament) in which they are subject to irregular thermal perturbations. This
means that complete predictability and controllability of the initial conditions is, in practice,
essentially impossible. In this fashion, statistical notions of the predictions of the quantum theory
can be explained while causality is still basic to the theory itself.

Statistical physics grounds of randomness in BM. It can be shown [24] that proba-
bilities for positions given by the quantum equilibrium distribution emerge naturally from an
analysis of “equilibrium” for the deterministic dynamical system that BM defines, much as the
Maxwellian velocity distribution emerges from an analysis of classical thermodynamic equilibrium.
Thus with BM the statistical description in quantum theory indeed takes, as Einstein anticipated,
“an approximately analogous position to the statistical mechanics within the framework of classical
mechanics”.

Apparent randomness arises because we can’t ever have a perfect measurement of initial position
of the particles constituting the system upon which the experiment is performed. Therefore we
obtain the “hidden variables” model by regarding the initial configuration of the entire system8

as random, with distribution given by the quantum equilibrium hypothesis.
According to this assertion, whenever a system has wave function ψ, then its configuration is

random with probability distribution |ψ|2. An important consequence of the quantum equilibrium
hypothesis is the empirical equivalence between BM and standard QM.

The consistency of this hypothesis with the time evolution of the system is guaranteed by the
notion of equivariance [11, 14]: if the initial configuration Q(t0) is chosen at random with proba-
bility density |ψt0 |2, then the configuration Q(t) at any other time t is random with probability
density |ψt|2 (provided the system does not interact with its environment). This fact follows from
the continuity equation (Eq. 1.11) for ρ = |ψ|2.

Finally, an important statistical result in the Bohmian approach to randomness is found in
the Born rule [25]. To show it, let us consider the situation described for the discussion of the
measurement problem. The final state of the system is the conditional wave function Ψt(x, Yt),
where the final configuration of the apparatus Yt is the one corresponding to the outcome m. The
probability for this event is, by the quantum equilibrium hypothesis,∫

dx

∫
supp(φm)

dy|Ψt(x, y)|2 = |cm|2. (1.18)

In the course of the measurement, the wave function of the system is transformed from the
initial ψ0 (Eq. 1.1) to the final ψm with probability |cm|2 = | ⟨ψm|ψ0⟩ |2. That means that, in
BM, the projection postulate arises from the statistical grounds of the theory: in BM Born’s law
is not an axiom but a theorem [19].

8including the observed system as well as all the measuring instruments and other devices used to perform the
experiment.



1.3. PARTICLE TRAJECTORIES IN BOHMIAN MECHANICS 13

1.3 Particle trajectories in Bohmian Mechanics
Legitimacy of the notion of quantum trajectories

There is a deeply held conviction, as typified by Zeh [26], that a quantum particle cannot and
does not have well defined simultaneous values of position and momentum. As a result of this
understanding of the uncertainty principle, the notion of trajectory of an individual particle is
strictly inhibited in standard QM. As Hiley and Callaghan remark [27], “actually, the uncertainty
principle is not telling us this. What it does say is that we cannot measure simultaneously the
exact position and momentum of a particle. This fact is not in dispute. But not being able to
measure these values simultaneously does not mean that they cannot exist simultaneously for the
particle. Equally we cannot be sure that a quantum particle actually does not have simultaneous
values of these variables because there is no experimental way to rule out this possibility either.
The uncertainty principle only rules out simultaneous measurements. It says nothing about
particles having or not having simultaneous x and p. Thus both views are logically possible”.
Therefore, if we adopt the assumption that quantum particles do have simultaneous x and p,
even though unknown without measurement, we can clearly still maintain the notion of particle
trajectory also in quantum processes.

Derivation and properties

As seen in Section 1.2.3, the possible particle trajectories are naturally defined as the integral
curves along the vector field vψ(q, t) (generated by the wave function and defined on configuration
space).

It has also been shown that the vector field vψ(q, t) results from interpreting the squared
modulus of the wave function as a probability density, whose transport is given by the quan-
tum flux equation (1.11). Bohmian trajectories are nothing but the flux lines along which the
probability gets transported, the streamlines of the probability current. The velocity field is thus
simply the tangent vector field of the flux lines.

A noteworthy property of Bohmian trajectories is that they don’t cross each other in configu-
ration space, which makes BM a first order theory [14, 19]. This is an evidence of BM being far
from a classical theory, despite the Newtonian appearance of the derivation of the theory via the
quantum potential.

Another relevant feature of Bohmian trajectories is their nonlocality. In his a work “On the
Problem of Hidden Variables in QM”, Bell points it out as a curious feature of BM: “the trajectory
equations for the hidden variables have in general a grossly nonlocal character”.
An experimental demonstration of this fact has been given by Mahler et al. in 2016 [7], as
proposed by Braveman and Simon [17]. Nonlocality, considered by some the resolution of
apparent paradoxes (Hiley et al. [28], Mahler et al. [7]), has been playing an outstanding role in
recent discussions about the reality of Bohmian trajectories (see Section 3.3.2).

Meaning

The significance of the one parameter solution of the real part of the Schrödinger equation,
namely the modified Hamilton-Jacobi equation of Bohm [4] (Eq.1.12), has been the subject of
many discussions over the years. It is important to note that the mathematics is unambiguous
and exactly that used in the standard formalism; it is indeed just a matter of interpretation.
Attempts to give these solutions physical significance in terms of particle trajectories has often
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encountered strong opposition. In fact, some regard them as merely metaphysical baggage with
no real physical significance and for this reason their meaning should not be pursued further
(Zeh [26], ESSW [5] and Scully [29]). An argumentation that significantly stirred up the dis-
cussion is the claim that these “trajectories” lead to results that disagree with the standard
interpretation of QM and have such bizarre properties that they should be rather regarded as
“surreal”. This objection, raised by Englert, Scully, Süssmann and Walther [5], and the con-
sequent discussion, also supported by experiments, will be presented in more detail in Section 3.3.2.

It is interesting to note [7] that the notion of Bohmian trajectories, although borrowed from
the notion of classical particles trajectories, is, in general, different from it. This is because in BM
the particles are guided along the trajectories by the wave function. Therefore, only in special
situation Bohmian trajectories are Newtonian in character, namely those situations where the
guiding wave can be approximated (locally, i.e. there where the particle is) by an almost plane
wave. This substantial difference of Bohmian trajectories from classical trajectories enables them
to give rise to quantum phenomena, such as the interference produced in a double-slit apparatus.

The concept of Bohmian trajectories is also very different from the Feynman path formalism
of quantum mechanics [30]. In the latter, all possible paths between two points are taken into
account in the calculation of the transition probability between those two points, while in BM,
on the contrary, each particle follows a trajectory in a deterministic manner.



Chapter 2

Weak Measurements & Weak
Values

Quantum measurements performed under condition of weak coupling between the observed
system and the measurement apparatus are called weak measurements. Due to the weakness
of the interaction, measurements of this kind have the particular characteristic of leaving the
observed system almost unaltered. Moreover, when applied to a particular type of quantum
systems (the so-called pre- and postselected systems), weak measurements yield as outcome
the weak value: a physical quantity which provides interesting physical insights in a variety of
situations.

The notions of weak measurement and weak value have become important tools for exploring
foundational questions in quantum mechanics [31, 32, 33, 34, 35]. In particular, on account of its
statistical nature, the weak value offers the possibility to measure average trajectories of single
quantum particles.

2.1 Weak Measurement
Quantum Measurement

Quantum measurements are experimentally performed by leading the system under study
to interact with the measuring apparatus and measuring the latter afterwards. This process
was modelled by von Neumann [16] in the case of projective measurements. His model and its
variations [33] are at the base of many studies of quantum measurements.

In von Neumann’s measurement model, the measurement device is some external system
described by canonical conjugate variables q̂ and p̂, with [q̂, p̂] = i~. The system-device interaction
is designed such that the measurement result is read-off from the effect on some degree of freedom
of the measurement device, the so-called “pointer variable”, which in the exposition below is
taken to be q̂.

A direct extension of the von Neumann measurement model is represented in the following
scheme (see Fig.2.1). For a measurement of the system observable Â at the time t = ti, the
quantum system S and the measurement apparatus M, initially in a separable state, get coupled.
The coupling interaction is described by the Hamiltonian

15
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Figure 2.1: Schematic representation of a standard quantum measurement of arbitrary strength.
Initially (at time t = 0), the system and the measurement device are uncorrelated. Their states
are |ψS⟩ and |ψM ⟩, respectively. Through the unitary transformation U in Eq. 2.2, the two
systems become entangled. The outcome q of the measurement is read-off by measuring the
apparatus pointer variable q̂. Double lines carry classical information.

Ĥ = g(t) Â ⊗ p̂ , (2.1)
where the normalized coupling function g(t), differing from zero only in the interval (ti,tf ),
specifies the time of the interaction1. The action of the measurement process on the two systems
is thereby described by the unitary operator

U = exp

(
− i

~
γ Â ⊗ p̂

)
, (2.2)

where γ is the coupling strength

γ =
∫ tf

ti

g(t) dt. (2.3)

The effect of this coupling interaction is a shift δ q in the device pointer variable. The amount
of this shift is proportional to the expectation value of the observable Â. The latter can be
therefore obtained by simply reading off the final value of the device pointer variable.

This measurement scheme is mathematically presented in the following. The description
holds for modelling measurements of arbitrary strength. Afterwards, two kinds of quantum
measurements are distinguished, which differ in the regime of the interaction strength: the
well-known strong, projective measurement and the novel weak measurement.

Let us assume that the system observable Â has a set of discrete and nondegenerate eigenvalues
{aj} and respective eigenstates |aj⟩. Expanding the state of the system on the basis of the
eigenvectors of Â, the total initial wave function can be written as

|ΨI⟩ = |ψS⟩ |ψM ⟩ =
∑
j

cj |aj⟩ |ψM ⟩ . (2.4)

After the interaction (2.1), the final state reads

|ΨF ⟩ = U |ΨI⟩ =
∑
j

cj e
− i

~γaj p̂ |aj⟩ |ψM ⟩ . (2.5)

1In an ideal quantum measurement the function g(t) is nonzero only during a very short interval of time, during
which the free Hamiltonians of the two systems can be neglected.
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Introducing the identity operator in position and momentum basis and considering that
⟨q | p⟩ = 1√

2π e
i
~ p q , one obtains

|ΨF ⟩ =
∑
j

cj

∫∫
d q′ d p e− i

~γaj p |p⟩ ⟨p | q′⟩ ⟨q′ |ψM ⟩ |aj⟩

= 1√
2π

∑
j

cj

∫∫
d q′ d p e− i

~ p(q′ +γaj) |p⟩ψM (q′) |aj⟩ .
(2.6)

Now, a measurement of the apparatus pointer variable q yields

⟨q |ΨF ⟩ = 1√
2π

∑
j

cj

∫∫
d q′ d p e− i

~ p(q′ +γaj) ⟨q | p⟩ψM (q′) |aj⟩

=
∑
j

cj

∫
d q′ 1

2π

∫
d p e− i

~ p(q′ −(q −γaj))  
δ(q′ −(q −γaj))

ψM (q′) |aj⟩

=
∑
j

cj ψM (q −γaj) |aj⟩ ,

(2.7)

where the integral representation of the Dirac delta function has been used.

That is, the state of the apparatus after the interaction is a mixture of ψM located around
γaj and correlated with different eigenstates of Â.

