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Abstract

Weak values, which have been introduced in 1988 by Aharonov, Albert and Vaid-
man, to this day constitute an interesting and controversial element in the debate
about the foundations of quantum mechanics. This thesis analyzes this concept
together with its most important applications and interpretations. Weak values
are introduced based on a discussion of standard quantum measurement, which
is applied to pre- and postselected systems with a weak interaction. Thereby, a
quantitative definition of weakness is proposed, which is based on the amount of
correlation between measured and measuring system. Furthermore, the properties
of a quantum tomography technique which employs the formalism of weak values
are discussed in the context of a tomography experiment that was reproduced in
the course of the thesis. Eventually in dependence on an operational definition of
physical reality, also a proof for the reality of weak values as a property of pre-
and postselected system is presented.
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1. Introduction

While quantum mechanics succeeded in the description of phenomena inexplicable
by classical physics, as the famous Stern-Gerlach experiment [1], it did so at the
cost of the introduction of the postulated “collapse” of the wavefunction. In the
standard formalism of quantum mechanics, the duality between the particle and
wave properties of quantum particles is bridged by the random transition of a
superposition of alternative possibilities expressed in the form of a wave into the
definite properties of a particle. The necessity of the measurement postulate,
which describes the properties of physical systems as fundamentally dependent
on their observation, is denoted as the “measurement problem” and presents a
controversial subject also for the contemporary debate about the fundamental
interpretation of quantum mechanics [2, 3].

The introduction of the concept of a “weak value of a quantum variable” in
the momentous article of Aharanov, Albert and Vaidman in 1988 [4], which im-
plied the possibility of conducting measurements on quantum systems without the
consequence of a collapse, brought a new perspective into the standard debate.
Because of the inception of weak values from the “time-symmetric formulation” of
quantum mechanics as developed by Aharonov, Bergmann and Lebowitz in 1964
[5] and the controversial interpretation of weak values as highly unusual mea-
surement outcomes of quantum measurements, this concept has fueled an intense
debate, which began immediately after the initial introduction [6–9] and continues
until today [10–20].

Independently of the interpretational controversies surrounding weak values and
measurements, however, the concept has proven useful in at least some experi-
mental applications. Since the first implementation of a weak measurement by
Ritchie et al. [21] shortly after the initial introduction of weak measurements,
a number of experiments has been performed, which employed the formalism of
weak values in diverse ways. The two main applications for which weak values
have proven useful is the amplification of small effects in quantum metrology as
the famous weak measurement of the spin Hall effect of light [22] and the novel
procedure for the determination of unknown quantum states, denoted as “direct
state tomography” as most prominently presented in [23–25].

The goal of this thesis is the presentation of the concept of weak values along-
side its most relevant interpretations and applications. A particular emphasis is
given to the relation between weak values and the standard theory of quantum
mechanics. In the course of the practical part of the thesis an experiment relating
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1. Introduction

to direct state tomography was performed, which is also presented in the con-
text of the discussion of the basic principles of the procedure. Two review articles
should be mentioned as important resources, one of which is the review of Kofman
et al. [26], where the formalism of weak values is developed and analyzed in great
detail. The other important source is a review article by Aharonov and Vaidman
[27], which derives the concept of weak values from a systematic discussion of the
time-symmetric approach to quantum mechanics.

This work is divided into four chapters and begins with an overview over the el-
ements and structures of standard quantum theory. The mathematical formalism
of Hilbert spaces is introduced and subsequently its application for the represen-
tation of physical systems is delineated. While the presentation of these basic
principles is relatively extensive, this approach is justified by the aim to provide
a clear and well-defined foundation for the following discussions.

The next chapter focuses on the subject of quantum measurement and intro-
duces the notion of measurement strength after a more detailed discussion of the
quantum mechanical measurement process. On this foundation it is possible to
define the concepts of weak measurements and weak values and to provide an anal-
ysis of their properties in the second part of the chapter. The chapter is concluded
by a graphical illustration of the effects of the weak measurement procedure on
the pointer system.

In the third main chapter the principles of direct state tomography are explained
in comparison to standard quantum tomography procedures. Subsequently, based
on a detailed analysis of the Gaussian laser beam as a pointer system for weak
measurements, an account of the conducted experiment and its results is given. As
it was not possible to resolve two non-negligible discrepancies between theoretical
predictions and experimental data, some possible explanations for this problem
are discussed as well.

As a conclusion of the main content the last chapter delineates the interpreta-
tional controversies regarding weak values based on a discussion of the prominent
“Three Box Paradox”. It is pointed out that weak values should be rather re-
garded as relative probability amplitudes and not as measurement outcomes with
the same meaning as expectation values. However, a strictly operational inter-
pretation of weak values is presented as well, which allows to understand them
as definite properties of pre- and postselected systems, in the same way as eigen-
values represent definite properties of standard quantum systems. A proof for
this relation in the context of a strictly operational definition physical reality was
developed in the course of this thesis and is described at the end of the last chap-
ter, alongside the concept of an experiment which could confirm the connection
between weak values and eigenvalues.

Concluding this introduction two technical remarks should be given about stan-
dard conventions employed in the text. The first pertains to quotation marks,
which are used in two ways, either to signify verbatim quotations with a following

2



reference or to highlight the non-referential use of notions. The other relates to
the writing of notions in italics, which points to a mention of these notions in a
defining context for the first time.
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2. Fundemantals of Quantum
Mechanics

The goal of this chapter is to summarize and present the fundamental framework
of quantum mechanics as a basis for the discussion of weak values. Even though
its aim is not to give a complete and mathematically exact account of quantum
theory, which would of course extend far beyond the scope of this thesis, the intent
is still to delineate a coherent and clear mathematical description of the relevant
formalism as well as its connection to the physical world. Therefore, most of the
chapter is based mainly on three introductory textbooks [28–30] that present, each
in its own way, a far more detailed picture of quantum mechanics than this thesis.
With respect to certain key issues, these three accounts are then complemented
with additional material. The subject of measurement is purposefully left out and
is discussed in more detail in the chapter 3.

2.1. Structure and Mathematical Formalism

This section provides a general overview of the relevant mathematical formalism
of quantum mechanics. It is kept rather basic, in order to give a short but concise
account of quantum mechanics with a special emphasis on the formulation of those
elements that will be relevant for the discussions in the following chapters.

2.1.1. Structure of Quantum Theory

The presentation of quantum mechanics begins with a short overview of its struc-
ture and the principal difficulties that arise with the interpretation of physical
theories in general.

Formalism, Postulates and Models

At first glance the elements of quantum mechanics can be roughly divided into two
groups, the mathematical “Hilbert space” formalism and the quantum mechan-
ical “postulates”. While the former is a strictly mathematical structure, which
can be labeled as the “internal principles”, the postulates are additional “bridge
principles”, which form a set of rules that determine how the empirical systems
of physics are to be encompassed by the formalism [29, 31, 32]. Even though

5



2. Fundemantals of Quantum Mechanics

the explicit formulation of the postulates may vary between different accounts
of quantum theory, all address three fundamental principles, the mathematical
representation of physical states, the representation of their evolution and the
representation of the physical measurement process, thus forming “schemata for
getting into and out of the mathematical language of the theory” [31].

Apart from these two groups of principles, however, there arguably exists an-
other important class of elements that constitutes quantum mechanics. As Cartwright
eloquently states,

“. . . one may know all this and not know any quantum mechanics. In
a good undergraduate text these two sets of principles are covered in
one short chapter. It is true that the Schroedinger equation tells us
how a quantum system evolves subject to the Hamiltonian; but to do
quantum mechanics, one has to know how to pick the Hamiltonian.
The principles that tell us how to do so are the real bridge principles
of quantum mechanics. These give content to the theory . . . ” [31]

The quantum mechanical description is thus based on “models”, in which a
set of physical systems along with their interactions is at least approximately
expressed as “mathematical structures containing sets of elements on which certain
operations and relations are defined” [32]. This expression, which is constructed
along the rules of the quantum mechanical postulates but not determined by
them, then makes the physical system accessible to the mathematical formalism
of Hilbert spaces. The descriptive power of quantum mechanics arguably stems
from the fact that many different physical systems can be described sufficiently
well by a small number of relatively simple models, which are well known and
understood, as for example a harmonic oscillator [31].

Status of Quantum Mechanical Models

An important and controversial issue is the representational status of quantum
mechanical models and should be briefly illuminated at this point. The “relation
between mathematical model and physical theory” is in general a “complicated
question” [32] and while it is not the goal of this thesis to discuss this problem in
a complete manner, two opposing positions will be presented for clarification of
the problem and its possible implications.

One account as presented in [31] describes physical models as “constructions”
with respect to specific physical systems, which allow to approximate the relevant
processes and phenomena with the apparatus of the mathematical theory. It
is not essential and even impossible for these models to describe every aspect
of the system accurately and thus to represent it completely. In fact initially
simple models are augmented ad hoc with various corrections and additions to
account for the observed phenomena. According to this perspective the merit of

6



2.1. Structure and Mathematical Formalism

quantum mechanics can be seen as the ability to provide an excellent framework
for the creation and optimization of models, which allow for a sufficiently accurate
mathematical treatment of physical systems. This, however, does not necessarily
imply that the basic mathematical structures of quantum mechanics represent the
physical reality.

An objection to this view is provided by the argument [32] that the mathe-
matical theory of quantum mechanics is able to provide representational models
for at least some quantum systems. Namely for example the “essentially proba-
bilistic interdependence” of spin observables and the fact that they are “mutually
transformable” is precisely captured by the Hilbert space formalism. It can be
argued that at least in these specific cases the mathematical structure of quantum
mechanics has physical significance and for the description of those systems the
“full representational capacity of Hilbert spaces” is employed.

While there seem to exist good arguments for both positions, their discussion
is not in the scope of this thesis. However, the presented notions, definitions and
distinctions have been introduced to form a framework, in which the discussed
elements of quantum mechanics can be fitted.

2.1.2. Hilbert Spaces

The following subsection discusses the first element of quantum mechanics, namely
the mathematical structure of Hilbert spaces, which incorporates the internal
principles of the quantum mechanical description.

Vector Space

A Hilbert space is defined as a complex vector space with an inner product, which
is complete [29, 32]. Vector spaces are basic objects of linear algebra and consist
of a set of elements called vectors, for which the basic operations addition and
multiplication by a complex scalar are defined. Following the notation introduced
by Dirac [29, 30] an element of the Hilbert space H is denoted by a ket as

|v〉 ∈ H. (2.1)

The minimal number of elements needed to span a vector space, which is to con-
struct all of its elements through linear combinations, is defined as its dimension.
In general finite and infinite dimensional vector spaces share the same properties,
except of certain restrictions to be observed in the infinite dimensional case [28–
30, 32]. For example Hilbert spaces have to be restricted to complete vector spaces
because of the existence of properly defined infinite dimensional vector spaces that
are not complete in the mathematical sense. The most important distinctions be-
tween the two cases emerge in the definition of possible state spaces as well as in
the description of quantum measurements and will be mentioned explicitly in the
respective sections.

7



2. Fundemantals of Quantum Mechanics

In a Hilbert space H all linear combinations of its elements {|vi〉} ⊂ H are
again elements of the same vector space, so that∑

j

cj|vj〉 ∈ H (2.2)

with ci ∈ C [29]. This property, which translates into the quantum mechanical
superposition principle, has important consequences for the structure of physical
systems described by quantum mechanics as will be presented below.

Inner Product

As mentioned above to form a Hilbert space from the vector space V , it is necessary
to define an inner product between the elements of the vector space. The inner
product (v, w) between two vectors |v〉 and |w〉 is written as [28–30]

(v, w) := 〈v| · |w〉 := 〈v|w〉, (2.3)

where the bra 〈v| represents the element of the dual space corresponding to the
ket |v〉.

The inner product is defined as a function V ⊗ V → C that satisfies three
relations. It has to be linear in the second argument, a commutation of the
elements has to be equivalent to a conjugation of the value, which together with
(1) implies antilinearity in the first argument and finally it has to be positive
semi-definite

〈v|v〉 ≥ 0, (2.4)

with 〈v|v〉 = 0 if only if v = 0 [29].
Using the inner product it is possible to define two important properties of

vectors. Two elements of a Hilbert space are orthogonal if and only if their inner
product is 0 and the norm ‖|v〉‖ of a vector can be consistently expressed as

‖|v〉‖ =
√
〈v|v〉. (2.5)

This allows to normalize any non-zero vector |v〉 by dividing it by its norm
with [28, 29]

|vN〉 :=
|v〉
‖|v〉‖

. (2.6)

Representation of Hilbert Spaces

Each element of a vector space can be expressed as a linear combination of basis
vectors, which are defined as a linearly independent spanning set of that particular
space [29]. An especially convenient type of bases are orthonormal bases, the

8



2.1. Structure and Mathematical Formalism

elements of which are all normalized and pairwise orthogonal. An arbitrary vector
|v〉 can therefore be expanded in the orthonormal basis {|aj〉} as [28, 29]

|v〉 =
∑
j

cj|aj〉 (2.7)

Any element of a finite dimensional vector space is therefore uniquely specified by
a set of coefficients cj ∈ C with respect to some basis. In the infinite dimensional
case the elements are represented by a function f : R → C of some continuous
parameter α with respect to an orthonormal basis {|α〉} consisting of infinitely
many elements labeled by the same parameter as [28, 32]

|w〉 =

∫
f(α)|α〉 dα (2.8)

The complex numbers defining a vector can be expressed using the inner product
as cj = 〈ai|v〉 and f(α) = 〈α|v〉 respectively. It should be noted that in the infinite
dimensional case the basis is ”orthonormalized in the Dirac sense” [28] which is
defined as: 〈α|α′〉 = δ(α− α′).