Strong Measurement

In strong (or projective) measurement, the initial state of the measuring device is such that

the value q of the pointer variable is well defined, i.e. its uncertainty ∆q =
(

⟨q2⟩ − ⟨q⟩2
)1/2

satisfies the condition
∆ q ≪ |γ| min(δa) , (2.8)

with min(δa) being the minimal distance between two consecutive aj (min(δa) = min
j

{aj+1 −aj}).
Under this condition, the wavepackets ψM (q −γaj) practically do not overlap. That means that,
by reading-off the final value qf of the device pointer variable, the expectation value of Â can
be determined with very high precision. In fact, for a single event, the final value of q can be
uniquely associated with a specific ajγ; let us say amγ. Therefore, considering qi = 0 being the
initial value of q, the measurement result for the observable Â would be am, proportional to
γam = δ q.

The effect of a strong measurement is then the collapse of the system to the eigenstate of the
measured observable Â corresponding to the eigenvalues found in the measurement.
The projection postulate [25] provides the probabilities Pj = | ⟨aj |ψS⟩ |2 for the eigenvalues aj of
Â. With these probabilities, the average value ⟨ψS | Â |ψS⟩ for the observable Â measured on a
large ensemble of systems in the state |ψS⟩ is

⟨ψS | Â |ψS⟩ =
∑
j

ajPj . (2.9)
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The price to be paid for a high precision knowledge of the observable value is that strong
measurements, with the ensuing collapse, disturb the system dramatically, and, with it, the very
process under investigation. In some experimental situations, though, a way is needed to reduce
this disturbance to an arbitrarily low level. The solution to this problem is found in the “weak”
measurement.

Weak Measurement

A weak measurement [33] is a standard measurement described by the Hamiltonian (2.1) with
a small interaction strength γ between the system and the measurement apparatus. Since the
measurement-induced change of the state is commensurated with the measurement strength [36],
the change in the system produced by a weak measurement can be made arbitrarily small.

The weakening of the interaction (2.1) can be achieved by choosing a small coupling strength
γ and preparing the measurement apparatus in an initial state such that the uncertainty ∆ q of
the pointer variable q is very large, i.e. creating the measuring condition

|γ| max(δa) ≪ ∆ q , (2.10)

where max(δa) is the maximal distance between two consecutive aj (max(δa) = max
j

{aj+1 −aj}).

Due to the weakness of the coupling, the pointer variable q of the mixed apparatus function
in the final state (2.7) has been only slightly shifted. It is almost independent of aj , thus the
final state is still approximately in the initial separable state. As intended, a smaller disturbance
induced by the measurement to the system has been achieved. The price to be paid for this
desirable feature, though, is that almost no information about the system is obtained in a single
such measurement. As shown in Fig.2.2 (b), in fact, the probability distribution ∆ q of the pointer
variable is still very broad as it was at the beginning (2.10).

The ambiguity of the pointer’s registration can be overcome by repeating the process many
times on single members of an ensemble of identically-prepared systems and then averaging the
results of the measurements. The measurement error decreases when increasing the size of the
ensemble, and thus can be made arbitrarily small (see Fig.2.2, (c): probability distribution of the
expectation value of the pointer variable after 5000 weak measurements).

It is interesting to note that, even though the ensemble average for such a procedure is
⟨ψS | Â |ψS⟩, just as for a strong measurement, the way of extracting the expectation value in weak
measurements differs conceptually from that in projective measurements [37, 33]. In fact, whereas
in strong measurements ⟨ψS | Â |ψS⟩ is obtained from the standard definition of the expectation
value by the formula (2.9), in the case of weak measurements ⟨ψS | Â |ψS⟩ is extracted without
measuring each Pj individually, but directly from ⟨qf⟩ − ⟨qi⟩ = γ ⟨ψS | Â |ψS⟩, where ⟨qi⟩ and ⟨qf⟩
are the averages of q at t = 0 and t > tf , respectively.

The weakness requirement of the interaction made in this Section is not an extraordinary
one [38]. In fact, many standard experiments performed in the laboratory are indeed weak
measurements: all thermodynamical variables are some averages of an extremely large number
of microscopical systems. During a typical measurement of a thermodynamical quantity only a
negligibly small fraction of the microscopic system is disturbed.
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Figure 2.2: Uncertainty of the expectation value of the pointer variable for measurement of spin
component in ξ̂ direction, i.e. σξ = (σx + σy)/

√
2, on initial state |↑x⟩. (a) Strong measurement

(∆ q = 0.1): the probability distribution of the pointer is localized around the eigenvalues ±1 of
the observable. (b) Weak measurement (∆ q = 10), single shot: the pointer distribution has a
large uncertainty. (c) Weak measurement, uncertainty of the expectation value of the pointer
variable after averaging over 5000 measurement results: the width of the peak is reduced form
∆ q = 10 to ∆p = 10/

√
5000 ≃ 0.14 and the center of the peak is located around the expectation

value ⟨↑x |σξ| ↑x⟩ = 1/
√

2. Image taken from Aharonov and Vaidman [37].
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2.2 Pre- and Postselected Systems

2.2.1 The Two-State Vector Formalism
The two-state vector formalism of quantum mechanics is a time-symmetrized approach to

standard quantum theory, particularly helpful for the analysis of experiments performed on pre-
and post-selected ensembles.

Time-symmetry motivation

In classical mechanics a state of a system at time t is a time-symmetric concept. This is
because for a classical system the results of measurements performed on a system in the past
uniquely define the results of measurements in the future and vice versa.

In quantum mechanics it is not so: the results of measurements in the past only partially
constrain the results of measurements in the future. Hence the fundamental time-asymmetry
in the concept of a quantum state [39, 37]. Thus the question arises: does the asymmetry of
a quantum state reflect the time asymmetry of quantum mechanics or can this asymmetry be
removed by a time-symmetric reformulation of the quantum theory?
Such a time-symmetric formulation is provided by the Two-State Vector Formalism (TSVF),
originated from a seminal work of Aharonov, Bergmann and Lebowitz [40] and later reviewed by
Aharonov and Vaidman [37].

While in the intrinsically time-symmetric classical mechanics the state of a system at time t
can be determined by a complete set of either initial or final boundary conditions, in quantum
mechanics, for a time symmetric description of a quantum system at time t, complete sets of
initial and final boundary conditions must be imposed. This description of a quantum state at
time t is the two-state vector

⟨Φ| |Ψ⟩ , (2.11)

which consists of a quantum state |Ψ⟩ defined by the results of measurements performed on the
system in the past relative to the time t and of a backward evolving quantum state ⟨Φ| defined
by the results of measurements performed on this system after the time t.

Just as a single quantum state, the two-state vector yields maximal information about the
system and describes the same theory with the same predictions as the single quantum state does.
The difference is that the standard approach is time asymmetric, since the single quantum state
is defined only by results of measurements performed in the past.

Operational definition of a pre- and postselected system

A system described by a two-state vector (2.11) is called “pre- and postselected system” (PPS).
In order to have now, at time tnow, a system which at a previous time t is a PPS system, two
measurements have to be done on the system (see Fig.2.3).

A first measurement of an observable Â at a time t1 < t will give an outcome a corresponding
to the eigenstate |a⟩ of the observable Â. The state |a⟩ will then evolve between t1 and t according

to the unitary evolution U(t1, t) = e
− i

~

∫ t
t1

Ĥ dt, governed by the Hamiltonian Ĥ, to the state
|Ψ⟩ = U(t1, t) |a⟩.
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Figure 2.3: Operational definition of a pre- and postselected system.

Equivalently, a second measurement of an observable B̂ is performed at a time t2 > t,
leaving the system in the state ⟨b|, which evolves backward in time, from t2 to t, to the state
⟨Φ| = ⟨b| U†(t2, t).

The pre- and postselected system ⟨Φ| |Ψ⟩ is thus experimentally created.

2.2.2 Measurements on pre- and postselected systems
Measurements performed on PPS systems are of particular interest because under certain

conditions (see Section 2.3) may yield information on novel quantum properties of the system.
Such measurements, which take place in the time interval between the pre- and the postselection
of the system, realized on PPS systems are called pre- and postselected (PPS) measurements.

The procedure of the measurement is as follows (Fig.2.3): a large ensemble of particles is
prepared at t1 in the same initial state (preselection). Every particle interacts with a separate
measuring device at time t (measurement), and then the measurement which selects the final
state is performed at a subsequent time t2 (postselection).

The measurement scheme introduced in Section 2.1 can be generalized as shown in Fig.2.4 to
describe PPS measurements of arbitrary strength [33].

Figure 2.4: Schematic representation of a pre- and postselected measurement. In contrast to
Fig.2.1, here the measurement of the pointer variable q is conditioned (“post-selected”) on the
measurement of the system S in a state |ψ2⟩.
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Let us consider an ensemble of pairs consisting of a system and a measuring apparatus in the
initial pure states2 |ψ1⟩ and |ψM ⟩, respectively (pre- selection). For each system-apparatus pair
the coupling interaction (2.1) is turned on in the interval (ti, tf ); when the interaction is over,
the state of each pair system reads

|ΨF ⟩ = U |ψ1⟩ |ψM ⟩ . (2.12)

Then a PPS ensemble is formed by performing a projective measurement of a variable B̂ on
each system at tS > tf and selecting for further consideration only the systems which collapsed
in the eigenstate |ψ2⟩ of B̂ (postselection):

⟨ψ2|ΨF ⟩ = ⟨ψ2| U |ψ1⟩ |ψM ⟩ . (2.13)

A PPS measurement is completed by measuring the pointer observable q of the apparatuses at
tM > tf . Note that the changing in time ordering between the pointer observable measurement
and the postselection measurement does not affect the results of the statistical analysis of the
values of the pointer variable q [38, 33].

A statistical analysis performed on the read-off values will yield the result of the measurement
of Â on the PPS ensemble, e.g. the conditioned average value of Â or the distribution of the pointer
values q. The statistical distribution of the measurement results of Â for a given postselected
subensemble depends on the subensemble chosen and is different from the statistical distribution
over the whole ensemble. Thus, the possible results of the measurement of Â indeed depend on
both the initial and the final state of the system.

Note, finally, that the terms “preselection” and “postselection”, despite being very similar,
denote conceptually different physical processes: preparation of the initial state and conditioning
of the measured statistics on the acquired information, respectively [33].

2.3 Weak Value: outcome of weak measurement on PPS
systems

2.3.1 Definition of Weak Value
A weak measurement of Â performed on an ensemble of systems pre- selected in a state |ψ1⟩

and postselected in a state ⟨ψ2| yields an outcome called the weak value of Â [31]:

Aw ≡ ⟨ψ2| Â |ψ1⟩
⟨ψ2|ψ1⟩

. (2.14)

This definition comes as the natural interpretation of the outcome of the measuring device as
explained as follows [38, 31, 33]. After the interaction has taken place, each system-apparatus
pair of the initial ensemble is in the state

|ΨF ⟩ = e− i
~γ Â ⊗ p̂ |ψ1⟩ |ψM ⟩ . (2.15)

2For extension to the cases of arbitrary states ρ and ρM see [33].
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The subsequent postselection in the state ⟨ψ2| leaves the system in the measuring device state

|ψFM ⟩ = N ⟨ψ2|ΨF ⟩ = N ⟨ψ2| e− i
~γ Â ⊗ p̂ |ψ1⟩ |ψM ⟩ ≈ N ⟨ψ2|

(
1 − i

~
γ Â ⊗ p̂

)
|ψ1⟩ |ψM ⟩

= N ⟨ψ2|ψ1⟩  
N ′

(
1 − i

~
γ

⟨ψ2| Â |ψ1⟩
⟨ψ2|ψ1⟩

p̂
)

|ψM ⟩ ≈ N ′e
− i

~γ
⟨ψ2| Â|ψ1⟩

⟨ψ2|ψ1⟩ p̂ |ψM ⟩ ,
(2.16)

where the approximations hold, up to first order in γ, thanks to the condition of weak mea-
surement.

Comparing this result with Eq.2.5, where the pointer state was the sum
∑
j cj e

− i
~γaj p̂ |ψM ⟩,

one notices that the value γ ⟨ψ2| Â|ψ1⟩
⟨ψ2|ψ1⟩ plays indeed the role of the expectation value for the operator

Â in the case of a pre- and postselected state.

A measurement of the pointer variable q on the final state (2.16) yields the real part of the
weak value Aw:

⟨q⟩F = ⟨ψFM | q̂ |ψFM ⟩ = ⟨q⟩I + γ Re(Aw), (2.17)

where ⟨q⟩I is the initial value of the pointer variable q.

As shown in (2.16), the weak value arises from measurements performed in a linear-response
regime. The physical significance of the weak value lies in the fact that in this regime the
backaction of measurements on the system is very small, and therefore the weak value provides
information on the unperturbed system.

2.3.2 Unusual properties of Weak Values
The weak value has some unusual properties that drastically distinguish it from the expectation

value of a variable resulting from a standard measurement.

Complex value. Unlike traditional expectation values of quantum observables, the weak value
is, in general, a complex number. In the measurement described above, the imaginary part of the
weak value contributes only with a phase to the wave function of the measuring device in the
position representation. Therefore, the imaginary part will not affect the probability distribution
of the pointer position q̂, which is the information extracted in a usual measurement.

However, also the imaginary part of the weak value has a physical meaning: it affects the
distribution of the conjugate variable p̂ of the measuring device, namely, it is proportional to the
shift δp of the wave function that describes the measuring device in the momentum representation3.
Thus, measuring the shift of the momentum of the pointer will yield the imaginary part of the
weak value [38, 37]:

⟨p⟩F = ⟨p⟩I + 2γ (∆ p)2 Im(Aw). (2.18)

Value outside the range of expectation values. As seen in Section 2.2.2, the result of a
PPS measurement depends on the choice not only of the pre-, but also of the post-selection. This
turns out to be very interesting in the context of weak PPS measurements. Postselection, in fact,
makes it possible for weak values to acquire surprising values [38]. For instance, the weak value

3Here the initial value of the pointer variable is considered to be 0, both in p and in q representation. Therefore,
the shift of the pointer coincides with its final value δp = pf and δq = qf .
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of a component of a spin-1/2 particle can be 100 [31]. This happens because the weak value
diverges when the overlap ⟨ψ2|ψ1⟩ tends to zero. Values that lie beyond the spectrum of Â are
also explained in terms of quantum interference of the wave packets onto which the measurement
apparatus is expanded after the interaction with the system [41].

As a result of those unusual properties of weak values, the probability distribution |ψM (p)|2 of
the pointer values corresponding to a weak PPS measurement is in general non-classical [33, 38].
Some weak probabilities may in fact be greater than one or negative or even complex. A mean
value - the only meaningful value in the context of weak measurements - calculated over such a
non-classical probability distribution, is therefore far from resembling the mean value expected in
a traditional situation (2.9).

2.3.3 Experimental realization of weak PPS measurements
Although the procedure to realize weak measurements on PPS ensembles could seem at first

quite difficult to perform, it becomes feasible when the measuring device is the observed system
itself4 [38, 37]. In an experiment designed in this way, after the weak interaction, the information
about the measured variable is stored in some other degree of freedom (not the measured one)
of the system itself. This other degree of freedom plays therefore the role of the pointer of the
measuring device. The advantage of such a design is that the postselection of the desired final
state of the particles automatically yields the selection of the corresponding measuring devices.
The only requirement for the postselection measurement is that there is no coupling between the
variable in which the result of the weak measurement is stored and the postselecting device.

The experiment in which this measurement technique was first suggested is of the standard
Stern-Gerlach type, modified to fulfil the requirement of weakness, with both pre- and post-
selection included [31]. In it, the weak value of a spin component of a spin 1/2 particle is
measured, while the position of the particle itself serves as a pointer of the measuring device.
The shift in momentum of a particle, translated into a spatial shift, yields the outcome of the
spin measurement. A postselection measurement of a spin component in a certain direction can
be implemented by another (now strong) Stern-Gerlach coupling which splits the beam of the
particles. The beam corresponding to the desired value of the spin is then analysed to extract
the result of the weak measurement.

2.3.4 Applications of Weak Values
“Weak Values offer intuition about a quantum world that is freer than we imagined - a world in

which particles travel faster than light, carry unbounded spin, and have negative kinetic energy”.

Aharonov, 2005 [39]

In spite of the enthusiasm manifested by some for the promising power of weak values, their
unusual properties raised initially also a certain amount of scepticism [42], supported by the
fact that the physical meaning and the significance of weak values have not a straightforward
understanding [41, 33]. However, subsequent research has made significant progress in elucidating
the interpretation of weak values and indicating a variety of situations where they provide

4This knack will be applied also in the experiment presented in this thesis.
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interesting physical insights (see [38, 41, 33, 32] and references therein). The fields of physics
in which weak values proved to be very useful are various, including fundamentals of quantum
mechanics and Bohmian mechanics [6, 43, 44, 34, 45, 35].

2.4 Measuring Bohmian trajectories via weak measurement
An example of the use of weak values to probe foundational questions of quantum mechanics

involves Bohmian mechanics. In particular, it has been proven that the Bohmian velocity can be
formally expressed as a weak value [6, 43]. With this operational definition, the measurement of
Bohmian trajectories has become possible [46, 7].

Bohmian velocity as a weak value

Let’s consider the Bohmian definition of particle velocity v(q, t) as the standard probability
current j(q, t) divided by the probability density |ψ(q, t)|2 (Eq. 1.9). It is interesting to note that,
actually, from this definition of velocity infinitely many different dynamics are possible. This
arbitrariness is originated by the arbitrariness in the definition of the probability current. In fact,
the j(q, t) that satisfy the continuity equation (1.11) are in principle infinitely many.
Starting from this remark, Wiseman [6] showed that a particular j(q, t) can be singled out if
one requires j(q, t) to be determined experimentally as a weak value. With this work, Wiseman
provided an operational definition for the averaged Bohmian velocity, regarding it as a weak value
(see also [43]).

To demonstrate how the Bohmian velocity can be viewed as a weak value, let us consider the
action of the momentum operator p̂ on the wave function ψ(q) = ⟨q|ψ⟩ describing a system in q
representation:

⟨q| p̂ |ψ⟩ = −i~ ∂

∂qψ(q) . (2.19)

Rewriting it as

∇ψ(q) = ∂

∂qψ(q) = ⟨q| i
~

p̂ |ψ⟩ (2.20)

and recalling the definition of Bohmian velocity v(q) = µ Im
[

∇ψ
ψ (q)

]
(also in Eq. 1.9), the

result comes straightforward:

v(q) = µ Im
[

⟨q| i~ p̂ |ψ⟩
⟨q|ψ⟩

]
= µRe

[ ⟨q| 1
~ p̂ |ψ⟩

⟨q|ψ⟩

]
. (2.21)

That is, the Bohmian velocity is indeed the real part of a weak value. It can be obtained by
a measurement of the momentum observable p̂ on a pre- selected (|ψ⟩) and postselected (|q⟩)
ensemble. The position-dependent (Bohmian) velocity information captured in this way makes it
possible to reconstruct the Bohmian trajectories.

Measuring average trajectories via weak measurement

In 2011 Kocsis et al. [46] reported the experimental observation of the “average trajectories of
single photons” in a two-slit interference experiment. This work caused enormous interest because
it seemed to overcome fundamental restrictions of quantum mechanics. Indeed, the simultaneous
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strong measurement of the which-path information and the formation of the interference picture are
impossible in standard quantum theory (complementarity principle), as well as the simultaneous
determination of the coordinates and momentum of the particle with exact precision (uncertainty
principle), which makes the measurement of a single particle trajectory impossible. This is
because a strong measurement of one quantity destroys the information about its complementary
quantity, rendering the successive determination of the latter within a certain limit of accuracy
impossible. However, the approach of weak measurements, inducing a negligible perturbation
on the investigated system, allows the simultaneous determination of complementary quantities,
even though averaged over many events [6, 45].



Chapter 3

The Double-Slit Experiment in
the frame of Bohmian Mechanics

The double-slit experiment concerns a phenomenon at the heart of standard quantum me-
chanics, namely the wave-particle duality. In Bohmian mechanics, the relation between wave
and particle is considered in a fundamentally different way: wave and particle are two distinct,
real entities which always exist simultaneously. This fact enables Bohmian mechanics to give an
interesting explanation of what is observed in a double-slit experiment. Actually, the double-slit
experiment is the iconic demonstration of the explanatory power of Bohmian mechanics. Therefore,
it is also the typical test-bed for the Bohmian theory itself. Considerable debates on Bohmian
mechanics, in fact, take place in a two-slit setup.

3.1 Wave-particle dilemma and explanation
The double-slit experiment setup is briefly described in the following. Let us consider to

perform the experiment with electrons1. A source successively emits single electrons, with a fairly
large angular distribution, towards an impenetrable wall. The wall has two holes, big enough to
let the electron pass through. Beyond this wall there is a screen. Electrons that are not stopped
by the wall pass through the holes and reach the screen. The number of electrons hitting the
screen at a certain position is measured by detectors placed at different positions of the screen.

The distribution of the electrons at the screen cannot be explained with the laws of classical
physics. In fact, it is not the trivial sum of the distributions obtained in the cases of each hole
opened alone. The distribution of the electrons shows interference, as if the experiment was done
with water-waves [48] (see Fig. 3.1).

Evidently, this experiment requires quantum principles (for this reason it is an emblematic
experiment of quantum mechanics). Standard quantum mechanics and Bohmian mechanics have
two different approaches for the description of this experiment.
In standard QM the description of the two-slit experiment is given by means of the concept of
wave-particle duality. In this framework, trajectories of the particles cannot even be conceived
whenever the interference pattern is observed.

1The experiment can be realized even with semi-macroscopic objects, e.g. fullerene molecules (Zeilinger et al.
[47]).

27
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Figure 3.1: Schematic representation of a double slit apparatus. The distribution of the electrons
on the screen shows an interference pattern.

In Bohmian mechanics, in contrast, the coexistence of wave and particle enables the description
of the interference pattern with a simultaneous definition of the particle trajectory.

3.1.1 Standard Quantum Mechanics dilemma
“[The two-slit experiment shows] a phenomenon which is impossible, absolutely impossible, to

explain in any classical way, and which has in it the heart of quantum mechanics. In reality, it
contains the only mystery. We cannot make the mystery go away by ‘explaining’ how it works.
We will just tell you how it works”.