Using the representation of vectors with orthonormal bases it is possible to
write the inner product in terms of the coefficients {cj} and the function f [28].
For the two elements of a finite dimensional vector space |v〉 =

∑
j cj|aj〉 and

|ṽ〉 =
∑

j c̃j|aj〉 the inner product becomes

〈v|ṽ〉 =
∑
j,k

c∗j c̃k〈aj|ak〉 =
∑
j,k

c∗j c̃kδjk =
∑
j

c∗j c̃j. (2.9)

Analogously for two elements of a infinite dimensional vector space |w〉 =
∫
f(α)|α〉 dα

and |w̃〉 =
∫
f̃(α)|α〉 dα the inner product can be written as [28, 30]

〈w|w̃〉 =

∫∫
f ∗(α)f̃(α′)〈α|α′〉 dα dα′ =

∫
f ∗(α)f̃(α) dα. (2.10)

2.1.3. Operators

Another crucial element of the quantum mechanical formalism are linear opera-
tors, which represent functional relations between the elements of Hilbert spaces
as presented in the following subsection.

Linear Operators

Apart from the vectors itself another important class of objects are linear operators
defined on a Hilbert space H. They represent functions Â : H → H that are linear
in their inputs as [29, 30]

Â

(∑
j

cj|aj〉

)
=
∑
j

cjÂ|aj〉. (2.11)

9



2. Fundemantals of Quantum Mechanics

In the equation above the action of the operator was expressed as a multiplication
on a ket from the left as Â (|v〉) := Â|v〉, which makes sense because the action of
linear operators is associative and therefore Â(B̂ (|v〉)) = ÂB̂|v〉 [28–30]. It should
be noted, however, that linear operators do not commute in general and therefore
the commutator [Â, B̂] := ÂB̂− B̂Â is in general non-zero. To consistently define
the action of an operator on a bra from the right it is necessary to introduce
the adjoint Â† of an operator Â, which is uniquely defined via the dual space
with [28–30]

|v′〉 = Â|v〉 ⇔ 〈v′| = 〈v|Â†. (2.12)

Another important notation is the representation of a linear operator by an
outer product written as |v〉〈w| [29, 30]. This expression constitutes a natural
extension of the multiplicative notation and is a well defined linear operator on
H created out of the vectors |v〉, |w〉 ∈ H. Its action on an arbitrary ket |u〉 from
the left maps the latter on a multiple of the ket |v〉 and vice versa for an action
on a bra from the right as [30]

|v〉〈w| · |u〉 := |v〉 · 〈w|u〉 = 〈w|u〉 · |v〉. (2.13)

In the equation above, the dots are inserted just for clarity and are usually not
written explicitly. Any linear combination of outer products is again a linear
operator and for its adjoint it follows that [29, 30](∑

j

cj|vj〉〈wj|

)†
=
∑
j

c∗j |wj〉〈vj|. (2.14)

Using the outer product notation it is possible to formulate the closure [28]
or completeness relation [29] for orthonormal bases,

∑
j |aj〉〈aj| = 1 in the finite

dimensional basis {ai} and respectively
∫
|α〉〈α| dα = 1 for basis {α} of an infinite

dimensional vector space. The unity operator 1 is defined with 1|v〉 = |v〉 for all
|v〉 ∈ H. The closure relation corresponds to an expansion of the unity operator in
terms of the respective basis, and just as it is possible to expand any vector with
respect to a basis, representing it with a set of complex numbers or a complex
valued function, any operator can be expressed as a matrix with complex entries
relative to a certain basis. Operator Â acting on a finite dimensional Hilbert space
can be written as [28, 29]

Â =
∑
jk

〈aj|Â|ak〉|aj〉〈ak| :=
∑
jk

Ajk|aj〉〈ak| (2.15)

and operator B̂ defined for an infinite dimensional space as [28]

B̂ =

∫∫
〈α|B̂|α′〉|α〉〈α′| dα dα′ :=

∫∫
Bαα′ |α〉〈α′| dα dα′. (2.16)

The complex numbers Ajk = 〈aj|Â|ak〉 and Bαα′ = 〈α|B̂|α′〉 are called the matrix
elements of the operators in the respective bases.

10



2.1. Structure and Mathematical Formalism

Eigenvectors and functions of operators

A concept that is especially relevant for quantum measurement are eigenvectors
of an operator defined on the Hilbert space H and the corresponding eigenspaces.
The action of an operator Â on one of this operators eigenstates |a〉, preserves the
state up to a multiplication with the factor a ∈ C called eigenvalue: [28–30]

Â|a〉 = a|a〉 (2.17)

The ket representing the eigenvector is usually labeled with the same symbol as
the corresponding eigenvalue. While the eigenvalue can have the value 0, the
zero element of the Hilbert space is not considered an eigenvector. An eigenspace
of operator Â corresponding to a certain eigenvalue a is defined as the subspace
of H spanned by all eigenvectors of Â with that particular eigenvalue. If the
dimensionality of an eigenspace is greater than one, the corresponding eigenvalue
is called degenerate [29, 30]. In general, however, not every linear operator needs
to have eigenvectors.

If there exists an orthonormal basis {|aj〉} of the relevant Hilbert space H,

consisting entirely of eigenvectors of some operator Â, this basis is denoted as
this operators eigenbasis. In this basis the operator has a diagonal representation
which means that it can be written in the form [29]

Â =
∑
j

aj|aj〉〈aj| (2.18)

and analogously in the infinite dimensional case.
Suitable functions with complex arguments, which can be expanded into series,

can be generalized for linear operators. In agreement with the definitions pre-
sented so far it is natural to define Ân as a n-fold application of operator Â and
Â−1 as its inverse application [28]. A function that can be expanded to the series
f(z) =

∑
n cnz

n can then be defined for operators as [28, 30]

f(Â) =
∑
n

cnÂ
n. (2.19)

For an operator with a diagonal representation this expression can be further
simplified employing the orthonormality of the basis elements |aj〉 [28, 29]

f(Â) =
∑
n

cnÂ
n =

∑
n

cn

(∑
j

anj |aj〉〈aj|

)
=
∑
j

f(aj)|aj〉〈aj|. (2.20)

It should be noted that in the latter case the diagonal form is conserved by the
function because the last expression in the equation above still represents a diag-
onal operator with the same eigenstates.

11



2. Fundemantals of Quantum Mechanics

Hermitian and Unitary Operators

Two types of linear operators should be mentioned explicitly because of their
great importance in quantum mechanics, the Hermitian and unitary operators.
Hermitian or selfadjoint operators X̂ are defined by the relation X̂ = X̂† [29, 30].
This property has many consequences, the most important of which will be briefly
mentioned. All eigenvalues of Hermitian operators are real and the correspond-
ing eigenspaces are all orthogonal. For each potentially degenerate eigenspace, a
decomposition into an orthonormal basis can always be found. Such a decompo-
sition consequently consists of eigenvectors with the eigenvalue corresponding to
that eigenspace. Therefore, each Hermitian operator has an eigenbasis in which
it can be represented in diagonal form. The set of eigenvalues of a Hermitian
operator is called its spectrum, the decomposition in the eigenbasis a spectral de-
composition [28–30].

An important subtype of Hermitian operators are projection operators or pro-
jectors. The projector Π̂W onto the subspace W of the Hilbert space H is defined
as [29]

Π̂W :=
k∑
j=1

|aj〉〈aj|, (2.21)

where {|a1〉....|ak〉} is the subset of an orthonormal basis {|aj〉} of H spanning

W . An important property of projection operators is idempotency Π̂n = Π̂ with
n ∈ N.

The other fundamental type of operators, the unitary operators Û are defined
by the property Û †Û = 1 or equivalently by Û−1 = Û † [29]. Just as Hermitian
operators, unitary operators always have a spectral decomposition but their eigen-
values can in general be complex. All eigenvalues, however, have a modulus of 1
which means they can be written as eiθ with a θ ∈ R [29].

Unitary operators can be constructed from Hermitian operators with [28, 30]

Û = exp
(
−iαF̂

)
, (2.22)

where F̂ is a Hermitian operator and α a real parameter. For sufficiently small α
the operator can be approximately expressed as an infinitesimal unitary operator
with Û ≈ 1− iαF̂ [28, 30].

Operators and Product Space

To complete the presentation of the basic mathematical structures of quantum
mechanics a final aspect should be briefly mentioned, namely the composition
of Hilbert spaces. The product space H = V ⊗W constructed out of the Hilbert
spaces V andW with dimension m and n respectively is itself a Hilbert space with
dimension m · n [28, 29]. Its elements are linear combinations of tensor products

12



2.1. Structure and Mathematical Formalism

of elements of the constituent spaces, |v〉 ⊗ |w〉 ∈ H with |v〉 ∈ V and |w〉 ∈ W .
If {|aj〉} and {|bk〉} are orthonormal bases of V and W then {|aj〉 ⊗ |bk〉} is an
orthonormal basis of H containing m · n elements [28, 29].

It is possible to define linear operators acting on H using operators Â : V → V
and B̂ :W →W . The operator Â⊗B̂ acts on an arbitrary element

∑
j aj|vj〉⊗|wj〉

of H as [29]

(
Â⊗ B̂

)(∑
j

aj|vj〉 ⊗ |wj〉

)
:=
∑

ajÂ|vj〉 ⊗ B̂|wj〉. (2.23)

Any linear operator Ĉ acting on H can be expressed as a linear combination of
such operator products Ĉ =

∑
j cjÂj ⊗ B̂j the action of which is defined as [29](∑

j

cjÂj ⊗ B̂j

)
|v〉 ⊗ |w〉 :=

∑
j

cjÂj|v〉 ⊗ B̂j|w〉. (2.24)

The definition of the inner product on H, which is necessary for a Hilbert space
is based on the inner products of the constituent spaces with(∑

j

aj|vj〉 ⊗ |wj〉,
∑
k

bk|v′k〉 ⊗ |w′k〉

)
=
∑
j,k

a∗jbk〈vj|v′k〉〈wj|w′k〉. (2.25)

From the inner product defined in this way the product space “inherits” the other
structural elements presented above, as unitarity and Hermiticity [29].

13



2. Fundemantals of Quantum Mechanics

2.2. Representation of physical systems

After the structure of Hilbert spaces has been summarized, the next sections de-
scribe how this mathematical formalism is applied to physical systems in quantum
mechanics. As mentioned in section 2.1.1 the translation of physical systems into
the mathematical formalism is governed by postulates that can be roughly sep-
arated into three groups, first, postulates about the representation of physical
states, second, postulates about the representation of their evolution, and even-
tually, postulates about the nature of measurement. While the latter subject is
discussed separately in more detail in chapter 3, the following subsections present
the first two topics. Because there is no unique formulation of the postulates
of quantum mechanics, which can be seen by comparing [28–30, 33], this thesis
presents the propositions of the three groups of postulates in a summarized way
as three single “postulates”.

2.2.1. Physical States

The first step in the quantum mechanical representation of physical systems is
the formulation of a suitable abstract space corresponding to the physical states.
This subsection presents the principles which govern this representation.

Quantum State

The first type of postulates ascertains that a Hilbert space can be “associated”
with “any isolated physical system” [29]. The system at a given time is then
“completely described” by a state vector which is a normalized vector in the
corresponding Hilbert space, which is then called a state space [28–30, 32]. Picking
up the distinction presented in section 2.1.1 the Hilbert space, which describes
a particular empirical system sufficiently well, would be considered to be the
physical model for that system. While the postulates determine that the state of
a physical system has to be represented as a state in a suitable state space they
do not specify any rules for the creation of such models, which means that each
system has to be modeled depending on its particular behavior [29, 31].

Because only normalized vectors are considered to represent physical states, it
can be argued that the state really corresponds to the 1-dimensional subspace
or ray of the Hilbert space spanned by that vector [30]. Therefore, the vectors
|v〉 and c|v〉 with c 6= 0 correspond to the same physical state and whenever an
operation on a system would result in a not normalized state, as for example in the
case of a projective measurement, which is presented in chapter 3, the resulting
state has to be renormalized to represent the system in a consistent way.

It follows from the structure of Hilbert spaces that any linear combination of
states is itself an element of the state space, which constitutes the superposition
principle of quantum mechanics. In particular this implies that it is possible
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2.2. Representation of physical systems

to expand any state into an orthonormal basis of the state space [28, 29]. For
the states |v〉 =

∑
j cj|aj〉 and |w〉 =

∫
f(α)|α〉 dα, which are expanded with

respect to the orthonormal bases {|aj〉} and {|α〉}, respectively, the set of complex
numbers {cj} are called the amplitudes of the basis elements and the complex
valued function f is called the wavefunction of that state for the particular basis
[29, 30]. In general, however, both notions are interchangeable to a certain extent.

An additional restriction of potential state spaces has to be made in the case of
infinite dimensional systems. While any vector in a finite dimensional space can
be normalized, in the infinite dimensional case there exist well defined states that
cannot. Therefore, infinite dimensional physical systems can only be represented
by states with wavefunctions that are square integrable functions denoted as L2 in
mathematics [28, 32]. Furthermore, it is postulated that physical systems always
correspond to “sufficiently regular” wavefunctions that are among other things
“everywhere defined, continuous and everywhere differentiable”[28]. The set of
these functions, which is a subset of L2, constitutes the space of vectors F that
can represent physical states. F itself is a well defined Hilbert space and any
infinite dimensional physical system has to be represented as a subspace of F .

It should be noted however, that while the states mentioned above have to be
elements of F , it is still possible to expand them in a basis that does not fulfill
that requirement. In particular there exist Hermitian operators α̂ defined on a
Hilbert space F̃ ⊆ F , as the position operator x̂, which will be discussed later,
with eigenbases {|α〉} that do not consist of elements of F̃ or even of F [28, 32].
While such bases are well defined and satisfy the orthonormalization as well as the
closure relation, the system can only be represented by certain linear combinations
of the basis states that lie in F̃ and for example never by a single element of the
basis. Regardless of their intermediary status, however, such operators and the
corresponding bases are very useful and constitute important elements of quantum
mechanics.

Mixed States

Apart from the standard representation of physical states as vectors, the same
states can be expressed by density operators in an equivalent way. The density
operator ρ̂ corresponding to a state |ψ〉 is defined as [28, 29]

ρ̂ := |ψ〉〈ψ|. (2.26)

Density operators are Hermitian by construction, possess only non-negative eigen-
values and have a normalized trace with tr(ρ̂) = 1 [29, 30]. The latter requirement
can be regarded as an equivalent to the normalization condition for state vectors.

The formalism of quantum mechanics presented so far can be fully reproduced
using density operators but at the same time they allow the extension of the
formalism towards a representation of states that usually cannot be expressed as
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2. Fundemantals of Quantum Mechanics

vectors. In the state vector formalism the only possible way to combine different
quantum states of one system is a normalized linear combination and according to
the superposition principle of quantum mechanics any such combination is again a
physical state that describes the system completely. A scenario where the system
is in a state of statistical uncertainty and the state of the system is consequently
not completely known, can therefore not be expressed in the usual formalism
[28–30, 32]. However, with the formulation of a suitable density operator ρ̂ it is
possible to consistently represent a system in such a state with [29, 30, 32]

ρ̂ :=
∑
j

Pj|ψj〉〈ψj|. (2.27)

In the above definition the states {ψj} ∈ H define a set of projectors {|ψj〉〈ψj|}
with corresponding coefficients Pj that are normalized with

∑
j Pj = 1 and can

be interpreted as probabilities as will be discussed in section 3.1.
In general an arbitrary density operator cannot be expressed as an outer product

of a state vector as in eq. (2.26). States for which this is possible can effectively be
represented as state vectors and describe the system completely [28]. Such states
are denoted as pure states. If the state of a system can only be expressed as a
density operator, this implies that the system is in a state of statistical uncertainty
or statistical mixture and the corresponding state is called a mixed state [28, 29].
Just as the density operators of pure states, the ones of mixed states are Hermitian
and have a trace of 1.

It should be noted that the description of the density operator as a represen-
tation of a statistical uncertainty is not unique [29, 32]. For a mixed state there
exist infinite many representations as weighted sums of projectors as defined in
eq. (2.27). The states {|ψj〉} with probabilities Pj will generate the same den-
sity operator as the states {|ϕj〉} with probabilities Qj as long as they fulfill the
relation [29] √

Pj|ψj〉 =
∑
k

ujk
√
Qk|ϕk〉, (2.28)

where the numbers ujk form a unitary matrix. For this relation to be well defined
in the case where one of the sets has less elements than the other, it might be
necessary to augment the former with suitable states that have probabilities of 0.
This general undetermination of mixed density operators is called unitary freedom
[29].

The proposition that the density operator corresponding to a mixed state is
related to the probabilities of finding the system in different states is therefore
always only true with respect to a certain decomposition into projectors. Only in
the case of pure states it is possible to express the density operator uniquely by a
state vector according to eq. (2.26). Consequently an “ignorance interpretation”
which asserts that a mixed state simply describes a system that can be in one of
certain pure states with respective probabilities is highly problematic and a mixed
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2.2. Representation of physical systems

state has to be considered as something fundamentally different from a pure state
[29, 32]. This will be also made clear in the later discussion of coherence and
interference.

Purity and Entropy

The density matrix of a pure state ρ̂p is a projector and therefore idempotent,
which implies that tr

(
ρ̂2
p

)
= 1 [28, 29]. In general, however, for a potentially

mixed state ρ̂ the relation changes to tr (ρ̂2) ≤ 1. The expression is equal to 1 if
and only if ρ̂ is a pure state. For a mixed state ρ̂m it holds that tr (ρ̂2

m) < 1 [28, 29].
The value tr (ρ̂2), called purity, can therefore be used to quantify how mixed a
state is. For the maximally mixed state in D dimensions, which is represented
by the density matrix ρ̂ = 1/D, the minimal value of purity 1/D is achieved
[2, 29, 33, 34].

Another measure for the statistical uncertainty of a state represented by a
density operator ρ̂ is the von Neumann entropy or simply entropy S which is
defined as [29, 33–35]

S(ρ̂) := −tr (ρ̂ log ρ̂) . (2.29)

This formulation of entropy is a generalization of the classical Shannon Entropy
which is used in information theory to quantify the uncertainty of the probability
distribution of random variables. While a pure state that is known with certainty
has an entropy of 0, a maximally mixed state in a D-dimensional Hilbert space
corresponds to an entropy of logD.

Coherence and Interference

A crucial feature that distinguishes a superposition of states from a mixture is
the emergence of interference effects [28]. The simplest example for that is the
calculation of a norm of a potentially not normalized pure state |ψ〉 = c1|ψ1〉 +
c2|ψ2〉 constructed from the normalized states |ψ1〉 and |ψ2〉 with

‖ψ‖ =
√
〈ψ|ψ〉 =

√
|c1|2 + |c2|2 + 2Re [c1c∗2〈ψ1|ψ2〉]. (2.30)

The value of the norm does not only depend on the moduli of the coefficients
{cj} but also on their phase relation which is captured by the factor c1c

∗
2 and

on the inner product 〈ψ1|ψ2〉 of the two states. This dependence represents the
interference of the two states [28, 36]. For example in the case |ψ1〉 = |ψ2〉 with
the coefficients c1 = −c2, state |ψ〉 would be the zero vector, which would cor-
respond to fully destructive interference. It should be noted that the expression
above could also be obtained by calculation of the trace of the density operator
corresponding to this pure state with ‖ψ‖ =

√
tr (|ψ〉〈ψ|). The property of state

superpositions, which entails the emergence of interference effects, is denoted as
coherence [28].
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2. Fundemantals of Quantum Mechanics

Considering the same two states as a mixture ρ̂ = P1|ψ1〉〈ψ1|+P2|ψ2〉〈ψ2| with
probability coefficients {Pj} and calculating the trace of the density operator
yields the result √

tr(ρ̂) =
√
P1 + P2. (2.31)

The lack of dependence on any parameters other than the two positive numbers
P1 and P2 represents the fact that the two states |ψ1〉 and |ψ2〉 do not interfere
in this case [28]. There is for example no possibility to adjust the parameters in
a way to achieve any destructive interference even if |ψ1〉 = |ψ2〉. Compositions
of states that exhibit such behavior are therefore not coherent. Consequently the
purity of a density operator can be used to quantify the coherence of a state or in
other words its ability to produce interference effects.

Similarity of states

To conclude the presentation of the first group of postulates regarding the repre-
sentation of physical states in quantum mechanics, this segment contains a brief
remark about possible quantifications of state similarity. The two “most used,
known and important” distance measures of states are trace distance and fidelity
[29].

The trace distance D of two states expressed as the density operators ρ̂ and σ̂
is defined as [29, 35]

D(ρ̂, σ̂) :=
1

2
tr (|ρ̂− σ̂|) , (2.32)

with |Â| :=
√
Â2 for Hermitian operators. The trace distance can take values in

the interval [0, 1] where a distance of 0 between two states indicates identity.
The most general definition of fidelity F also refers to states described by density

matrices and can be written as [29, 35]

F (ρ̂, σ̂) := tr
(√

ρ̂1/2σ̂ρ̂1/2
)
. (2.33)

Just as the trace distance the fidelity is symmetric in the arguments and has values
in the interval [0, 1]. The fidelity of identical states is 1. If one of the two states
is pure the fidelity simplifies to [29, 35]

F (|ψ〉, ρ̂) =
√
〈ψ|ρ̂|ψ〉 (2.34)

and for two pure states to

F (|ψ〉, |ϕ〉) = |〈ψ|ϕ〉|. (2.35)

In general the two distances measures can be compared via the relation

1− F (ρ̂, σ̂) ≤ D(ρ̂, σ̂) ≤
√

1− F (ρ̂, σ̂)2. (2.36)
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Only in the case when both states are pure, there exists an exact functional
relationship between trace distance and fidelity with [37]

D =
√

1− F 2. (2.37)

This indicates that while the choice of an appropriate measure in general is not
uniquely determined, trace distance and fidelity are at least “qualitatively equiv-
alent measures for closeness of quantum states” [29].

2.2.2. Evolution of States

The first group of postulates as presented above, determine the proper manner to
model the state of a physical system as a Hilbert space. The second group pre-
sented in the following subsection addresses the question of the systems evolution.

Unitary Transformation

Any evolution of a closed quantum system into a new state |ψ′〉 is represented
by a unitary operator Û acting on the initial quantum state |ψ〉 of the system
with [28, 29]

|ψ′〉 = Û |ψ〉. (2.38)

The same evolution can be generalized to potentially mixed states expressed by
density operators ρ̂ and ρ̂′ as [29]

ρ̂′ = Û ρ̂ Û †. (2.39)

Thereby the unitarity of the evolution ensures the conservation of the normal-
ization of the system state. It should be noted that the form of the evolution is
determined solely by the unitary operator Û and is therefore independent of the
state of the system.

The evolution of a state in time is explicitly described by the Schrödinger Equa-
tion which can be written as [28–30]

i~
d|ψ〉
dt

= Ĥ|ψ〉, (2.40)

where ~ is an empirical constant and Ĥ a Hermitian operator that uniquely de-
termines the dynamical behaviour of the system. Because of its relation to the
Hamiltonian of classical mechanics, Ĥ is denoted as the Hamilton operator or
Hamiltonian [28, 29]. As already mentioned in section 2.1.1 the explicit form of
the Hamiltonian is not determined by the postulates and alongside the definition
of a suitable Hilbert space, the formulation of the correct Hamiltonian is a cru-
cial and non-trivial element of the quantum mechanical description of a physical
system [29, 30].
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Depending on the complexity of the Hamilton Operator general solutions of the
Schrödinger equation can be given, which formulate a unitary operator Û(t, t0)
that describes the evolution from a state |ψ(t0)〉 at time t0 into the state |ψ(t)〉 at
time t with |ψ(t)〉 = Û(t, t0)|ψ(t0)〉. In the most general case of an arbitrary time
dependent Hamiltonian without any additional restrictions the unitary operator
can be expressed as a Dyson Series with [30]

Û(t, t0) = 1 +
∞∑
n=1

(
− i
~

)n ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtn Ĥ(t1)Ĥ(t2) · · · Ĥ(tn).

(2.41)
If the Hamiltonians at different times commute this expression can be simplified
to [30]

Û(t, t0) = exp

(
− i
~

∫ t

t0

Ĥ(t′) dt′
)
. (2.42)

For a time independent Hamiltonian the solution of the Schrödinger equation can
be written in the most simple form as [29, 30]

Û(t, t0) = exp

(
−iĤ
~

(t− t0)

)
. (2.43)

In reality, a physical system can be never completely separated from other
systems but often it is possible to describe physical system as closed systems
in good approximation. Furthermore, any not-closed system can be at least in
principle expressed as part of larger system that evolves unitarily. Also often it
is possible to capture the interaction with an outside system by a Hamiltonian
that varies in time. In general, however, Hamiltonians of closed systems are time
independent [29].