Feynman, 1964 [48]

As mentioned above, the result of the experiment is the formation of an interference pattern,
a typical wave behaviour. Therefore, in the usual quantum interpretation of the experiment, the
electron is considered as a wave (described by the wave function ψ(x)). The initial plane wave
sent towards the wall is modified by diffraction and interference effects when the wave passes
through the two slits. Consequently, the single-electron wave will develop a characteristic intensity
pattern by the time it reaches the screen. The single electron will be then detected on the screen
between position x and x + dx with probability |ψ(x)|2dx. If the experiment is repeated many
times under equivalent initial conditions, the mentioned interference pattern is eventually obtained.

In standard quantum theory, the origin of this interference pattern contradicts classical
intuition, at least in the following ways [3].

Firstly, there may be certain points on the screen where the wave function is zero when both
slits are open, but not zero when only one slit is open. How can the opening of a second slit
prevent the electron from reaching certain points that it can reach when this slit is closed?

Secondly, even though the wave aspect of the electron must have something to do with the
production of the interference pattern, it seems problematic to identify the electron with the
wave, since the latter spreads out over a wide region whereas, at the detector, the electron always
appears as if it were a localized particle.
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The complementarity principle

To deal with this wave-particle behaviour, the standard quantum theory provides two comple-
mentary models, the wave-like and the particle-like model. Conditions under which a model is
made more precise necessitate a reciprocal decrease in the degree of precision of the other [3].
This solution, known as the complementarity principle, indeed leaves open the dilemma of the
appearance of both particle and wave properties of a quantum object in one same phenomenon.
According to this principle, if we wish to obtain an interference pattern (wave-picture), the
position of the electron (particle-picture) must be unknown; in particular, it is not possible to
know through which slit the electron actually passed.

In fact, if an actual experiment is performed to try to get such information, say by placing a
measuring device behind one of the slits, the outcome of the original experiment changes: the
fringes are no longer produced. It is therefore not possible to design an experiment to track
the particle position while retaining the interference pattern. As a result, it is argued that the
question as to which slit the electron passed through should not even be raised.

It is then clear that, if the concept of trajectory was meaningful in the standard quantum
theory, it would be anyway inconceivable in a double-slit experiment in presence of interference.

3.1.2 Bohmian Mechanics explanation
In Bohmian mechanics, wave and particle exist simultaneously and they behave as expected

for an object of their kind (in Feynman’s analogy [48], as a water-wave and a bullet, respectively).
Accordingly, in a double slit experiment, the wave passes though both slits, whereas the particle
passes either through one or through the other slit [11, 19].
The motion of the particle in the interference region is guided by the wave function. As seen in
Section 1.2.3, this dynamics is easily describable through the quantum potential. Due to the
quantum interconnectedness, changes in the setup induce changes in the shape of the quantum
potential, altering eventually the motion of the particle. Thanks to the quantum potential, in this
Bohmian scenario the double-slit experiment is described “in terms of a single precisely definable
conceptual model” [3].

The quantum potential

The wave function considered here (ψ = R exp[iS/~]) is the same as the one used in the
standard description. But now it is regarded as a mathematical representation of an objectively
real field that determines part of the force acting on the particle.
The particle is at all times acted on by the quantum potential (Eq. 1.14),

U = − ~2

2m
∇2R

R
.

While the particle is travelling towards the double-slit, this potential vanishes because the
wave amplitude R is a constant there; but after passing through the slits, the particle encounters
a quantum potential that changes rapidly with position. The subsequent motion of the particle
may therefore become quite complicated. This potential, first calculated by Philippidis et al. [22],
is shown in Fig. 3.2, as viewed from the screen looking towards the slits. The position of the slits
coincides with the two small and symmetric peaks in the background.

Through the quantum potential approach, it is explained why particles are not to be found at
points of destructive interference, i.e. at points where the wave function vanishes (R → 0). The
reason is that the quantum potential, U , becomes infinite when R becomes zero. If the approach
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Figure 3.2: Quantum potential of a double slit apparatus, viewed from the screen. First theoretical
calculation, by Philippidis et al. [22].

to infinity happens to be through positive values of U , there will be an infinite force repelling the
particle away from such a point. If the approach is through negative values of U , the particle will
go through this point with infinite speed, and thus spend no time there [3]. In either case, the
quantum potential justifies the absence of particles at the points of destructive interference of the
guiding wave, explaining in this way the interference pattern of the particle distribution.

Particle trajectories and interference

Following the shape of the quantum potential, particles travel from the slits to the screen.
Their trajectories are depicted in Fig.3.4 for various initial positions within each of the two slits.
Philippidis et al. [22] calculated those trajectories by integrating the equation

v(q, t) = 1
m

∇S(q, t), (3.1)

which relates S, the real phase of the wave function ψ, to the particle velocity v.

A clear comment on those trajectories made by the same authors is reported here.
“Initially the trajectories from each slit fan out in a manner that is consistent with diffraction at
a single slit. The subsequent kinks in the trajectories coincide with the troughs in the quantum
potential. They arise because, when a particle enters the region of a trough, it experiences a
strong force in the x direction which accelerates the particle rapidly through the trough into a
plateau region where the forces are again weak. In consequence, most of the trajectories run
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Figure 3.3: Quantum potential of a double slit apparatus, 150◦ azimuthal view. First theoretical
calculation, by Philippidis et al. [22].

along the plateau regions, giving rise to the bright fringes, while the troughs coincide with the
dark fringes”.

The fact that trajectories cross the troughs allows them to gather around the x = 0 axis,
which is the region of the main maximum, the most clearly visible on the screen.

As can be seen in Fig.3.3, “immediately behind the slits the cross section of the initial
parabolic peaks first increases slowly, causing the trajectories to spread out radially. This feature
corresponds to the spread of the wave packet in the usual approach” [22]. Moving away from the
slits towards the screen, high, rapidly varying spikes appear and finally decay into the background.
Very few electrons actually reach this region, which can be therefore regarded as lying in the
geometric shadow of the two slits (See Fig.3.4).

Those 2D Bohmian trajectories are also characterized by a symmetrical behaviour which will
play a relevant role in a following discussion (see Section 3.3) [5]. As one can see in Fig.3.4, the
trajectories do not cross the x = 0 axis, and are, in fact, symmetric with respect to it.
In the interference region between the slit plane and the screen, the wave function is the coherent
superposition of the two contributions from the slits,

ψ(x, z, t) = ψ>(x, z, t) + ψ<(x, z, t) . (3.2)

Because of the geometrical symmetry of the slits, ψ< is obtained from ψ> by reflection at the
x = 0 axis:

ψ<(x, z, t) = ψ>(−x, z, t). (3.3)
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Figure 3.4: Particle trajectories in the interference region of a double slit apparatus. First
theoretical calculation, by Philippidis et al. [22].

Consequently, the probability density ρ = |ψ|2 and the x component of the current vector j
(Eq.1.7) are even functions of x, while the x component of j is odd. Therefore, the x component
of the velocity field v = j/ρ (Eq.1.9) is also an odd function of x. As a result, the x component
of the velocity vanishes on the x = 0 axis of symmetry.

This fact has the immediate implication that the Bohmian trajectories do not cross the
x = 0 axis. A straightforward consequence of this argument is that if a particle hits the upper
half of the screen (where x > 0), it must have come from the upper slit (the one lying at
x > 0 position), while a particle arriving on the lower half of the screen (where x < 0) has
passed, according to Bohmian mechanics, through the lower slit. That means, that the final posi-
tion of the particle on the screen allows us to deduce through which slit the particle actually passed.

The approach through the quantum potential retains the concept of a point-like particle
which follows a well defined trajectory (passing through one or the other slit), while, at the same
time, an ensemble of such particles produces the observed interference pattern. This approach
removes therefore the ambiguity of whether quantum objects are waves or particles and provides,
instead, a clear intuitive understanding of quantum interference in terms of well-defined particle
trajectories.

In Bohmian mechanics, the interference (wave-like) pattern can be explained in terms of
particles thanks to the quantum equilibrium hypothesis (see Section 1.2.4). According to this
hypothesis, in an ensemble of identical particles each having wave function ψ, the empirical
distribution of positions is |ψ|2-distributed [19]. In the double-slit experiment, the random arrival
positions of the single particles on the screen will eventually form a recognizable interference
pattern, which is essentially the quantum equilibrium |ψ|2 distribution. This distribution is, in
fact, the quantum flux across the surface of the screen integrated over time.

The randomness of the arrival position on the screen (like the randomness of the choice of
the slit through which the particle passes) is due to the randomness in the initial position of the
particle with respect to the initial wave packet emitted by the source. By always preparing the
same initial wave packet ψ, the ensemble of |ψ|2-distributed position is prepared.
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Non-locality

An important feature of the quantum potential is non-locality, by Philippidis et al. also
efficaciously called “quantum interconnectedness”. Interesting effects of this characteristic are
manifest in the double-slit experiment and its variations. As shown in [22], the quantum potential
combines properties of all the participating elements - masses, velocities of particles, widths and
separation of slits - in an irreducible way. This suggests that, as far as the quantum domain is
concerned, space appears to be structured in a way that exerts constraints on whatever processes
are embedded within it - e.g., particles travelling towards the screen.

This structure arises out of the properties of both the particle and the apparatus. Therefore, a
change in the experimental conditions induces a change in this structure. This eventually results
in a modification of the motion of the particle (see Section 3.4 for a description of three different
cases).

For example, if one of the slits is closed, the quantum potential is correspondingly altered.
Guided by the new structure, the particle may be then able to reach certain points which it was
unable to reach when both slits were open.

As another example, let us consider now to place a measuring device at the position of the
slits, to detect through which slit the electron passes (the same argument is valid also when the
device is placed in any other position of the interference region). The measuring apparatus will
alter the quantum potential, creating a disturbance that destroys the interference pattern.

Note that in the last example the result is, of course, the same as in the standard interpretation.
However, as Bohm highlighted in 1952 [3], in Bohmian mechanics “the necessity for this destruction
is not inherent in the conceptual structure; the destruction of the interference pattern could in
principle be avoided by means of other ways of making measurements, ways which are conceivable
but not now actually possible”. This is indeed a very interesting remark, which finds in the weak
measurement technique an experimental realization (see Sections 3.2 and 4.4).

3.2 First observation of average trajectories
In 2011, Kocsis et al. [46] demonstrated experimentally that particle trajectories in the double

slit experiment can be reconstructed for an ensemble of particles with a simultaneous observation
of the interference pattern. This has been possible thanks to the weak measurement technique
(see Chapter 2). In fact, as explained in Section 2.4, weak measurements provide an operational
definition of particles Bohmian velocity, which enables the measurement of average quantum
trajectories. In the experiment of Kocsis et al., single photons emitted by a quantum dot are
sent through a double-slit interferometer. In the interference region, a weak measurement of the
photon momentum is performed by using a calcite crystal that couples the momentum of the
photons to their polarization (the pointer variable). The photon polarization is then measured,
allowing the weak value of the momentum to be extracted. A final strong measurement of the
photon position in a series of planes implements the postselection. The reconstructed average
trajectories, reported in Fig.3.5, are indeed congruent with the theoretical trajectories of [22]
shown in Fig.3.4.

An interesting classical interpretation of these trajectories was given by Bliokh et al. [44].
They viewed the average over many events, required by the weak measurement method, as a
multi-photon limit of classical linear optics2.

2All the measurements presented in this thesis, included the average trajectories of photons are performed in a
classical optics regime.



34CHAPTER 3. THE DOUBLE-SLIT EXPERIMENT IN THE FRAME OF BOHMIAN MECHANICS

Figure 3.5: Average trajectories of single photons observed in the interference region of a double
slit apparatus. First experimental reconstruction, by Kocsis et al. [46].