Translation

An example of evolution is the translation of a wavefunction ψ(x) = 〈x|ψ〉 of
state |ψ〉 in a 1-dimensional continuous space expressed in the basis {|x〉}, which
represents the position of the system and is the eigenbasis of the position operator
x̂. To constitute an infinitesimal translation of the wavefunction ψ(x)→ ψ(x+dx)
by the amount dx the corresponding translation operator T (dx) has to act on an
arbitrary basis ket as T (dx)|x〉 = |x + dx〉 [30]. Furthermore, it has to fulfill
typical requirements such as T (dx)T (dx′) = T (dx+ dx′) and T (dx)T (−dx) = 1.
Consequently an infinitesimal unitary translation operator can be represented
as [28, 30]

T (dx) = 1− ik̂dx, (2.44)

where k̂ is a Hermitian operator that fulfills the commutation relation [28, 30][
x̂, k̂
]

= i. (2.45)

20



2.2. Representation of physical systems

The operator k̂ is called the generator of the translation and in analogy to
classical mechanics the momentum operator p̂x is defined with p̂x := k̂~ [30]. The
commutator relation between x̂ and p̂x then becomes

[x̂, p̂x] = i~ (2.46)

which is called the canoncial commutation relation of quantum mechanics [30].
Relations of these type are typical for operators that are respective generators of
translation. Another type of evolutions are rotations which correspond to another
set of commutation relations and will be presented below.

A finite translation α can be expressed as a repetition of infinitesimal transla-
tions dx = α

N
for N →∞ with [30]

T (α) = lim
N→∞

(
1− ip̂xα

N~

)N
= exp

(
− i
~
p̂xα

)
. (2.47)

The resulting unitary operator T can be understood as the solution of a Schrödinger
equation with the Hamiltonian Ĥ := p̂x

α
∆t

that is active for time ∆t, which implies

T (α) = exp

(
− i
~
Ĥ∆t

)
= exp

(
− i
~
p̂xα

)
. (2.48)

If an interaction happens over a fixed time and the respective Hamiltonian is time
independent, it is usually possible to incorporate the time parameter and all other
constants into the Hamiltonian in this manner and therefore only write the final
form of the evolution without explicit reference to the form of the Hamiltonian
[29, 38].

Position and Momentum Operators

Because of the importance of the operators x̂ and p̂, some of their additional
properties and relations should be presented in more detail. Both operators are
Hermitian, have a non-degenerate eigenspectrum and therefore unique eigenbases
{|x〉} and {|p〉}. Employing the formulation of the minimal translation it is pos-
sible to express the actions of the two operators on a general quantum state |ψ〉
in each others eigenbases as [28, 30]

〈x|p̂|ψ〉 = −i~ ∂
∂x
〈x|ψ〉, (2.49)

〈p|x̂|ψ〉 = i~
∂

∂p
〈p|ψ〉. (2.50)

Consequently the respective eigenstates can be represented in the other eigen-
basis as [28, 30]

〈x|p〉 = 〈p|x〉∗ =
1√
2π~

exp

(
i

~
px

)
, (2.51)
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where the normalization factor 1/
√

2π~ can be obtained for example from the
orthonormality condition 〈x|x′〉 = δ (x− x′). However, the wavefunction of state
|x〉 in the eigenbasis of p̂ can not be normalized and vice versa. The eigenstates of
the position and momentum operators are therefore not possible physical states
of a system that lie in F̃ as presented in subsection 2.2.1.

The expression of 〈x|p〉 allows to formulate transformations between the wave-
functions ψ(x) = 〈x|ψ〉 and ψ̃(p) = 〈p|ψ〉 in the two bases with

ψ̃(p) =
1√
2π~

∫ ∞
−∞

exp

(
−ipx

~

)
ψ(x) dx, (2.52)

ψ(x) =
1√
2π~

∫ ∞
−∞

exp

(
ipx

~

)
ψ̃(p) dp. (2.53)

These transformations resemble Fourier Transforms and express, together with the
other relations above, the symmetrical properties of the position and momentum
operators [28, 30]. Just as the momentum operator is the generator of a shift in
position, the position operator generates a momentum shift.

Rotation

Another basic and very important example of quantum evolution are rotations
represented in a 2-dimensional quantum system. In analogy to the case of trans-
lation the quantum mechanical angular momentum operator is defined as the
generator of rotations in real 3-dimensional space with ~J := (Ĵx, Ĵy, Ĵz)

T [30]. An
arbitrary infinitesimal rotation D(dφ) about angle dφ around an axis ~n can then
be expressed as [30]

D(dφ) = 1− i

~

(
~J · ~n

)
dφ. (2.54)

A comparison of this formulation of rotation with the classical requirements and
conditions for properly defined rotations yields the fundamental commutation re-
lations of angular momentum [30][

Ĵj, Ĵk

]
= i~εjkmĴm, (2.55)

where the indices {j, k,m} represent the three dimensions denoted as x,y and z.
Any group of operators, which represent rotations, has to fulfill these commutation
relations.

While in real space the rotation operators D can be represented by the 3-
dimensional SO(3) group this structure is locally isomorphic to the 2-dimensional
SU(2) group in complex space. Therefore, it is possible to represent the corre-
sponding generators of rotations in a two dimensional state space. Choosing the
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states |+〉z := (1, 0)T and |−〉z := (0, 1)T as an orthonormal basis, which rep-
resents the positive and negative z-directions, the three corresponding rotation
operators {Ŝx, Ŝy, Ŝz} can be expressed as [30]

Ŝx =
~
2
σx, Ŝy =

~
2
σy, Ŝz =

~
2
σz. (2.56)

The matrices {σx, σy, σz} are the Hermitian and unitary Pauli matrices that are
defined as [29, 30]

σx :=

(
0 1
1 0

)
, σy :=

(
0 −i
i 0

)
, σz :=

(
1 0
0 −1

)
. (2.57)

With the additional bases |±〉x := 1√
2

(|+〉z ± |−〉z) and |±〉y := 1√
2

(|+〉z ± i|−〉z)
corresponding to the x- and y-directions, it is possible to consistently represent the
rotation group and all directions in 3-dimensional space as superpositions of states
from one of these 2-dimensional bases [30]. An example of such a representation
will be given in chapter 4 in the context of the qubit model for polarization.

2.2.3. Composite Systems

Another important aspect of the representation of physical states in quantum me-
chanics is the manner in which a composition of quantum systems can be expressed
formally. In this context the important notion of entanglement is introduced as
well.

Product States

The rule for the formal expression of composite systems is part of the postu-
lates about the correct representation of physical systems. It can be stated as
follows: “The state space of composite physical system” is equivalent to the “ten-
sor product of the state spaces of the component physical systems” [29]. For a
composite system made out of the subsystems 1 to n, with respective pure states
|ψ1〉, |ψ2〉, . . . |ψn〉, the overall state can be written as |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉 [29].

As presented in subsection 2.1.2 all linear operators acting on the composite
system, including unitary evolutions, can then be formulated as linear combina-
tions of products of component operators acting only on the component systems.
This “multiplicity of states” corresponds to different degrees of freedom of the
composite system [28]. For example a photon can have a continuous degree of
freedom H1, which can be expressed in the position or the momentum bases and
a 2-dimensional polarization degree of freedom H2, which constitute the com-
posite system “photon” H1 ⊗H2. Alternatively, the different degrees of freedom,
which form the composite quantum system, can also belong to completely different
particles.
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Entanglement

In general not all possible states of composite systems can be expressed as tensor
products of component states. States where the latter is possible are called sepa-
rable states and states that are not product states are denoted as entangled states
[29, 35, 39]. While a separable state corresponds to a simple “juxtaposition” of
two systems, which can be in principle described and measured independently, the
entanglement of two systems implies correlations between them [28, 35]. These
correlations are generally introduced by the interaction of the systems and are
crucial for quantum measurement which will be discussed in section section 3.1.

The state of a subsystem A, which is part of a larger composite system C
represented by a product space HC = HA ⊗HB, can be expressed by performing
a partial trace on the density operator ρ̂C representing the state of the total system
[29]. The state ρ̂A of system A can be written as

ρ̂A := trB (ρ̂C) . (2.58)

The partial trace trB over subsystem B is defined by its action on an operator
expressed by the arbitrary states {|aj〉, |a′j〉} ⊂ HA and {|bj〉, |b′j〉} ⊂ HB with [29]

trB

(∑
j

αj|aj〉〈a′j| ⊗ |bj〉〈b′j|

)
:=
∑
j

αj|aj〉〈a′j| tr
(
|bj〉〈b′j|

)
. (2.59)

All information that is available when considering only the isolated subsystem is
correctly represented by this reduced density operator [29, 36].

If the composite system is in an entangled state, the result of a partial trace
is always a mixed state in the subsystems. This implies that while a composite
system can be in a pure state that describes the system completely from the
perspective of quantum mechanics, the composite systems can be in states of
statistical mixture and thus not completely known. In these cases the description
of the composite system contains “more information” in form of correlations than
the separate descriptions of the subsystems [29, 32, 33].

Bipartite Entanglement Measures

To complete the discussion of entanglement the general approach of entanglement
quantification is presented. However, this description is restricted to entangle-
ment of just two systems which is denoted as bipartite entanglement in contrast
to multipartite entanglement, which represents correlations between an arbitrary
number of systems [33, 34, 39, 40]. Another simplification stems from the restric-
tion to pure composite states. While in general also mixed product states can
exhibit some entanglement and are in principle also interesting in the context of
weak values, they do not fall in the scope of this thesis with the small exception of
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weak tomography. In the case of mixed bipartite states, and even more so in the
case of multipartite states, the relations and definitions of entanglement measures
are problematic. For pure bipartite states, however, it is possible to formulate
relatively simple and straightforward quantifications of entanglement [33, 39, 40].

The most basic approach to evaluate entanglement is the Schmidt decomposi-
tion. For any pure bipartite state |ψ〉 ∈ H = HA ⊗ HB there exist orthonormal
bases {|aj〉} ⊂ HA and {|bj〉} ⊂ HB of the respective constituent spaces, which
constitute a decomposition of |ψ〉 in with [29, 34, 35, 39, 40]

|ψ〉 =
∑
j

λj|aj〉|bj〉, (2.60)

where the coefficients {λj} are real and non-negative numbers that are called
Schmidt Coefficients. The amount of non-zero Schmidt Coefficients is defined as
the Schmidt number. The Schmidt decomposition corresponds to a simultaneous
diagonalization of the reduced denstity operators ρ̂A and ρ̂B of the component
systems which can be consequently written as [29, 34, 39, 40]

ρ̂A = trB (|ψ〉〈ψ|) =
∑
j

λ2
j |aj〉〈aj| (2.61)

for system A and symmetrically for system B. Therefore, the component states
are pure and the composite state separable if and only if the Schmidt Number is
1 [39].

Based on the relation of the degree of entanglement in the composite system
and the amount of mixture in the composite systems, it is possible to gradually
quantify the entanglement by relying on the quantifications of statistical uncer-
tainty in the subsystems. The concurrence of an entangled state |ψ〉AB with
ρ̂AB = |ψ〉〈ψ| is directly related to the purity P = tr

(
trB (ρ̂AB)2) of the reduced

states as [39, 40]

C(|ψ〉) =

√
D

D − 1
(1− P ). (2.62)

The above expression for the concurrence is normalized so that it ranges from 0
for a separable state to 1 for a maximally entangled state, where D ≥ 2 is the
dimension of the respective subsystem.

Another convenient measure is the entropy of entanglement, which is simply
equal to the von Neumann entropy of the reduced states and ranges from 0 to
logD for maximally entangled states [33, 34, 39]. Both the concurrence and the en-
tropy of entanglement are monotonic functions of the degree of entanglement and
can therefore be used consistently for its quantification. The entanglement of po-
tentially mixed composite systems can be measured employing different measures
as the entanglement of formation, distillable entanglement or negativity, which all
simplify to the entropy of entanglement for pure bipartite states [34, 39].
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In this chapter the concept of weak measurement is introduced after a discussion
of the standard description of the measurement process in quantum mechanics.
Thereby, the representation of general quantum measurements as interactions
between physical system constitutes the foundation for an account of weak values.
The latter are introduced in section 3.2, which can be regarded to some extent
as the central part of the thesis, as it contains the most of important definitions
relevant in the field of weak values. As an illustration of the presented concepts,
the diverse types of measurements are graphically compared in the final section
of the chapter.

3.1. Standard Quantum Measurement

The following section presents the standard quantum theory of measurement.
Apart from an overview of the fundamental description of measurement, another
important aspect is the definition of measurement strength, which can be used to
quantify measurements in general and which therefore represents a reference for
the definition of weak measurements.

3.1.1. Measurement Postulate

As a basis for a more detailed discussion of the quantum mechanical measurement
process in this subsection the third group of postulates is introduced.

Observables and Projective Measurements

According to the measurement postulates of quantum mechanics, all physical
properties are based on observables, which are represented by Hermitian opera-
tors acting on the state space of a quantum system [28–30, 33]. The eigenvalues
of these measurement operators represent the possible outcomes of quantum mea-
surements. The expression of physical quantities by appropriate operators is the
third fundamental task for the quantum mechanical description of physical sys-
tems, alongside a definition of a suitable Hilbert space and the formulation of
the correct Hamiltonian. It should be noted that in this work the measurement
operator itself is denoted as the “observable” in accordance with the definition of
the notion as given in [29, 30].
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Because of the restriction of possible measurement outcomes to eigenvalues of
linear operators, measurements in finite dimensional Hilbert spaces are necessarily
quantized and can yield only a discrete set of results [28, 32]. The Hermiticity
of the operators representing observables ensures that all outcomes are real and
can therefore be interpreted meaningfully as values of the corresponding physical
quantity. Furthermore, instead of stating the observable explicitly it is just pos-
sible to state that a measurement is conducted in an orthonormal basis, where
a certain real value aj is attributed to each basis state |aj〉, which consequently

implies the diagonal form of a Hermitian operator Â with [29, 33]

Â =
∑
j

aj|aj〉〈aj|. (3.1)

This operator constructed out of the projectors {|aj〉〈aj|} represents the rele-
vant observable of that measurement. The ideal form of quantum measurement
expressed by such a set of orthogonal projectors is denoted as a projective mea-
surement [29].

Probabilistic Interpretation

The crucial feature that is introduced by the standard measurement postulates of
quantum mechanics is a fundamental indeterminacy of the quantum mechanical
description of physical reality in the process of measurement. In general an arbi-
trary state of the system |ψ〉 is not an eigenstate of an observable Â, but rather a
linear superposition of such orthonormal basis states {|aj〉} with |ψ〉 =

∑
j cj|aj〉.

In such a case it is not possible to predict the outcome of a measurement of Â
but only to specify probabilities Pj for each result aj associated with state |aj〉
as [29, 30, 41]

Pj := |〈aj|ψ〉|2 = |cj|2. (3.2)

In the continuous case with basis {|α〉} the amplitudes cj are replaced by the
wavefunction ψ with ψ(α) = 〈α|ψ〉. The squared modulus of this wavefunction
then corresponds to a probability density in continuous state space for state |α〉 or
in other words the probability P (α, α+ dα) of finding the system in the infinites-
imal state interval between |α〉 and |α + dα〉 is given by |ψ(α)|2dα [28, 30, 41].
These measurement probabilities can be generalized to potentially mixed states
represented by density operators ρ̂ as [26, 28]

Pj = 〈aj|ρ̂|aj〉 = tr (ρ̂|aj〉〈aj|) . (3.3)

Therefore, the usual interpretation of the amplitudes cj and the wavefunction
ψ(α) in quantum mechanics is a probabilistic interpretation. From this perspective,
the meaning of these quantities is understood as a foundation for the calculation
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of probabilities of certain measurement outcomes. In this context the normaliza-
tion condition for quantum states ensures the consistent normalization of these
distributions. While for a system in an eigenstate of the measured observable
the result of the measuremet can be predicted with certainty, it is an implica-
tion of the superposition principle of quantum mechanics that there exist states
for which the measurement is inherently indeterministic [32]. This uncertainty
is distinct from the statistical uncertainty expressed by the density operator of a
mixed state, which has its origin in an incomplete description of the system. The
indeterminism of quantum measurement persists even if the system is completely
described by a pure state vector [28, 32, 42].

The meaning of the quantum wavefunction beyond a probabilistic interpretation
is still unclear and actively discussed in the scientific community [3, 42]. For
the remainder of this thesis, however, it suffices to acknowledge the probabilistic
character of the quantum mechanical description of measurement and treat the
wavefunction simply as a mathematical tool for the description of physical systems
without deciding on its ontological status.

Reduction of States

Closely associated to the projective theory of measurement is the postulate of
the reduction of the wavefunction [41]. It states that after a certain eigenvalue
of a measurement observable has been measured the system ”jumps” into the
corresponding eigenstate. This ”collapse” of the wavefunction does not refer to
some contingent backaction of a physical measuring device, which destroys or at
least disturbs the system in the measurement process, as for example a photon
detector that annihilates a photon. Instead it describes the fundamental effect that
any potential interaction of the system with a measuring device necessarily must
have to extract the relevant information about the quantum state [26, 28, 29, 41].

For a potentially degenerate eigenvalue aj of observable Â with the correspond-
ing eigenspace Hj, which is spanned by the orthonormal basis {|akj 〉} labeled by
the additional index k, the state |ψ′〉 of the system after an ideal projective mea-
surement that yielded the value aj, can be expressed as [29, 30, 33]

|ψ′〉 =
Π̂j|ψ〉√
〈ψ|Π̂j|ψ〉

, (3.4)

where |ψ〉 denotes the initial state of the system and Π̂j =
∑

k |akj 〉〈akj | the pro-
jector into the eigenspace corresponding to the eigenvalue. Because in general the
initial state contains elements that are orthogonal to this eigenspace and which
are consequently removed, the state after the projection Π̂j|ψ〉 is not normalized
and the denominator is necessary because it is unequal to 1. This loss of normal-
ization entails that the transformation |ψ〉 → |ψ′〉 caused by the measurement is
in general non-unitary [29].
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The definition of the post measurement state can be generalized to initially
mixed states described by the density operator ρ̂ with [26, 29, 35]

ρ̂′ =
Π̂j ρ̂Π̂j

tr
(

Π̂j ρ̂
) . (3.5)

It should be noted that for continuous observables with eigenbases which do not
consist of normalizable states as the position operator x̂ presented in subsec-
tion 2.2.2, measurements with projections onto a eigenstate are impossible because
they would entail a collapse into a state which cannot be normalized. Therefore,
in the case of such continuous observables the measurements must always consist
in a projection on an interval of eigenstates [28, 30, 32].

In the standard interpretation this third postulate introduces a distinct kind
of quantum evolution by measurement. Other than the essentially reversible and
deterministic unitary evolution of quantum systems governed by the Schrödinger
equation, the evolution implied by the collapse of the wavefunction is fundamen-
tally irreversible and indeterministic [28, 32, 41, 43]. It is experimentally demon-
strated [44] that the evolution of a physical system can be driven and influenced
by repeated measurements, which is denoted as the quantum Zeno effect [45].
However, the relation between measurement and unitary evolution is still a highly
debated topic in quantum physics. The introduction of the postulate of reduction
into quantum mechanics is denoted as the ”measurement problem” [2], which is
highlighted again in subsection 3.1.2 after the concept of indirect measurement is
presented.

Expectation Value

Because of the indeterministic quality of quantum measurements it is in general
impossible to infer the wavefunction of the quantum state by a single measure-
ment. In fact the only information that can be gained by measuring an outcome
aj for the measurement of state |ψ〉 is that the wavefunction ψj = 〈aj|ψ〉 at the
corresponding eigenstate |aj〉 is non-zero [41]. To measure the complete wavefunc-
tion of a quantum state it is necessary to conduct a number of measurements on
an ensemble of quantum systems prepared in the same initial state ψ [28, 30, 41].
However, such a repeated measurement of one observable yields only the probabil-
ity distribution, which is the squared modulus of the wavefunction. The relative
frequencies of measuring the outcome aj corresponding to the state |aj〉 approx-
imate the probabilites Pj = |〈aj|ψ〉|2 of finding the system in state |aj〉 for a
sufficiently high number of measurements. To gain information about the rela-
tive phases of the measured eigenstates, other observables have to be measured
as well. The procedure of complete state determination is called “quantum state
tomography” and is discussed in chapter 4.
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3.1. Standard Quantum Measurement

If the wavefunction or at least the probability distribution of a state with respect
to the eigenstates of some observable is known, it is possible to calculate the
expectation value E of an observable Â =

∑
j ajΠ̂j which is defined as [28, 29]

Eψ(Â) :=
∑
j

ajP
ψ
j = 〈ψ|Â|ψ〉 (3.6)

for pure states |ψ〉 =
∑

j cj|aj〉 and the probabilities Pψ
j = |〈aj|ψ〉|2 = |cj|2. The

expectation value corresponds to the statistical mean value of the measurement
and is not necessarily equal to a possible outcome of the measurement [28, 30]. In
quantum mechanics the expectation Eψ(Â) is written as 〈Â〉Ψ or simply as 〈Â〉 if

it is clear with respect to which state |ψ〉 the observable Â is being evaluated.
The expectation value can be generalized to potentially mixed states represented

by the density operator ρ̂ with [28, 29, 33]

〈Â〉ρ̂ := tr
(
ρ̂Â
)

(3.7)

where the ordering of the operators is insignificant because of the cyclicity of the
trace operation.

Along with a mean value it is also possible to define the statistical variance
Var(Â) of some state |ψ〉 with respect to an observable Â as [28, 29, 33]

Var(Â) := 〈(Â− 〈Â〉)2〉 = 〈Â2〉 − 〈Â〉2, (3.8)

where the expectation values are calculated in relation to |ψ〉. Based on the

variance, the standard deviation ∆A is defined as ∆A := Var(Â)
1
2 [28, 29, 33].

A standard deviation of 0 corresponds to the case where the state of the system
is an eigenstate of the observable and therefore the outcome of the measurement
can be predicted with certainty.

Compatibility and Complementarity

The presentation of the standard measurement postulate of quantum mechanics
is completed by the discussion of successive measurements of different observ-
ables. Because an ideal measurement consists of projections into the respective
eigenspaces of observables, the properties of such successive measurements are
determined by the relation between the eigenspaces of the relevant observables.
It can be shown that two observables Â and B̂ can have a common eigenbasis if
and only if they commute, thus if [Â, B̂] = 0. Commuting obervables that can be
simultaneously diagonalized are denoted as compatible [28–30].

If observables do not commute, there exists at least one eigenstate |akj 〉 of Â

that is not an eigenstate of B̂ and which consequently has to be written as super-
position of basis states of B̂ [30]. If a measurement of observable Â, which yields
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3. Quantum Measurement

the result aj and leaves the system in state |ψj〉 with 〈akj |ψj〉 6= 0, is succeeded

by a measurement of observable B̂, the resulting state after that second measure-
ment may contain components that are not in the subspace corresponding to the
eigenvalue aj. Therefore, measurements of non-commuting observables may dis-
turb each other, which means that the information about the state gained by one
measurement may become incomplete after the second measurement because the
system evolves into a different state that has again an undetermined value with
respect to the first observable [30].

While for non-compatible observables successive measurements might disturb
the system with respect to previous measurements, this relation is extreme for
complementary observables [36]. If Â and B̂ are complementary, then each eigen-
state of Â is an superposition of all possible eigenstates of B̂ with equal probability
amplitudes and vice versa. After an ideal measurement of one of the observables
the outcome of a measurement of the second is thus maximally indetermined. All
sets of “dynamical variables”, which are generators of translations or rotations
in each others eigenspaces, have this complementary relation [36]. The princi-
ple of complementarity implies that, in quantum mechanics contrary to classical
physics, it is impossible to acquire simultaneous knowledge about the outcomes
of all possible measurements [36, 41].

The fundamental uncertainty of states with respect to non-compatible observ-
ables Â and B̂ is expressed formally in the Heisenberg uncertainty relation [29]

∆A∆B ≥

∣∣∣〈[Â, B̂]〉
∣∣∣

2
, (3.9)

where the standard deviations on the left hand side as well as the expectation
value on the right hand side are both evaluated with respect to the same state
of the system. A special case of the uncertainty relation can be formulated for
the complementary observables x̂ and p̂x already mentioned is section 2.1, the
commutator of which is a constant. In this case the uncertainty relation has the
form [28, 30, 41]

∆x∆p ≥ ~
2
. (3.10)

This reflects the fact that a more precise knowledge of the position x̂, which is
reflected by a small deviation ∆x, entails a greater uncertainty ∆p in momentum.

3.1.2. Indirect Measurement

The fundamental description of the measurement process via the respective pos-
tulates can be refined by a more detailed account of the interaction between the
measurement apparatus and the measured system as presented below.
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Interaction

In practice the process of projective measurement is usually accompanied not only
by a collapse of the system into an eigenspace of the measurement operator but
also by a much greater and more complicated transformation of the system [41].
For example the detection of a photon with an initially extensive wavefunction
in some small region interval, usually annihilates the photon, transforming the
relatively simple quantum system of the particle into the complex system of the
detection environment. This direct interaction of the system of interest or ob-
ject system with some complicated detection device, which might induce other
evolutions than the intended reduction of the system into the eigenspace of the
measurement outcome, is denoted as a direct measurement [41].

To realize a measurement, which better reproduces the theoretical description
of projective measurement, the concept of indirect measurement is introduced,
where prior to the measurement inducing the collapse, the object system interacts
with an ancillary system called pointer system [29, 33, 41]. Because of resulting
entanglement between the two systems a projective measurement on the pointer
system, which potentially destroys the latter, causes the object system to be
reduced into a certain post measurement state as well. Any unintended backaction
on the object system by the measurement device, however, can be avoided using
this approach because a direct measurement is only performed on the pointer
system [41].