3.3 Surrealistic trajectories
In 1992, a setup analogous to a double-slit apparatus was chosen as setting for an experimentum

crucis. This experiment had the intent to show that “the trajectories, which David Bohm invented
in his attempt at a realistic interpretation of quantum mechanics, are in fact surrealistic” [5]. This
interesting and provocative publication gave rise to an intense debate supported by theoretical
and experimental argumentations.

3.3.1 Accusation of surrealism
Englert, Scully, Süssmann and Walther (ESSW) based their accusation of surrealism on the

following argument [5]. Let us consider a double-slit apparatus. As explained in the previous
Section, because of the symmetry of the two wave functions originating at the slits (3.3), in BM
one can say through which slit the particle has passed just by looking at the arrival position of
the particle on the screen (Bohmian retrodicted trajectory). If the particle hits the screen in the
upper half, it must have passed through the upper slit; if it arrives at the lower half, it must have
passed through the lower slit.

ESSW begin their argumentation remarking that |ψ>|2 does not vanish in the lower half of
the screen, which means that the probability for the particle to pass through the upper slit and
end up at the lower part of the screen is not zero.

In the ideal experiment that ESSW propose, one-bit which-way detectors are placed in the
setup to record through which slit the particle goes. The detectors are such that they not
disturb the motion of the particle center of mass. They are also thought to store the which-way
information until the particle has reached the screen; afterwards the information is read off.
This information enables to clearly distinguish one class of tracks from another, macroscopically
different one, namely the class of tracks through one slit from the class of tracks through the
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other slit. Having this information implies, of course, the loss of the interference pattern but
this is not the issue here. What matters here is that it turns out that the track recorded by the
which-way detectors may be macroscopically at variance with the Bohmian retrodicted trajectory.
Hence, the surreal nature of Bohmian trajectories.

In particular, this is always the case when the experiment is performed with magnetic atoms
traversing an incomplete Stern-Gerlach interferometer. This setup is equivalent to the double-
slit interferometer as far as symmetry is concerned, therefore the retrodiction argument of the
Bohmian interpretation still holds.

Figure 3.6: Incomplete Stern-Gerlach interferometer with one-bit which-way detectors. For a
particle arriving in the lower half of the screen, two conflicting trajectories are drawn: the dashed
curve represents the particle trajectory argued in [5]; the solid curve reproduces the Bohmian
retrodicted trajectory. The arrows indicate the particle spin.

In Fig.3.6 a schematic representation of the gedanken experiment proposed by ESSW is shown.
The event of a particle hitting the lower half of the screen is considered. The macroscopically
different behaviour of the recorded track and the Bohmian trajectory is shown.

The dashed curve represents the particle trajectory argued in [5]: due to the geometry of the
magnets, when a spin up (↑ in the figure) enters the interferometer, it is recorded by the upper
detector and hits the screen in the lower half.

The solid curve, on the other hand, represents the Bohmian trajectory of a particle arriving
at the lower half of the screen. As a typical Bohm trajectory, it doesn’t cross the x = 0 axis.
Therefore the particle must have gone through the lower detector. By doing so, though, a spin-flip
must happen instantaneously at the moment in which the Bohmian particle starts travel away
from the x = 0 axis (↓ turns into ↑ in the figure).

For ESSW then, at least two valid reasons are there that show the surreal nature of the
Bohmian trajectories: (i) the particle goes through a detector, but leaves its mark in the other
one; (ii) an unexplained, instantaneous spin-flip occurs.
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3.3.2 Discussion and state of the art

The accusation of surrealism provoked a huge discussion in the scientific community of Bohmi-
ans (for a brief review see [29]). Various argumentations were presented to defend the real status of
the Bohmian trajectories. Among them, the self-destructive logic of ESSW [20] and the incorrect
usage of the theoretical framework (a comparison between Bohmian trajectories and a standard
QM behaviour of the particle is not meaningful, since in orthodox QM the concept of particles
travelling along paths doesn’t exist) [20, 27, 49].

A crucial argument against ESSW was presented already in 1993 by Dewdney et al. [49]
and reconsidered in 2000 by Hiley et al. [28]. It is based on the non-local character of Bohmian
mechanics. According to it, the experimentum crucis of ESSW does not reveal anything surrealistic
about Bohmian trajectories, but rather shows a manifestation of the nonlocal quantum potential.
A which-way detector in an interferometer does not behave in the same way as an isolated detector.
It acts under the effect of the non-local quantum potential. This means that the detector can
change state, firing, also when the particle travels along the other arm of the interferometer.
Therefore, the information read off from such a “fooled” detector can not be trusted.

Regarding the spin-flip issue, as already ESSW had imagined, the problem is not present in
Bohmian mechanics, since the spin is not a property carried by the particle itself, but rather a
property of the wave function.

Even though repudiated by Hiley himself some years later [27], the argument of non-locality
offered the inspiration for a (claimed) experimental validation of the real nature of Bohmian
trajectories [7]. The goal of that experiment is twofold.

Firstly, the authors provide an empirical demonstration the non-locality of Bohmian trajec-
tories. This demonstration was performed using a pair of entangled photons, as proposed by
Braveman et al. in [17]. From the Bohmian perspective, in fact, the entanglement between the
two photons, making their evolution inseparable even when they are spatially separated, accounts
for non-locality. The dependence of the trajectory of the first photon on the position of the second
photon demonstrated the Bohmian concept of non-locality.

Secondly, the surreal issue was addressed. To reproduce the ESSW measurement scenario,
entanglement is necessary. This inevitably leads to non-local effects, as discussed above.
In their setup, the condition leading to “surreal” trajectories of the first photon was realized
when using the second photon to probe the position of the first. Specifically, the which-way
information was encoded in the polarization degree of freedom of the second photon. With
this setup the gedanken experiment conceived by ESSW was realized. Mahler et al. [7] indeed
observed Bohmian trajectories originating at the lower slit (which should correspond to vertical
polarization of photon 2) accompanied by which-way measurement results associated with the
upper slit (photon 2 horizontally polarized). A deeper analysis of the origin of this effect, though,
reveals that nothing surreal is going on, from the Bohmian perspective. The spin of photon 2, in
fact, is not a reliable observable to look at in order to know whether photon 1 passed through
the upper or the lower slit. It is not reliable because it is not a constant of motion, but rather
evolves in time with the evolution in position of photon 1, to which it is entangled (see Fig.3.7).
Therefore the information “stored” in the which-way measurement device is in turn not reliable.
Showing that the which-way measurement device is not trustworthy, the ESSW argumentation
falls down.
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Figure 3.7: Observation of “surrealistic” trajectories. The effect of the nonlocal coupling between
the motion of photon 1 and the polarization of photon 2 is shown: as the position of photon 1
evolves in time (A), it causes a change of the polarization of photon 2 over time (B). Therefore,
the final polarization state of photon 2 does not provide the correct which-way information of
photon 1. Image taken from [7].

3.4 Mathematical description of the possible scenarios
In this Section three relevant configurations of the double-slit apparatus are mathematically

described. The first two are the cases traditionally considered, namely (i) the configuration with
only one slit open (decoherence) and (ii) the configuration with both slits open (interference). The
third case presented is the configuration conceived by ESSW to show the “surrealistic” trajectories.

To illustrate them in a concrete situation, let us consider a quantum optics setting.
Pairs of entangled photons are emitted by a source. The wave function of the single pair is

|Ψ⟩ ≠ |ψ1⟩ ⊗ |ψ2⟩ . (3.4)

In all the three cases, the first photon of the pair is sent towards a double-slit apparatus. The
second, on the other hand, is measured each time in different ways. Each measurement condition
will affect the distribution of photons 1 on the screen in a different manner.

The entanglement between the photons is initially in the polarization degree of freedom:

|Ψ⟩ = 1√
2

(|H⟩ |H⟩ + |V ⟩ |V ⟩). (3.5)

The polarization information they carry can be converted into path information via optical
components. For this purpose, a beam displacer and a polarizing beam splitter (PBS) are used
for photon 1 and photon 2, respectively. Specifically, the beam displacer acts itself as double-slit3,
associating horizontal polarization (H) to slit A and vertical polarization (V) to slit B. Similarly,
the PBS selects a path for the second photon, according to its polarization. Polarization will
be therefore used as label for the path: |ψH⟩ and |ψV ⟩ are the two possible wave functions for

3For more details see Section 4.3.
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photon 2 at the exit of the PBS. They are assumed to have completely disjoint support in real
space, so that

ψH(q2) · ψV (q2) = 0 (3.6)
holds for all possible position q2 of photon 2.

In all the cases, the Bohmian velocity v1(q1,q2) of photon 1 in the interference region will be
shown (Eq.1.9); when possible, in the reduced form (1.10).

3.4.1 Decoherence
In this first case, photon 2 is sent through the PBS before photon 1 reaches the double slit

(see Fig.3.8). Exiting the PBS, photon 2 will make one of the two detectors fire, revealing its
polarization. This accounts as a strong which way detection, which destroys the interference
pattern. In fact, due to the entanglement of the two photons in the polarization degree of freedom
(Eq.3.5), a measurement of the polarization of the first photon collapses the second in the same
eigenstate of polarization.

Once the polarization entanglement has been translated into path entanglement, the total
wave function reads

|Ψ⟩ = 1√
2

(|ψA⟩ |ψH⟩ + |ψB⟩ |ψV ⟩). (3.7)

In real space, as preferable in BM, the total wave function can be written as

Ψ(q1,q2) = 1√
2

(ψA(q1)ψH(q2) + ψB(q1)ψV (q2)) . (3.8)

Figure 3.8: Decoherence case. A polarization measurement on photon 2 corresponds effectively to
the closure of one slit. Which of the two slits gets closed depends on the result of the measurement.

Dealing the wave function only with spatial degree of freedom, the reduced form for the
velocity field (1.10) can be applied and yields:

v1(q1,q2) ∝ Im
[

∇1ψA(q1)ψH(q2) + ∇1ψB(q1)ψV (q2)
ψA(q1)ψH(q2) + ψB(q1)ψV (q2)

]
. (3.9)

As expected, there are no interference terms guiding the particle evolution. Noticing that either
ψH(q2) = 0 or ψV (q2) = 0 by virtue of the assumption (3.6), the two cases of Fig.3.8 arise
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manifestly: photon 1 follows either

v1(q1,q2) = v1(q1) ∝ Im
[

∇1ψA(q1)
ψA(q1)

]
(3.10)

or
v1(q1,q2) = v1(q1) ∝ Im

[
∇1ψB(q1)
ψB(q1)

]
. (3.11)

Thus, the particle is always guided either only by ψA or by ψB .

3.4.2 Interference
In this case, the second photon is projected into some polarization state, again before photon

1 reaches the slits. This measurement, which does not give any information about the initial
polarization state of photon 2, destroys the entanglement between the two photons. Therefore this
situation effectively corresponds to the standard case of a particle sent towards a double-slit appa-
ratus when both slits are open. An interference pattern is then observed at the screen (see Fig.3.9 ).

On account of the consideration above, the relevant wave function for this case is

ψ1(q1) = 1√
2

(ψA(q1) + ψB(q1)) . (3.12)

Figure 3.9: Interference case. The initial measurement of photon 2, which destroys the entangle-
ment between the two photons, reduces the situation to the traditional configuration of a single
particle in a double-slit.