In principle any unitary evolution ÛXY acting on the systems X and Y , which
cannot be expressed as a product evolution ÛP of the form ÛP = ÛA ⊗ ÛB,
with operators ÛA and ÛB acting only on the respective subsystems, introduces
some change in the correlation of the two systems [36, 39]. Such a non-product
evolution is therefore denoted as an interaction of the two systems. An indirect
measurement is realized by a simple and fundamental form of interaction Ûα
already introduced by von Neumann in 1932 [43], which can be written as [29, 41,
46, 47]

Ûα := exp

(
− i
~
αÂ⊗ p̂

)
(3.11)

where Â is the measured observable acting on the object system, α a constant
parameter of the measurement and p̂ a generator of evolution acting on the pointer
system. The evolution operator Ûα can be seen as corresponding to the time
independent interaction Hamiltonian Ĥ := α

∆t
Â⊗ p̂q, which is active for a time of

∆t [38, 48]. The other parts of the overall Hamiltonian containing the separate
evolutions of the two subsystems are not relevant for the measurement and can
be neglected without the loss of generality [26]. It should be noted than in this
work the interaction observable Â is taken to be dimensionless and its dimension
is incorporated into the interaction parameter α as proposed in [49].
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Correlation

The usual scenario for an ideal indirect measurement begins with a finite dimen-
sional object system that is initially in the state |ψ0〉 =

∑
j cj|aj〉, where the basis

{|aj〉} is the non-degenerate eigenbasis of the observable Â. Before the interaction
the overall state |I〉 is a separable state that can be written as

|I〉 = |ψ0〉 ⊗ |Φ0〉, (3.12)

with |Φ0〉 as the initial state of the pointer system, which is initially completely
uncorrelated to the object system [28]. This composite state is subsequently
transformed by the interaction operator Ûα into the correlated state |C〉 with [2,
28, 50]

|C〉 = Ûα|I〉 = exp

(
− i
~
αÂ⊗ p̂

)(∑
j

cj|aj〉

)
⊗ |Φ0〉

=
∑
j

cj|aj〉 ⊗
(

exp

(
− i
~
αaj p̂

)
|Φ0〉

)
=
∑
j

cj|aj〉 ⊗ |Φαaj〉,
(3.13)

where |Φλ〉 := e−
i
~λp̂|Φ0〉 denotes the pointer state that is shifted or rotated by the

amount λ. If the states |Φαaj〉 are pairwise orthogonal this interaction results in
a perfect correlation between pointer and object system states, which represents
the ideal form of an indirect measurement interaction [35, 41].

In the case of such a correlation the probability PΦ
αaj

to measure the outcome
corresponding to projective measurement on the pointer system represented by
the projector ΠΦ

αaj
= 1⊗ |Φαaj〉〈Φαaj | is given by

PΦ
αaj

= 〈C|ΠΦ
αaj
|C〉 = |cj|2, (3.14)

which is exactly the same as the probability of measuring the value aj with a
projective measurement directly on the object system in the initial state [26].
Furthermore, the state of the composite system |C ′〉 after the measurement on
the pointer system is

|C ′〉 =
ΠΦ
αaj
|C〉

〈C|ΠΦ
αaj
|C〉

= eiϕ|aj〉 ⊗ |Φαaj〉 (3.15)

with some global phase ϕ that is of no relevance. This is again a separable state
and the object system after measurement is reduced into the state |aj〉, which is
exactly the final state to be expected after a direct measurement of the value aj
on the object system.

For an observable Â with potentially degenerate eigenvalues the situation is
more or less the same with the difference that the relevant projectors project
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onto potentially multidimensional subspaces and not necessarily onto single states.
In any case for an indirect measurement to reproduce a direct measurement of
observable Â, the pointer system needs to have a dimension that is equal to or
higher than the number of distinct eigenvalues of Â. Only then it is possible
for the respective eigenspaces to be correlated with pairwise orthogonal pointer
states.

Distinguishability and Coherence

The procedure of indirect measurement can in principle be divided into two parts,
the interaction that creates the correlations between object and pointer system
and the subsequent direct measurement of the pointer system [7, 43, 50, 51]. The
interaction by itself does not constitute a quantum measurement in the stan-
dard sense because it represents a deterministic and reversible unitary evolution.
Instead of being measured, the eigenstates of the measurement operator only be-
come distinguishable because of the correlation with orthogonal pointer states.
This distinguishability, however, causes a loss of coherence in the object system
[33, 36]. As a subsystem of a maximally entangled bipartite system the object
system by itself is in a maximally mixed state and thus incoherent.

Because the interaction without a projective measurement, which would cause
a reduction of the wavefunction, is reversible, it is possible to fully remove the
introduced distinguishability and recover the coherence of the object system [36].
This can be either done by simply removing the correlation with a suitable uni-
tary transformation, or by carrying out a suitable projective measurement on the
pointer system that is symmetrical with respect to the orthogonal pointer states
correlated with the object system states of interest. The entanglement of the two
system is consequently removed and the composite system reduced to a separable
state with the object system in its initial state.

Continuing the notation introduced in the previous subsections the correlated
state |C〉 can be expressed as

|C〉 =
∑
j

cj|aj〉 ⊗ |Φαaj〉. (3.16)

A symmetric projective measurement on the pointer system expressed by the
operator 1⊗ |Φs〉〈Φs| with |Φs〉 = 1√

N

∑
j |Φαaj〉, where N is the number of non-

zero coefficients cj, leaves the bipartite system in the state

(1⊗ |Φs〉〈Φs|) |C〉 =
1√
N

(∑
j

cj|aj〉

)
⊗ |Φs〉, (3.17)

which is a separable state with the object system in the initial coherent pure state.
A quantum erasure, where the distinguishability is annuled by a unitary evo-

lution, has been experimentally realized [51] employing single photon pairs in a

35



3. Quantum Measurement

superposition state of two possible paths as a two dimensional which-path object
system. The pointer systems used to mark a certain path of the photon pair
making the paths dinstinguishable, were polarization and time delay between the
photons of one pair. Amongst other things, it was demonstrated that even mark-
ing only one of the photons of a pair in one path resulted in a loss of interference
between the two path states for both photons. Successive gradual removal of this
dinstinguishability recovered the interference gradually, confirming the assertion
of complementarity between dinstinguishabity and the ability to interfere.

Alternative to Measurement Postulate

The formulation of the measurement process via the entanglement of object and
pointer system allows a new perspective on the measurement postulates of quan-
tum mechanics. The question arises whether it is not possible to describe the
irreversible and indeterminstic reduction of the wavefunction in terms of a re-
versible and deterministic unitary evolution described by the second group of
postulates [2, 29]. In this context the physical universe as a whole, could be seen
as a closed system that evolves only unitarily and all other effects as statistical
uncertainty and collapsing wavefunctions would be effects of the description of re-
duced subsystems without the complete information about the global composite
pure state.

In general any quantum measurement can be described via entanglement of
the object system with some pointer system, on which the actual measurement
is carried out. However, the latter measurement could in principle itself again be
described as an interaction of the pointer with another pointer that carries the
correlation forward. Therefore, the whole process of the measurement of some
object system by an observer could be in principle expressed as such a chain of
entangling interactions [43]. Nevertheless at some point some sort of collapse has
to be introduced to account for the fact that in the end a definitive outcome of
the measurement is observed. Thus, to conform with the observation of defined
measurements results it seems necessary to “divide the world in two parts”, namely
a set of quantum systems, which evolve according to the Schrödinger equation
and an observer system, which causes an indeterministic collapse of the overall
superposition state into a definitive measurement value [2, 43]. While the existence
of such a “borderline” is strongly implied by the postulates, it appears that the
chain of entangled systems can in principle be extended arbitrarily close to the
observer and thus there exists no definite distinction between the unitarily evolving
quantum systems and the irreversible measurement process [41, 43].

The meaning of the collapse and its relation to the entanglement between var-
ious physical system is still very much debated. It is unclear if it is possible to
replace the measurement postulates and the notion of collapse by a fully unitary
description [2, 28, 29]. While some accounts tend to dismiss the fundamentality
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of indeterministic and irreversible evolution [50, 52], others point to the problem
of definitive outcomes as a yet insurmountable obstacle [2].

3.1.3. Measurement Strength

Based on the preceding discussion of quantum mechanical measurements, it is
possible to introduce a quantification of measurements, according to their ability
to provide precise information about the state of the object system.

Non-Ideal Measurements

In principle there are two distinct ways in which an indirect measurement can
diverge from the ideal case. In one case the interaction does not create full one
to one correlations between orthogonal object and pointer system states and in
the other case the measurement of the pointer system is not an ideal projective
measurement. The latter is a contingent property of the direct measurement of
the pointer and usually depends on the technical realisation of the measurement
process. The imperfection of correlations, however, is a fundamental feature of
the measurement interaction, which crucially influences the coherence of the state
of the object system. This discussion, therefore focusses on the modification of
measurements resulting from properties of the interaction.

Continuing with state |C〉 after the interaction from eq. (3.13), which can be
written as

|C〉 =
∑
j

cj|aj〉 ⊗ |Φαaj〉, (3.18)

it is now assumed that the states {|Φαaj〉} are potentially non-orthogonal states. A
projective measurement on the pointer with the projector ΠΦ

αam = 1⊗|Φαam〉〈Φαam|
leaves the composite system in the final state

ΠΦ
αam|C〉 =

∑
j

cj〈Φαam|Φαaj〉|aj〉 ⊗ |Φαam〉. (3.19)

This result corresponds to the action of the operator
∑

j〈Φαam|Φαaj〉|aj〉〈aj| on
the object system in its initial state.

The action of such an operator is an instance of a positive operator-valued mea-
sure or POVM measurement, which represent a generalization of the measurement
postulates to cases where the measurements cannot be described by projective
measurements [29, 35, 41, 53, 54]. Contrary to a standard projective measure-
ment, a POVM measurement is not necessarily defined by a set of orthogonal
projectors, but instead by a set of operators {Êj}, which fulfill the normalization

condition
∑

j Êj = 1 and have the form Êj = M̂ †
j M̂j with arbitrary operators M̂j.

For the initial state |ψ〉 the probability Pj of measuring the value associated with
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operator Êj can be written as Pj = 〈ψ|M̂ †
j M̂j|ψ〉 = 〈Ej〉 and the reduced state

|ψ′〉 after the measurement becomes [29, 33]

|ψ′〉 =
M̂j|ψ〉
〈Êj〉

. (3.20)

The overlap expressions 〈Φαaj |Φαam〉 from eq. (3.19) quantify how strongly the
eigenstates of the measurement observable are correlated with the outcomes of
pointer measurements and thus the amount of information gained by a POVM
measurement of the type presented above. The information is maximized when
the states {|Φαaj〉} are pairwise orthogonal, which, however, also entails a maximal
distortion of the initial state with a full collapse into an eigenstate of the observable
[41, 47, 55]. In the other extreme case, all states {|Φαaj〉} are the same and
the composite system is effectively in a separable state without any correlations.
While in the latter case no information about the initial state is gained by the
measurement, there is also no distortion and the reduced post measurement state
resembles exactly the initial one [29, 41, 56, 57].

Quantification of Interaction Strength

The concept of non-ideal measurements, which depends on the amount of correla-
tions between the object system and pointer, allows the definition of measurement
strength corresponding to the strength of the measurement interaction [26, 46].
A strong interaction is defined as an interaction that creates perfect one to one
correlations between the eigenstates of a measurement operator Â and orthogonal
states {|Φαaj〉} of the pointer system. For weaker interaction this condition is not
fully realized with no correlation for an interaction of zero strength. To gradually
assess the strength or respectively the weakness of an interaction subsequently a
definition of interaction strength is proposed, which depends on the interaction
parameter α, the relation of the initial object state |ψ〉 to the observable Â and
the relation of the initial pointer state |Φ0〉 to the generator p̂ for an interaction
defined as in eq. (3.11).

For a D-dimensional object system with the totally symmetric initial state
|ψS〉 = 1√

D

∑
j |aj〉 the interaction leaves the composite system in the state

|C〉 =
1√
D

∑
j

|aj〉 ⊗ |Φαaj〉. (3.21)
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Tracing out the pointer system yields the potentially mixed state ρ̂C of the object
system after the interaction

ρ̂C =
1

D
trΦ

(∑
j,m

|aj〉〈am| ⊗ |Φαaj〉〈Φαam|

)

=
1

D

∑
j,m

|aj〉〈am|tr
(
|Φαaj〉〈Φαam|

)
=

1

D

∑
j,m

|aj〉〈am|〈Φαam|Φαaj〉.

(3.22)

As presented in subsection 2.2.3, there is a gradual relation between the statistical
uncertainty of state ρ̂C and the degree of correlation in state |C〉. Therefore, to
evaluate the latter it is instructive to calculate the former.

The purity P of ρ̂C can be written as

P = tr
(
ρ̂2
C

)
=

1

D2

∑
j,m

∣∣〈Φαam|Φαaj〉
∣∣2 , (3.23)

which implies a measure for the interaction strength S, which is equal to the
normalized concurrence with

S =

√√√√ D

D − 1

(
1− 1

D2

∑
j,m

∣∣∣〈e− i
~α(aj−am)p̂〉

∣∣∣2), (3.24)

where the expectation value is taken with respect to the initial pointer state |Φ0〉
and the overlap has been written explicitly as

〈Φαam|Φαaj〉 = 〈Φ0|e
i
~αamp̂e−

i
~αaj p̂|Φ0〉 = 〈e−

i
~α(aj−am)p̂〉. (3.25)

The minimal value of S = 0 is achieved for no interaction when 〈Φαam|Φαaj〉 = 1
and the maximal value S = 1 corresponds to a strong interaction with 〈Φαam|Φαaj〉 =
δjm.