In the velocity expression

v1(q1) ∝ Im
[
ψ∗

1(q1)∇1ψ1(q1)
|ψ1(q1)|2

]

= Im
[
ψ∗
A(q1)∇1ψA(q1) + ψ∗

B(q1)∇1ψB(q1) + ψ∗
A(q1)∇1ψB(q1) + ψ∗

B(q1)∇1ψA(q1)
|ψA(q1)|2 + |ψB(q1)|2 + 2 Re [ψA(q1)ψ∗

B(q1)]

]
,

(3.13)
the presence of interference is evident in the phase dependent terms which combine ψA and ψB .
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The reduced form reads:

v1(q1) ∝ Im
[

∇1ψ1(q1)
ψ1(q1)

]
= Im

[
∇1ψA(q1) + ∇1ψB(q1)
ψA(q1) + ψB(q1)

]
. (3.14)

For positions q1 in the interference region where both ψA and ψB are non-vanishing, the photon
is guided by both parts of the wave function (3.12).

3.4.3 Surreal Case
The surreal case occurs when the polarization of photon 2 is not measured at all (see Fig.3.10).

By the side of photon 1, as described above, the passage through the slits represents a conversion
of the polarization degree of freedom into the spatial one. Therefore, while photon 1 travels
within the interference region, the total wave function of the system presents entanglement in
path-polarization degrees of freedom:

|Ψ⟩ = 1√
2

(|ψA⟩ |H⟩ + |ψB⟩ |V ⟩). (3.15)

The usual projection in real space leaves the wave function in the hybrid notation

Ψ(q1) = 1√
2

(ψA(q1) |H⟩ + ψB(q1) |V ⟩) , (3.16)

where photon 2 is still represented by kets of polarization. The Bohmian velocity field (1.9)

Figure 3.10: Surreal case. The entanglement with the unmeasured photon 2 leads to have both
slits open, but no interference.

deriving by this wave function has the form:

v1(q1) ∝ Im
[

(ψ∗
A(q1) ⟨H| + ψ∗

B(q1) ⟨V | ) ∇1 (ψA(q1) |H⟩ + ψB(q1) |V ⟩)
(ψ∗
A(q1) ⟨H| + ψ∗

B(q1) ⟨V | ) (ψA(q1) |H⟩ + ψB(q1) |V ⟩)

]

= Im
[
ψ∗
A(q1)∇1ψA(q1) + ψ∗

B(q1)∇1ψB(q1)
|ψA(q1)|2 + |ψB(q1)|2

]
.

(3.17)

This velocity field depends on both the waves ψA and ψB originating at the slits, as seen
in the interference case (3.14); but at the same time does not show any interference term, as
happens in the decoherence case (3.9).
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Curiously, the result of the experiment in this configuration is exactly what would be expected
from a double-slit experiment in classical terms: both slits are open, but on the screen no
interference pattern is expected, rather a trivial sum of the probability distributions of the
photons arriving from the two slits as if only one was open at a time. This observation receives a
mathematical confirmation when the velocity field (3.17) is rewritten as

v1(q1) ∝ |ψA(q1)|2

|ψA(q1)|2 + |ψB(q1)|2 Im
[

∇1ψA(q1)
ψA(q1)

]
+ |ψB(q1)|2

|ψA(q1)|2 + |ψB(q1)|2 Im
[

∇1ψB(q1)
ψB(q1)

]

= : pA Im
[

∇1ψA(q1)
ψA(q1)

]
+ pB Im

[
∇1ψB(q1)
ψB(q1)

]
.

(3.18)
The velocity field in the surreal case is indeed a weighted sum of the two single slit fields (3.10)
and (3.11). The condition for this to happen is twofold. On one hand, photon 2 is not measured
until photon 1 reaches the screen, which let both slits give their contribution (ψA and ψB). On
the other hand, ψA and ψB are entangled with the two possible polarization states of photon 2,
which are orthogonal to each other (3.16). The orthogonality in polarization of the two terms of
the entangled state prevents the interference between the two wave functions ψA and ψB in real
space. At the same time, both terms contribute to the guiding of each particle since the wave
functions of photon 2 overlap in real space. So the surreal scenario is created, in which the lack
of interference is observed, even maintaining the two terms of the total wave function a joint
support in configuration space.

3.5 This experiment
The aim of our experiment is the realization of the surreal situation described in 3.4.3 and

a consequent deeper investigation of the Bohmian trajectories behaviour in this experimental
condition. A conceptually different measurement will be done with respect to the measurement
performed by Mahler et al. [7].

Limitation in Mahler’s experiment

In Mahler et al.’s implementation of the ideal experiment of ESSW [5], an experimental limi-
tation made it impossible to maintain the entanglement between the two photons while photon 1
was travelling along its “surrealistic” trajectory. In fact, to overcome the problem of a significant
background, the events of interest were selected by measuring photon 2 as soon as photon 1 had
passed through the double-slit. Performing this measurement, the experimental condition was
effectively reduced from a potential surreal case to the decoherence case (Section 3.4.1). Then, the
way Mahler et al. used to reconstructed the surrealistic trajectories shown in Fig.3.7 was by means
of (3.18): they reconstructed the surreal velocity field as a weighted sum of the two single-slit fields.

Measurement conditions of our experiment

In our experiment, the polarization measurement of photon 2 will be performed only after
photon 1 has reached the screen. Performing the which-way measurement at that moment is the
authentic implementation of the ideal experiment in which surrealistic trajectories were defined
[5]. Moreover, the polarization measurement on photon 2 will be realized in different polarization
bases. The final goal is then to study the influence that different measurement settings can have
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on the trajectories of photon 1 in the interference region.

The aim of this thesis is the implementation of all what concerns the evolution and the
measurement of photon 1. Measurements of the Bohmian trajectories in the region behind the
slits are performed in the interference case.



Chapter 4

Creation of the setup

4.1 General description of the setup
The experimental setup which has been built in the course of this thesis is depicted in Fig.4.1.

Its first part is the realization of a double-slit apparatus, while its second part is the implementa-
tion of a weak measurement.

This setup has been designed for the evolution and the measurement of a single photon of
wavelength λ = (780±3)nm. Its characteristics has been chosen in order to fulfil the two following
requirements. The Gaussian envelope modulating the interference pattern should be (i) broad
enough to contain from 5 to 7 nicely visible interference fringes and (ii) narrow enough to confine
the single photon in a small region, in order to enable a high detection efficiency.

Figure 4.1: Setup of our experiment, schematic representation.

Those requirements have been imposed on the width of the Gaussian modulation at a z position
in the far field, where the interference pattern is expected to be observed. This determines the
width w0 of the slits and their reciprocal distance d, as calculated in Appendix A.

In our setup, the width of the slits is the beam waist w(z) at the position z0 where it reaches
its minimum value w0 = w(z0). This choice defines z0 as the effective position of the slits. The
value desired in our setup for the slits width is w0 ≈ 144 µm.

43
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For the distance d between the slits, on the other hand, a separation d= 1 mm has been
calculated. This will allow to see 5-7 interference peaks, 390 µm far apart one another.
The next two sections describe the realization of those two geometrical characteristics of the slits.

Both the preliminary and the final measurements presented here have been performed using a
continuous wave laser with wavelength close to the wavelength of the single photon for which the
setup has been designed.

4.2 Shaping the Gaussian beam: lenses
A system of lenses is needed to shape the Gaussian beam with the desired minimum waist

w0 ≈ 144 µm. Moreover, the position z0 of the minimal waist should be around 30 cm from
the last lens because other optical components will be placed between the lens system and the
position z0 of the waist.

The lens in the Fiber Coupler (FC in Fig.4.1) is set such that the beam comes out collimated,
with a waist of approximately 1 mm. Thus the absolute position of the lens system from the FC
is irrelevant, and what only matters is the choice of the focal length of the lenses and their relative
position. A physical reasonable intuition suggested the choice of a biconcave and a biconvex
lens. The suitable values of the focal lengths and the relative position has been found via a
Mathematica simulation of the problem, implemented in the formalism of matrix optics [50] (see
Fig.4.2).
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Figure 4.2: Mathematica simulation of the waist evolution in the presence of a biconcave
(f1= 100 mm) and a biconvex (f2= − 50 mm) lens at a relative distance of 5.5 cm.

Focal lengths of f1= 100 mm and f2= − 50 mm have been chosen for the first and the second
lens, respectively. A 5.5 cm distance between two such lenses allows to obtain a minimum waist
w0 ≈ 144 µm at z0 ≈ 25 cm from the second lens. With that system of lenses, the evolution of the
waist has been measured in a range of 1.2 m starting from the second lens. The experimental data,
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fitted with Eq.A.1, are shown in Fig.4.3. As desired, the experimental waist has its minimum
w0=143 µm at z0= 28 cm far from the second lens.
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Figure 4.3: Experimental data of the evolution of the beam waist in the presence of a biconcave
(f1= 100 mm) and a biconvex (f2= − 50 mm) lens at a relative distance of 5.5 cm. The minimum
width is w0=143 µm at z0= 28 cm from the second lens.

4.3 Birefringent crystals as double-slit

4.3.1 Basic theoretical principles and simulations

In our setup the slits, at least as concerns their separation, are created exploiting the anisotropy
of birefringent crystals. In fact, the dynamics of a beam passing through such a crystal is affected
by the fact that the physical properties of this medium depend on a specific direction [51]. This
characteristic direction, called the optical axis (OA), forms an angle θC with the normal to the
crystal surface (see Fig4.4).

The OA and the wave vector k of the beam define a plane. A beam propagating through the
crystal is called ordinary beam (o-beam) if its polarization is normal to this plane; extraordinary
(e-beam) if its polarization lies in the plane. Entering the crystal, the e-beam is affected by a
refractive index (ne), dependent on the beam polarization and the angle of incidence (θ1), which is
not the same as the refractive index (no) that governs the propagation of the o-beam. Therefore,
by travelling through a birefringent crystal, two orthogonal polarization components of the same
beam get separated1.

1The separation concerns the direction of the energy vector S. The direction of propagation of the wave phase
k, on the other hand, is deflected in the same way for both the o- and the e-beam [51].
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Figure 4.4: Definition of the main parameters of a birefringent crystal.

The distance δ between them at the output face of the crystal is

δ = L tanρ, (4.1)

where L is the thickness of the crystal and ρ is the “walk-off” angle between the o- and the e-beam
(see again Fig.4.4).

This separation δ constitutes in our setup the separation between the two slits. To obtain the
desired separation of 1 mm, the behaviour of δ has been studied as a function of the angle of
incidence θ1, the angle θC of the OA, the indices of refraction no and ne, and the thickness of the
crystal L. A simulation of the dependence δ(θ1, θC) is shown in Fig.4.5 in the case of a 3.9 cm
thick Calcite crystal.

With such a crystal available in the laboratory, the experimental validation of the theoretical
prediction has been successfully performed for θC=45◦ (see Fig.4.6).

4.3.2 Experimental realization
Coarse overlap

In order to obtain interference, the double-slit - besides fulfilling the geometrical constraints
discussed at the beginning - must assure a high coherence between the two outgoing beams.
The single-crystal double-slit discussed so far presents in this respect a problem. The ordinary
and the extraordinary beams, in fact, travelling inside the crystal along different paths, accu-
mulate a pathlength-difference which is in the order of millimeters for a crystal providing the
desired 1 mm separation between the beams. This spatial difference between the two wave
packets is though much bigger than the coherence length of each packet, lc = 2 ln(2)

πn
λ2

∆λ ∼ 90 µm.
This prevents the overlap between the wave packets of the two beams, thus leading to dechoerence.
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o-e beam separation [m]

Figure 4.5: Matlab simulation of the separation δ between the ordinary and the extraordinary
beams as a function of the incident angle θ1 and the angle θC of the OA. Values calculated for a
Calcite crystal with L=3.9 cm.

To tackle this issue, a second, identical crystal is placed after the first one, with a half
wave plate (HWP) in between to swap the roles of the ordinary and the extraordinary beams
(see Fig.4.1). Therefore, the beam which travels the longer path in the first crystal will travel
along the shorter in the second crystal, and vice versa for the other beam. Since both beams
travel once the long, once the short path, the difference of the pathlengths is coarsely compensated.

For our setup, each of the two birefringent crystals must then create a separation of 0.5 mm
between the two beams. Two cubic YVO crystals (5x5x5 mm3) with θC= 90◦ have been chosen
for this purpose.

The distance between the two slits created via the two crystals has been measured, as separa-
tion between the two beams, directly in front of the slits, where the beams do not interfere yet.
The desired 1 mm separation has been achieved, as shown in Fig.4.7.

A fine positioning of the crystals by rotation around the z axis assures that the two beams
lie in the same y plane. This ideal condition has been achieved with a precision of 18 µm. This
allows to consider the x and z directions as the only relevant ones.



48 CHAPTER 4. CREATION OF THE SETUP

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
3.4

3.6

3.8

4

4.2

4.4

4.6
x 10

−3

θ1 [rad]

e 
be

am
 s

ep
ar

at
io

n 
[m

]
o-

Figure 4.6: Experimental data of the separation δ between the ordinary and the extraordinary
beams after a Calcite crystal 3.9 cm thick, studied as a function of the incident angle θ1.
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Figure 4.7: Measured intensity profile of the two beams behind the slits. Their separation,
corresponding to the distance between the slits, is 1 mm.
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Fine overlap

To ensure coherence of the two beams, two more requirements must be fulfilled. First of all,
they must have the same polarization. For this purpose, a HWP, specifically designed to act on
the H-polarized beam only, is inserted in the setup (see Fig.4.1). The beams coming out from the
slits are thus both V-polarized.

Second, the overlap between the two beams must be finer than the coarse pathlength-difference
compensation provided by the two-crystals configuration. The finer overlap concerns the single λ
peaks inside the Gaussian wave packet. Each of them is λ = (780 ± 3)nm wide. In order to have
the two wavepackets in phase, each inner λ-peak of one packet must overlap with the nearest
λ-peak of the other packet with a maximum error set to λ/100. To achieve such a condition, a
high precision is experimentally required in the angular positioning of the crystals. The maximum
error for this positioning has been calculated to be around 10µrad.

In order to achieve this finer overlap condition without turning the slit-crystals themselves
(this would change the pathlengths of the beams inside), another YVO is placed in the setup. As
shown in Fig.4.1, it has been inserted right before the lenses, just for practical reasons of space. Its
small thickness (L=0.2 mm) creates a negligible δ-separation between the different polarization
components of the beam, but a relevant phase shift to compensate the small path-length difference.
A fine positioning of this YVO makes the two beams exit the second crystal in phase.
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Figure 4.8: Intensity profile of the interference pattern between the two beams in the far field.
The separation between two neighbouring interference peaks is 390µm, as expected.

This coherence condition is at the same time reached and verified by looking for the interference
pattern in the far field. When the YVO is rotated to the proper position, the interference pattern
is observed in the far field. The two slits are then properly created. In Fig.4.8 the intensity profile
in the far field is shown. The distance between two consecutive peaks of interference is 390 µm,
as expected from the calculation reported in Appendix A.



50 CHAPTER 4. CREATION OF THE SETUP

4.4 Implementation of the Weak Measurement
The second part of the setup is the implementation of the weak measurement. With it, the

Bohmian velocity of photons passing through the double slit will be measured in a range of 40 cm,
starting from around 10 cm after the position of the waist.

The measurement apparatus for this weak measurement is the particle itself. Its polarization
plays the role of the pointer variable.

Note that, in contrast to the situation presented in Chapter 2, in which the set of eigenvalues
was continuous for the pointer variable and discrete for the measured observable, here it is
the other way round. The pointer variable, as said, the polarization, has a set of two possible
eigenvalues {±1}, while the measured observable, the momentum of the photon, has a continuous
spectrum. The same calculation presented in Chapter 2 can be applied here, keeping in mind the
swapping of the roles.

4.4.1 Description of the measurement
As shown in Fig.4.1, the weak measurement is implemented via four optical components,

which, in turn, modify the beam. The modification introduced by each of them will be shown by
looking at the beam profile at a fixed position, imagining to place the components in the setup
one by one. The position at which the beam profile will be observed is chosen in the interference
region, about 50 cm after the effective position of the slits.

Quarter Wave Plate (QWP)

The first optical component we place in the optical path after the double slit is a quarter wave
plate (QWP), to prepare the polarization pointer state. The QWP rotates the polarization of the
photon from the state |V ⟩ (as it comes out from the slits) to a circular polarization state, say
|R⟩ = 1√

2 (|H⟩ + i |V ⟩) to make the reasoning concrete.
The beam profile in the interference region looks as sketched in Fig.4.9.

Figure 4.9: Beam profile at 50 cm far from the slits when only the QWP is placed after the slits.
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YVO crystal

Then we insert the YVO crystal to couple the momentum of the photon p̂ (the system
observable) to its polarization (the pointer variable). The corresponding Hamiltonian describing
the coupling interaction (2.1) here reads

H = ϵ p̂ ⊗ σ̂z , (4.2)

where the coupling strength ϵ depends on the tilt of the crystal: the smaller the tilt, the weaker
the coupling.

As a birefringent crystal, the YVO separates the incoming beam into two beams with orthog-
onal polarizations (see Fig.4.10). Being our YVO described by the operator σ̂z, as in (4.2), means
that the two outgoing beams have horizontal and vertical polarization respectively, with a relative
phase (in our case fixed to i) depending on both the specific state of the ingoing beam and the
fine tilt of the crystal. The distance between the two profiles equals 2ϵ and depends on the coarse
tilt of the YVO and its thickness (L=4.52 mm). In our case this separation is about 14.3 µm.

Figure 4.10: Beam profile at 50 cm distance from the slits when QWP and YVO are placed after
the slits. The blue profile shows the H-polarized term of (4.3) and the red profile the V-polarized
one. The shift between the two profiles is 2ϵ ≈ 14.3µm.

The intensity profile shown in Fig.4.10 is the modulo squared of the total wave function (2.7),
where the projection onto ⟨q| corresponds to the selection of the z plane at which the beam profile
is observed. In our case this wave function reads

⟨q |ΨF ⟩ = 1√
2

[ψS(q − ϵ) |H⟩ + i ψS(q + ϵ) |V ⟩] . (4.3)

To obtain it from (2.7), the operator σ̂z and the state |R⟩ have been expressed in the basis of
linear polarization {|H⟩ , |V ⟩}, namely σ̂z = |H⟩ ⟨H| − |V ⟩ ⟨V | and |R⟩ = 1√

2 (|H⟩ + i |V ⟩).
Note that in (4.3) the spatial function in the two orthogonally polarized terms is slightly

shifted in position (to the left in one term and to the right in the other). This is manifestly the
correlation (4.2) of momentum, the generator of spatial translations, with polarization.
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Polarizer

The momentum-polarization entangled state produced by the YVO is then sent through a
polarizer to implement a projective measurement of the pointer variable. This measurement
of polarization is performed, in our setup, in the {|P ⟩ , |M⟩} basis2, which corresponds to a
measurement of the operator σ̂x.

Figure 4.11: Beam profiles at 50 cm far from the slits when QWP, YVO and a polarizer are
placed after the slits. The green profile is recorded in presence of a P-polarizer, while the orange
one corresponds to the M-polarized beam. The difference between the two profiles leads to the
weak value of the photon momentum. As a reference, half of the total intensity of the distribution
without any projective measurement is represented in the black curve.

When a P-polarizer is placed in the setup, the momentum-polarization entangled state is
projected onto |P ⟩ = 1√

2 (|H⟩ + |V ⟩), yielding the probability (green in Fig.4.11)

pP (q) = | ⟨P |ΨF ⟩ (q)|2 = |12(⟨H| + ⟨V |) (ψS(q − ϵ) |H⟩ + i ψS(q + ϵ) |V ⟩)|2

= 1
4
[
|ψS(q − ϵ)|2 + |ψS(q + ϵ)|2 + 2Im[ψS(q − ϵ)ψ∗

S(q + ϵ)]
]
.

(4.4)

When, on the other hand, a M-polarizer is inserted, the projection is performed onto
|M⟩ = 1√

2 (|H⟩ − |V ⟩) and the probability pM (q) is equivalently obtained (orange in Fig.4.11)

pM (q) = 1
4
[
|ψS(q − ϵ)|2 + |ψS(q + ϵ)|2 − 2Im[ψS(q − ϵ)ψ∗

S(q + ϵ)]
]
. (4.5)

From these probabilities the expectation value of σ̂x on |ΨF ⟩ can be calculated as

⟨σ̂x⟩ = pP − pM
pP + pM

= 2Im[ψS(q − ϵ)ψ∗
S(q + ϵ)]

|ψS(q − ϵ)|2 + |ψS(q + ϵ)|2 . (4.6)

The condition of weak coupling allows the Taylor expansion of ψS(q ± ϵ) around q:

ψS(q ± ϵ) = ψS(q) ± ∂qψS(q)ϵ+ O(ϵ2). (4.7)
2Other choices of polarization basis for this measurement and of the initial pointer state are discussed in

Appendix B.
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With this expansion of ψS(q ± ϵ) until first order in ϵ, (4.6) reads

⟨σ̂x⟩ ≈ 2ϵIm[ψS(q)∂qψ∗
S(q) − ψ∗

S(q)∂qψS(q))]
2|ψS(q)|2 = ϵ

Im[−2iIm[ψ∗
S(q)∂qψS(q)]]

|ψS(q)|2

= −2ϵ Im[ψ∗
S(q)∂qψS(q)]
|ψS(q)|2 ,

(4.8)

which can be recognized as the Bohmian velocity (1.9).

CCD camera

The CCD camera, always implicitly considered so far when showing the intensity profiles, is
used to perform a strong measurement of position. This final measurement corresponds to the
post-selection.

The camera is mounted on a translation stage which scans the z direction from 12.5 to 52.5 cm
after the slits. Moving the camera within this range allows to extract the weak value of momentum
for different position of the interference region. From this vector field of velocity the possible
trajectories can be reconstructed.

4.4.2 YVO crystal as entangling medium
Momentum of the wave function and Bohmian velocity of the particle

As shown in Eq.(4.2), ĤI = ϵ p̂ ⊗ σ̂z, the YVO in our setup provides the entanglement between
the system and the apparatus necessary in any measurement process (Section 2.21). In our
measurement, the degree of freedom of the apparatus is polarization (σ̂z), whereas the system
observable is the momentum p̂ of the wave function.

Note, however, that what we are interested to extract from our measurement is not that
momentum p̂ of the wave function, but rather the Bohmian velocity vB of the particle. It is
obtained, as a weak value, with a weak measurement of p̂ and a further postselection of the
position q (see Section 2.21).