Condition for Weakness

For a weak interaction, no significant decoherence is introduced into a initially
pure object system, which requires that the purity after the interaction is still
close to 1 [26, 27, 55, 58]. This will always be realized when the interaction
parameter α is sufficiently small and can thus be replaced by the small parameter
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ε. The purity P from eq. (3.23) can in this case be expanded in orders of ε around
0 which yields

P ≈ 1

D2

∑
j,m

∣∣∣∣1− i ε~(am − aj)〈p̂〉 −
ε2

2~2
(am − aj)2〈p̂2〉

∣∣∣∣2
≈ 1

D2

∑
j,m

(
1− (a2

j + a2
m − 2ajam)(〈p̂2〉 − 〈p̂〉2)

ε2

~2

)
= 1− 2(∆AS)2(∆p)2 ε

2

~2
,

(3.26)

where the expectation values 〈Ân〉S = 1
D

∑
j a

n
j are calculated with respect to the

initial symmetric state |ψS〉, which also implies the standard deviation ∆AS.
This result can easily be generalized for any state |ψ〉 and the corresponding

∆Â. The choice of the symmetrical initial state |ψS〉 for the definition of the
interaction strength is simply motivated by the aim to give a general definition
of interaction strength, which is not dependent on the specific initial state of
the object system. The state |ψS〉 can form a maximally entangled state with
the pointer system as defined in [39] and is therefore maximally sensitive to a
distortion by the interaction. Consequently it is most suitable to evaluate the
maximal amount of correlations introduced by the interaction.

For the preservation of purity, and therefore, for minimal disturbance of the
object state, the expression above implies

ε∆p� ~√
2 ∆A

(3.27)

as the defining condition for a weak interaction, which represents an upper bound
for the product of ε and ∆p, also defined in [49]. It should be noted that for this
approximate condition it is assumed that factors for the terms of higher order of
ε are not too large and can therefore be safely neglected. As various experiments
show, this is a valid assumption for the relevant pointers and interactions.

In practice there exist two distinct manners, in which a weak interaction can
be achieved. In accordance with eq. (3.27) either the interaction parameter ε or
the generator uncertainty ∆p of the initial pointer state is reduced. The former
can be regarded as a “weakening at the separation stage” of the procedure and
the latter as “weakening at the recording stage” [59]. The condition is of course
meaningless if at least one of the standard deviations ∆A and ∆p vanishes, which
corresponds to the case where either the object system is in an eigenstate of Â or
the pointer is in an eigenstate of p̂. In both cases the interaction does not create
any correlations independent of the magnitude of the interaction parameter ε.
While in the case of ∆A = 0, where the object system is in an eigenstate of Â, the
pointer might get shifted significantly, this interaction, however, does not disturb
the object state in any way and is not suitable to extract any information from
it.
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Measurement with Weak Interaction

After establishing a criterion for a weak interaction, it remains to assess how
much information can be gained by a measurement involving an interaction of
this type. Because of the principle of complementarity there is an upper bound
for information, which can be gained given a certain disturbance of the system
[60]. In the following the resulting pointer state after a weak interaction ρ̂F is
analyzed together with the possible information, which can be gained by a strong
measurement of this pointer with respect to the observable q̂.

The reduced pointer state ρ̂F after the interaction can be written as [61]

ρ̂F = trA (|C〉〈C|) =
∑
j

|cj|2|Φεaj〉〈Φεaj |, (3.28)

where |C〉 is the composite state after the interaction defined in eq. (3.13). For
this state the expectation value of observable q̂ becomes

tr (ρ̂F q̂) =
∑
j

|cj|2〈Φεaj |q̂|Φεaj〉 =
∑
j

|cj|2〈e
i
~ εaj p̂q̂e−

i
~ εaj p̂〉

≈
∑
j

|cj|2
(
〈q̂〉+

ε

~
ajIm [〈[q̂, p̂]〉]

)
= 〈q̂〉+

ε

~
〈Â〉Im [〈[q̂, p̂]〉]

(3.29)

in the limit of small ε as described in [26]. All expectation values are taken with
respect to the initial state of object and pointer system with q0 := 〈q̂〉. Therefore,
for a sufficiently weak interaction there exists a linear relation between the pointer
shift δq := tr (ρ̂F q̂)− q0 and the expectation value 〈Â〉 of the object system.

In the case of a pointer measurement in position space with q̂ = x̂ and the
generator p̂ is the corresponding momentum operator p̂x, the shift in eq. (3.29)
can be calculated without approximation. As described in subsection 2.2.2 the
position expectation value of the shifted pointer state |Φεaj〉 can then be written
explicitly as 〈x̂〉 = εaj +x0. The approximate solution above is therefore shown to
be exact for position and momentum operators with the commutator [x̂, p̂x] = i~
[27]. In the latter case, the exact shift in the mean value of the pointer becomes

δx = ε〈Â〉. (3.30)

While this result is valid for all interaction strengths, for a sufficiently weak inter-
action, any non-commuting pair of interaction and measurement operators q̂ and
p̂ produces approximately the same linear shift as calculated above [26].

The possibility to accurately measure a pointer shift δx of the magnitude ε|〈Â〉|
depends on the uncertainty ∆x of the pointer state. To resolve a shift δx of the
wavefunction with a single measurement it is required that [26]

δx = ε|〈Â〉| � ∆x. (3.31)
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However, the weak interaction condition eq. (3.27), requires exactly the opposite
as can be seen when it is evaluated for a pointer state that approximately saturates
the uncertainty relation with ∆x∆px ≈ ~

2
. In this case it can be written as

ε∆A� ~√
2∆px

≈
√

2∆x. (3.32)

As long as the magnitude of the expectation value |〈Â〉| does not significantly
exceed the standard deviation ∆A, a single measurement of the pointer system,
which satisfies the condition of weakness, will not yield the expectation value
with good precision. In fact it is the non-vanishing position uncertainty and the
corresponding finite momentum uncertainty that allow a weak interaction in the
first place.

To measure the expectation value with precision even in the case of a weak
interaction, it is therefore necessary to repeat the pointer measurement on an
ensemble of many identical systems [9, 58, 62]. With a signal to noise ratio
(“SNR”) that scales with 1√

N
, where N is the number of pointer measurements,

it is possible to express the minimal number of events N0, which are necessary to
resolve a pointer shift of δx given a standard deviation of ∆x as [26, 27, 37, 46]

N0 ≈
(

∆x

δx

)2

=

(
∆x

ε〈Â〉

)2

. (3.33)

This requirement limits the suitability of measurements with weak interaction for
cases in which only a small ensemble of object systems is available.

Weakly Disturbed Pointer

Apart from the expectation value, it is also possible to make general claims about
the probability distribution P (x) of the pointer. The probability density can be
written as

P (x) = 〈x|ρ̂F |x〉 =
∑
j

|cj|2
∣∣〈x|Φεaj〉

∣∣2 . (3.34)

This can be expanded in orders of ε to obtain an approximate expression for the
probability distribution of the pointer after the interaction as

Px ≈
∑
j

|cj|2
∣∣∣〈x|(1− i ε

~
aj p̂x

)
|Φ0〉

∣∣∣2
≈
∑
j

|cj|2
(
|〈x|Φ0〉|2 + 2

ε

~
ajIm [〈x|p̂x|Φ0〉〈Φ0|x〉]

)
= |〈x|Φ0〉|2 + 2

ε

~
〈Â〉Im [〈x|p̂x|Φ0〉〈Φ0|x〉]

≈
∣∣∣〈x|(1− i ε

~
〈Â〉p̂x

)
|Φ0〉

∣∣∣2 ≈ |〈x|ΦεÂ〉|
2 ,

(3.35)

42



3.1. Standard Quantum Measurement

as long as Im [〈x|p̂x|Φ0〉〈Φ0|x〉] = −~
(
∂
∂x
〈x|Φ0〉

)
〈Φ0|x〉 is non-vanishing. There-

fore, at least for a class of pointer distributions, the probability distribution after
the interaction resembles approximately the original distribution shifted by the
expectation value 〈Â〉 [27]. For example this is realized in the case of a Gaussian
pointer as introduced in subsection 3.3.

In conclusion, there exists a range of ε, where the object system is minimally
disturbed by the interaction, where the pointer system is just shifted without a
significant change in the shape of the probability distribution and it is still possible
to measure the expectation value, which is proportional to the amount the pointer
shift. For a strong measurement with orthogonal pointer states corresponding to
different eigenvalues of the measured observable, it is possible to estimate the
probability of each eigenvalue separately by measuring the relative frequencies of
each outcome. The eigenstates are resolved and the expectation value is calculated
as a sum of the eigenvalues, weighted with the corresponding probabilities. In the
case of a weak interaction, the particular pointer states overlap almost completely
and it is therefore impossible to measure the explicit form of the probability
distribution of the object state [4, 9, 21, 26, 63]. However, as shown above, it is
still possible to obtain the expectation values in a direct way. In a certain sense
this resembles the case where the object system is initially in an eigenstate of
observable Â and the pointer system is consequently only shifted proportionally to
the eigenvalue without changing its shape [27]. This property of weak interactions
emerges again in the context of weak measurements, which are discussed in the
next section.
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3.2. Weak Measurements

Based on the standard description of quantum measurement, this central section
deals with the theoretical formulation of the complex field of weak measurements.
After the concept of weak values is introduced, its relation to the measurement
process is discussed in more detail.

3.2.1. Weak Value

In the following paragraphs the concept of weak values is defined in relation to an
account of the procedure of pre- and postselected measurements. Eventually the
distinctions between the various types of measurements are presented in the final
part of this subsection.

Postselection

Contrary to a standard quantum measurement where the probability distribution
of an initial state is determined with respect to a certain observable, in postselected
measurements the additional condition of successful projection of the measured
state into a specific final state is introduced. This final state is denoted as the
postselection state and the initial state as the preselection state. The measurement
is conducted as an initially standard indirect measurement with an object system
that interacts with a pointer system. After the interaction, a direct projective
measurement of the object system is carried out and the corresponding pointer
state is only considered as a relevant outcome if the direct measurement on the
object system yields the outcome associated with the specified postselection state.
When this procedure is carried out on an ensemble of identical preselected sates,
the postselection effectively represents a filtering process, where only a certain
subensemble of the initial systems is considered [11, 26, 46].

The procedure of a pre- and postselected (“PPS”) measurement as illustrated
in Fig. 3.1 can be formally expressed in the following way. For a preselection
on the initial state |ψI〉 =

∑
j cj|aj〉, the initial pointer state |Φ0〉 and an indirect

measurement of observable Â with eigenbasis {|aj〉}, the composite state |C〉 after
the interaction becomes

|C〉 =
∑
j

cj
(
|aj〉 ⊗ |Φαaj〉

)
(3.36)

as already presented in section 3.1. Applying a pure projective postselection
Π̂F = |ψF 〉〈ψF | with the final state |ψF 〉 =

∑
j dj|aj〉, yields the final composite

state |F 〉 with

|F 〉 = N Π̂F |C〉 = N|ψF 〉 ⊗

(∑
j

cjd
∗
j |Φαaj〉

)
, (3.37)
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Figure 3.1.: Scheme for a PPS measurement. The pointer system is initially in
state |Φ0〉 and the object system is prepared in state |ψI〉, which constitutes the
preselection. Subsequently the systems interact and become correlated forming
the entangled state |C〉. After the interaction the object system is projected
into its final postselection state |ψF 〉, which separates the two systems again.
Eventually a direct measurement of the final pointer state |ΦF 〉 is performed.

which is a separable state. The factor N represents a suitable normalization
coefficient, which is necessary because of the filtering effect of the postselection.
A direct measurement of the final pointer state |ΦF 〉 =

∑
j cjd

∗
j |Φαaj〉 yields what

is considered to be the outcome of the PPS measurement.

Conditioned Probability

While the notion of a conditioned probability for measurement outcomes is not
defined in standard quantum measurement theory, there exist several approaches
to interpret a PPS measurement as conditioned measurement and to formulate a
probability of a quantum measurement under the condition of a certain postse-
lection in analogy to Bayes theorem [26, 35, 53, 56, 58, 61, 64]. According to the
latter the conditioned probability P (A|B) of event A under condition B can be

expressed as P (A|B) = P (A∩B)
P (B)

, where P (A ∩B) is the joint probability of A and

B and P (B) the unconditioned probability of B.
In the account of ABL the joint probability of measuring outcome aj with a

projective measurement on the object system and of successful postselection onto
|ΦF 〉 is given by |〈ψF |Π̂j|ψI〉|2, where Π̂j is the projector on the corresponding
eigenspace and |ψI〉 the initial state of the system. The unconditioned probability
of successful postselection is the sum of all joined probabilities with respect to a
decomposition of unity into the set of projectors {Π̂m} 3 Π̂j as

∑
m |〈ψF |Π̂m|ψI〉|2.