Thus p̂ and vB are indeed two distinct physical entities. In particular, while vB changes at
different positions of the interference region (thence the not straight Bohmian trajectories), the
momentum p̂ is a constant of motion. In the interference region, in fact, the spatial wave function
evolves accordingly to the free space Hamiltonian Ĥfree, with which the momentum p̂ commutes:[
Ĥfree, p̂

]
= 0.

Entangling interaction and time evolution

Let us consider now the entangled state created by the YVO: |ΨF ⟩ = 1√
2

[
|ψ1
S⟩ |H⟩ + i |ψ2

S⟩ |V ⟩
]

(state (4.3) before the expansion in q-representation). The time evolution it undergoes is governed
by the Hamiltonian Ĥev = Ĥfree ⊗1. Since this Hamiltonian has the form of a tensor product, the
entanglement is preserved over time.

Another favourable property of the time evolution Hamiltonian Ĥev is the commutation with
the interaction Hamiltonian: [

Ĥev, ĤI

]
= 0. (4.9)
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This physically means that the entangling process necessary for the measurement can be done at
any time of the time evolution of the system.

The experimental counterpart of (4.9) is the legitimacy to place the entangling YVO at any
position of the interference region, of course before the position of the postselection (it is evident
that a convenient position is right in front of the slits, which provides entanglement at any position
of the entire interference region).

The freedom in the choice of the YVO position can be also intuitively seen from the following
fact. What the YVO effectively does is creating a spatial separation between the two components
of the wave function correlated with orthogonal polarizations (Eq.4.3 and Fig.4.10). Thanks to
this separation, the Bohmian velocity can be extracted from the intensity profiles as described in
the previous Section. The constant amount of this separation, 2ϵ, is evidently independent of the
position at which the YVO is placed.



Chapter 5

Measurement results

5.1 Realistic initial pointer state
Some deviations from the ideal measuring condition described in the previous chapter have

been of course detected in our measurement. The initial state of the pointer variable represents
the most interesting one. The polarization of the laser beam has in fact been found to be not in
a perfectly circularly polarized state. Rather, an excess of P-polarization component has been
detected over the M-polarization one. The information of the initial polarization state has been
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Figure 5.1: The slight excess of P-polarized light with respect to M makes the initial pointer
state not exactly circularly polarized.

obtained by a set of intensity measurements. Pairs of P and M intensity values have been recorded
within a time interval shorter than the characteristic time of laser fluctuations (see Fig.5.1).

The deviation of the initial pointer state from the ideal case ⟨σ̂x⟩ideal0 = 0 amounts to 3.8%,
which is still considerably close to the required circularly polarized state (see Appendix B).
According to the measurement procedure explained in Chapter 2, the shift of the pointer state
from this value has been considered as measurement result.

The intensity ratio P/M ≈ 1.08 ± 0.02 as been taken into account in the crucial analysis of
the relative intensity between the P and M profiles.
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5.2 Average trajectories of photons
The beam profile has been measured in the range from 12.5 to 52.5 cm after the double slit at

41 equidistant imaging planes. For each plane, a set of 5 P-polarized profiles and 5 M-polarized
profiles have been recorded. Averaging over them as required by the weak measurement method,
a pair of P- and M-polarized profiles has been obtained for each imaging plane.

From each such pair the momentum of the photons has been calculated for various x posi-
tion of the corresponding z plane. As expected, most of the momentum is in the longitudinal
direction, kz = 2π

λ ≈ 8 · 106 m−1, while the transversal momentum is orders of magnitude smaller:
|kx| < 5 · 104 m−1.
The transversal momentum calculated from the data at the z = 30 cm imaging plane behind the
double slit is represented in Fig.5.2. Note the symmetrical behaviour with respect to the origin of
the x axis.
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Figure 5.2: Transversal photon momentum recorded at the z = 30 cm imaging plane behind the
double slit.

By interpolation between the various imaging planes, the entire 2D velocity field has been
reconstructed. As boundary condition to the deterministic evolution problem, the probability
distribution of the photon position at the middle point of the scanned z range has been provided.
From those information, the average Bohmian trajectories of photons have been obtained.

In Fig.5.3, 80 possible trajectories of photons in a double slit apparatus are shown. As expected
from previous discussion (Section 3.1.2), the Bohmian trajectories do not cross each other and
show a symmetric behaviour with respect to the x = 0 axis.
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Figure 5.3: Average trajectories of photons in a double slit interferometer, reconstructed by
measured data.

Moreover, an increasing density of trajectories is nicely visible in correspondence of the three
central interference peaks. In the Bohmian explanation of the double-slit experiment, in fact,
particle trajectories are describable while retaining the interference pattern.

The average trajectories obtained in this thesis with a classical continuous-wave laser source
resemble the single-photons average trajectories recorded by Kocsis et al. [46], presented in
Section 3.2. The observation of such an analogous behaviour is an experimental demonstration
of the proposal of Bliokh et al. [44] to give a classical interpretation to Kocsis’ single-photons
average trajectories. After all, the weak measurement performed by Kocsis et al. inevitably
requires averaging over many single-photons events. As a result of such averaging process, “the
single-photon or multi-photon character of the field does not make any difference” [44].

The significance of average photons trajectories reconstructed by the method of weak mea-
surements is still to be understood more deeply. Although the Bohmian velocity is defined as a
weak value (Section 2.4), the inevitable averaging process required by the weak measurement
method makes the identification of the reconstructed trajectory with the desired single particle
trajectory not straightforward any longer. When this measurement procedure is applied in a
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single-photon regime, is it still legitimate to ascribe the result obtained by averaging over an
ensemble of many quantum particles to a single particle? If this is not the case, then the Bohmian
single particle trajectories remain just an intuitive picture for the description of the dynamics of
quantum particles. In this scenario, the measured “average trajectories” can be still regarded as
the streamlines of the probability current.



Conclusions

A deeper investigation of the non-local character of Bohmian mechanics has inspired our
experiment, based on pairs of entangled photons and a double-slit apparatus.

In this thesis project an optical double-slit apparatus has been created with a design suitable
for a single photon of λ ≈ 780 nm. With a continuous-wave laser of the same wavelength, the
proper operation of the double-slit setup has been tested.

Afterwards, Bohmian trajectories of photons in the interference region of this double-slit
apparatus were observed. The eventual investigation of Bohmian non-locality will be in fact
based on the behaviour of such single-photon trajectories. To this aim, a weak measurement of
photon momentum has been implemented. With it, the photon velocity field has been scanned in
a 40 cm range of the interference region.

From the measured velocity field, average trajectories of photons have been reconstructed.
As expected from the Bohmian theory, our measured trajectories do not cross each other and show
a clear symmetry with respect to the optical axis of the setup. At the same time, the interference
pattern is still recognisable by the density of the trajectories, which increases in correspondence
to the interference peaks.

Moreover, the behaviour of our trajectories obtained with a classical light source is totally
equivalent to the one of the weakly measured average trajectories recorded by Kocsis et al.
[46] in a regime of single photons. This analogy provides a qualitative experimental proof to
the classical interpretation of Kocsis et al.’s experiment, as suggested by Bliokh et al. [44].
According to this interpretation in fact, averaging over many single-photons events, as required
by the weak measurement method, is nothing else but a multi-photon limit of classical linear optics.

The real nature of Bohmian trajectories and the significance of the results extracted by a
process of averaging are still under investigation.
With the results achieved in this thesis, the largest part of a new setup is ready. With our final
experiment, new insights on the non-local character of Bohmian mechanics will be provided. To
the Bohmian theory a challenge will be given for the explanation of new results, but at the same
time also a chance for its further development.
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Appendix A

Definition of the geometrical
parameters of the slits

The geometrical parameters of a double-slit created via a Gaussian beam are based on the
waist w of the beam. It evolves along the direction of propagation z according to

w(z) = w0

√
1 +

(
z

zR

)2
, (A.1)

where the Rayleigh length zR, defined as

zR = πw2
0

λ
, (A.2)

is the maximum distance from z0 at which the plane wave approximation is still valid.

Width w0

In our experimental conditions, it is suitable to have the interference pattern at z ≈50 cm
behind the slits. That means, this z position must lie in the far field of the slits.
For our Gaussian beam this conditions corresponds to R = z

zR
≫ 1, let us say R=6.

For those values of z and R, the value of the minimum waist (the width of the slits) is

w0 =
√
zλ

πR
= 144µm. (A.3)

Distance d

The distance d between the slits depends on both the width of the Gaussian at the position
z=50 cm and the number of peaks one wishes to see in it.

To estimate the visible width of the Gaussian (theoretically infinite) let us assume that the
signal is usable until the envelope drops to 1% of its maximal intensity. Defining f as the threshold
value, f=0.01, the assumption reads:

f = e
−

2x2
V

w(z)2 , (A.4)
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where xV is half of the visible waist. Thus, the total visible waist at z=50 cm is

2xV = 2
√
ln1/f w(z)√

2
≈ 2.7 mm. (A.5)

To fulfil the requirement of having about 7 visible peaks within 2xV , the interference peaks
must be 390 µm far apart one another. Considering that the distance between the interference
peaks produced by a double-slit apparatus is zλ

d , the distance d between the slits is determined
to be d=1 mm.



Appendix B

Discussion of alternative setups

In this Appendix, possible variations of our setup are discussed with respect to the choice of
the initial pointer state (the measurement apparatus state |ψM ⟩) and the polarization basis onto
which the pointer state is eventually projected.
The Hamiltonian (4.2) is kept the same throughout the discussion. This corresponds to keeping
always the same YVO which splits the incoming beam into two beams, each one being an
eigenstate of σ̂z.

Let us start considering an eigenstate of σ̂z as the initial |ψM ⟩, for example |H⟩ (an analogous
discussion holds also for |V ⟩).

In this case, (4.3) simply reads

⟨q |ΨF ⟩ = ψS(q − ϵ) |H⟩ . (B.1)

Being |ψM ⟩ an eigenstate of the YVO, just one beam comes out from the crystal. Thence the
failure of the |H⟩/|V ⟩ choice. In fact, since the probabilities of the P/M polarization measurement
on (B.1) are pP = pM , the expectation value of σ̂x on (B.1) yields a useless ⟨σ̂x⟩ = 0. The same
for ⟨σ̂y⟩.

On the contrary, the choice of an eigenstate of σ̂x , |P ⟩ or |M⟩, as initial pointer state makes
the measurement possible, as long as the final polarization measurements are performed in the σ̂y
basis.

Let us consider |ψM ⟩ = |P ⟩. The corresponding state after the YVO in q representation (4.3)
reads:

⟨q |ΨF ⟩ = 1√
2

[ψS(q − ϵ) |H⟩ + ψS(q + ϵ) |V ⟩] . (B.2)

With analogous calculations as the ones which led to (4.8), the result of a measurement of σ̂y
on that state can be proven to be

⟨σ̂y⟩ ≈ 2ϵ Im[ψ∗(q)∂qψ(q)]
|ψ(q)|2 . (B.3)

While measuring σ̂x onto (B.2) would uselessly yield ⟨σ̂x⟩ = 1.

The same holds similarly when choosing an eigenstate of σ̂y as initial pointer state. Analogously
as demonstrated above, one can see that with |ψM ⟩ = |R⟩ or |L⟩, as in our setup, the only
possibility to get meaningful results is measuring the polarization in the σ̂x basis.
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