Therefore, the probability P IF
j of measuring outcome aj conditioned on the pre-

and postselection given above becomes

P IF
j =

|〈ψF |Π̂j|ψI〉|2∑
m |〈ψF |Π̂m|ψI〉|2

, (3.38)
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which is known as the ABL formula or ABL rule for conditioned probabilities
[26, 27, 65–68].

The probability calculated via the ABL formula is well defined in the sense that
it takes real values from the interval [0, 1] and is furthermore normalized to unity
if the conditioned probabilities over all measurements {Π̂j} are summed, with [26]∑

j

P IF
j = 1. (3.39)

However, as will be elaborated in section 5.1, the ABL probability is context
dependent. For different projector decompositions of unity, which all contain
Π̂j, the numerator stays the same while the value of the denominator may vary.
Therefore, the conditional probability of outcome aj calculated by the ABL rule
depends in general on the other eigenspaces of the observable that is measured.
In the case of non-projective measurements, this formula can be extended to
incorporate POVM operators instead of projectors as discussed in [57].

Another approach to conditioned probabilities as presented in [64] defines the
concept of a “conditioned expectation value”. Unlike in the ABL rule, the joint
probability is calculated as the expectation value of the the product of the pro-
jectors Π̂j and Π̂F with respect to the initial state. The resulting expression

〈ψI |Π̂jΠ̂F |ψI〉may be negative or even complex because the product of two projec-
tors is not necessarily Hermitian. This approach therefore represents an extension
of the usual notion of probability to complex probabilities. If the unconditioned
probability for successful postselection is taken simply as the squared modulus of
the overlap between pre- and postselection |〈ψF |ψI〉|2 = 〈ψI |Π̂F |ψI〉, the modi-
fied conditional probability P̃ (aj|F ) of measuring value aj under the condition of
successful postselection of the system becomes

P̃ (aj|F ) =
〈ψI |Π̂F Π̂j|ψI〉
〈ψI |Π̂F |ψI〉

=
〈ψF |Π̂j|ψI〉
〈ψF |ψI〉

. (3.40)

Expanding the standard definition of the expectation value E(Â) =
∑

j ajPj, the

conditioned expectation value ẼF can be defined as [26, 64]

ẼF (Â) =
∑
j

ajP̃ (aj|F ) =
∑
j

〈ψF |ajΠj|ψI〉
〈ψF |ψI〉

=
〈ψF |Â|ψI〉
〈ψF |ψI〉

. (3.41)

While this value is in general a complex number, which makes it difficult to
interpret it as an expectation value, the formulation, which employs a conditioned
probability distribution, is consistent in the sense that the particular probabilities
P̃ (aj|F ) are normalized as well, with

∑
j P̃ (aj|F ) = 1 [26].

Furthermore, it is possible to calculate the standard expectation value of an
observable with respect to the initial state |ψI〉 from the complex conditioned
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expectation values as defined above. A sum of the conditioned expressions ẼF
j (Â)

for a complete basis of postselection states {|ψ(j)
F 〉}, weighted by the probabilities

of successful postselection |〈ψ(j)
F |ψI〉|2 for each postselection state, yields [26, 54]∑

j

∣∣∣〈ψ(j)
F |ψI〉

∣∣∣2 ẼF
j (Â) =

∑
j

〈ψI |ψ(j)
F 〉〈ψ

(j)
F |Â|ψI〉 = 〈ψI |Â|ψI〉. (3.42)

Definition of Weak Values

The final pointer state after the postselected indirect measurement, which is writ-
ten in eq. (3.37) as an expansion into pointer states corresponding to the eigen-
states of observable Â, can also be expressed in a different manner, by expanding

the interaction operator Ûα = exp
(
− i

~αÂ⊗ p̂
)

from eq. (3.11) in a power series.

The final pointer state |ΦF 〉 can then be expressed as

|ΦF 〉 = N trOS

[
(|ψF 〉〈ψF | ⊗ 1) exp

(
− i
~
αÂ⊗ p̂

)
(|ψI〉 ⊗ |Φ0〉)

]
= N

∑
n

(−i)n

~nn!
αn〈ψF |Ân|ψI〉p̂n|Φ0〉

= N 〈ψF |ψI〉
∑
n

(−i)n

~nn!
αn
〈ψF |Ân|ψI〉
〈ψF |ψI〉

p̂n|Φ0〉,

(3.43)

where trOS denotes the trace over the object system and N a suitable normaliza-
tion.

In the last line of eq. (3.43) it is possible to identify the conditioned expectation
values as defined in above. The expansion of the final pointer state after posts-
election motivates the definition of a quantity that is known as the weak value.
The nth order weak value Anw of operator Â is defined with respect to preselection
|ψI〉 and postselection |ψF 〉 as [26, 38, 49]

Anw =
〈ψF |Ân|ψI〉
〈ψF |ψI〉

, (3.44)

where the weak value of first order A1
w is denoted as the standard weak value Aw

and the zero order weak value is simply 1. While this quantity was introduced
by Aharanov, Albert and Vaidman (“AAV”) in [4] in the context of a PPS mea-
surement with a weak interaction, several authors [38, 48, 53] have pointed out
that the concept is independent of the weakness of the measurement and should
be regarded in a more general way as the property of a PPS system. First and
foremost weak values represent well defined quantities, which can be assigned to
observables in pre- and postselected systems.
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A useful property of first order weak values is their linearity with respect to
the corresponding operator. The weak value of the operator Â =

∑
j νjÂj can be

written as

Aw =
〈ψF |Â|ψI〉
〈ψF |ψI〉

=
∑
j

νj
〈ψF |Âj|ψI〉
〈ψF |ψI〉

=
∑
j

νj(Aj)w. (3.45)

In particular, as demonstrated in eq. (3.41), a weak value of observable Â can be
decomposed into corresponding projector weak values, which will be useful for the
procedure of direct tomography presented in chapter 4.

Types of Measurements

As mentioned above weak values are sometimes defined as “outcomes of weak
measurements” [27, 62], which motivates some clarification of the terminology.
The standard quantum measurement as expressed in the fundamental postulates,
is a direct or indirect strong measurement without any postselection. The notion
of weakness was introduced in connection with a weak interaction between object
system and pointer, which disturbs the object system in minimal way. Therefore,
the first criterion (1) of classification of measurements is whether the interaction
disturbs the object system strongly or weakly, which corresponds to the criterion
of interaction strength. The second criterion (2) discriminates measurements with
respect to the property of being postselected or not. However, as will be presented
in the next subsection there is a third criterion (3) of weakness in PPS measure-
ments. While the latter is connected to the weakness of the interaction (1), it still
imposes different requirements on the interaction strength, which depend on the
pre- and postselection [49].

In accordance to the definition presented by AAV, in this work a weak measure-
ment is defined as a PPS measurement (2), that fulfills the weakness requirement
for PPS measurements (3) [4, 26, 27, 49, 55, 69]. This terminology is not unique
because in principle it would also make sense to refer to measurements fulfilling
conditions (1) and (2), or even only condition (1) as “weak measurements”. In
this thesis, however, measurements without postselection, which are only char-
acterized by condition (1), are referred to as standard measurements with weak
interaction. Outcomes of weak measurement in the sense of AAV have a very
specific relation to weak values as will be presented in the next subsection.

3.2.2. Linear Regime

The specific manner, in which weak values emerge in the case of weak measure-
ments, is presented in the following subsection.
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3.2. Weak Measurements

Pointer Expectation Value

Just as in the case of standard measurements with weak interaction, the outcomes
of weak measurements are obtained by calculation of expectation values of pointer
observables. Continuing from eq. (3.43) the final pointer state |ΦF 〉 after posts-
election and a weak interaction described by the small interaction parameter ε,
which replaces α, can be written as

|ΦF 〉 = N〈ψF |ψI〉
∑
n

(−i)n

~nn!
εnAnwp̂

n
q |Φ0〉. (3.46)

The expectation value of an arbitrary operator 〈q̂〉F = 〈ΦF |q̂|ΦF 〉 acting on the
pointer system consequently becomes [49]

〈q̂〉F = N 2 |〈ψF |ψI〉|2
∑
mn

(−1)mim+n

~m+nn!m!
εm+nAmw (Anw)∗〈Φ0|p̂nq̂p̂m|Φ0〉, (3.47)

where the normalization coefficient N can be expressed as

1

N 2
= |〈ψF |ψI〉|2

∑
mn

(−1)mim+n

~m+nn!m!
εm+nAmw (Anw)∗〈Φ0|p̂m+n|Φ0〉. (3.48)

The weakness of interaction strength controlled by the parameter ε in weak
measurements, motivates an approximation of the expectation value by an ex-
pansion to low orders of ε. While it is highly non-trivial to specify the general
conditions for the validity of such an approximation, in any case there exist some
finite ε, for which the higher order terms can be safely neglected. Up to second
order of ε the expectation value becomes

〈q̂〉F ≈
〈q̂〉+ 2

~Im [Aw〈q̂p̂〉] ε− 1
~2 (Re [A2

w〈q̂p̂2〉]− |Aw|2〈p̂q̂p̂〉) ε2

1 + 2
~Im [Aw] 〈p̂〉ε− 1

~2 (Re [A2
w]− |Aw|2) 〈p̂2〉ε2

, (3.49)

where all expectation values except 〈q̂〉F are calculated with respect to the initial
pointer states. Eq. (3.49) as described in [26] represents a general approximate
expression for the shifts of the pointer in the course of a weak measurement, which
is valid for arbitrary observables q̂ and p̂ and for arbitrary initial pointer states.

For the position observable x̂ with the corresponding momentum p̂x and a
pointer state 〈x̂〉 = 〈p̂x〉 = 0, the expectation value 〈x̂p̂〉 can be rewritten em-
ploying the commutator relation [x̂, p̂x] = i~ with

〈x̂p̂x〉 =
〈{x̂, p̂x}〉

2
+
〈[x̂, p̂x]〉

2
= cxp +

i~
2
, (3.50)

where cxp := 〈{x̂,p̂x}〉
2

is introduced as the “quantum analog” of the statistical co-
variance, which is a measure for the correlation between position and momentum
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3. Quantum Measurement

in the initial pointer state [26]. The covariance, as the expectation value of anti-
commutator {x̂, p̂x} := x̂p̂x+ p̂xx̂, is a real quantity because it can be written as a
sum of complex conjugates. Approximating the expectation value of the pointer
to first order in ε consequently yields [26, 49]

δx = εRe [Aw] + εIm [Aw]
2

~
cxp (3.51)

for the position shift. While the relevance of eq. (3.51) will become apparent
in the context of Gaussian beams used as pointers as discussed in section 4.2,
the usual expressions for the outcomes of weak measurements assume an initial
pointer state with no correlation between position and momentum. This allows the
simplification of the shift expressions to the usual form, which was first introduced
by AAV only for the shift in position [4]. The standard linear pointer shift in weak
measurements can be represented as [26, 38, 47–49, 53, 62, 70]

δx = εRe [Aw] , (3.52)

δp = ε
2

~
(∆p)2Im [Aw] ≈ ε

∆p

∆x
Im [Aw] , (3.53)

where the shift in pointer momentum was simply calculated from eq. (3.49) with
q̂ = p̂ and 〈p̂〉 = 0 up to first order in ε. The last approximation in eq. (3.53) is
only valid for pointers that approximately saturate the uncertainty relation be-
tween position and momentum [26]. Scenarios where these relations are valid are
denoted as the linear regime of weak measurements. While in principle “weak
measurements” could be defined as PPS measurements that exhibit such a linear
relationship between the pointer expectation values and the weak value, the con-
dition for weak measurements, which is presented below, is related to the shape
of the final wavefunction of the pointer system. In this work the emergence of
the linear regime is considered a necessary but not a sufficient condition for weak
measurements in the most strict sense.

Linear Weak Measurements

The linear relations between pointer expectation values and weak values for weak
measurements, as expressed in equations (3.52) and (3.53) are a central reason for
the usefulness of weak measurements. At the same time they invite a particular
type of interpretations, which are responsible for most of the controversy sur-
rounding weak values and weak measurements, as will be delineated in chapter 5.

One of the notable properties of weak measurements in the linear regime is
their formal similarity to the expressions obtained for standard measurements of
arbitrary strength. As discussed in section 3.1, there exists also a linear rela-
tionship between the shift of a pointer δx and the expectation value 〈Â〉 of the
object system. For an interaction characterized by the parameter ε the change
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3.2. Weak Measurements

in the position expectation value is related to the expectation of the system ob-
servable Â with δx = ε〈Â〉. The similarity between the latter expression and the
linear formulas in the weak measurement case, motivated interpretations similar
to the one presented in subsection 3.2.1, where the weak value is considered as
a “weak expectation value”, corresponding to weakly interacting pre- and post-
selected systems in the same way as an expectation corresponds to a standard
quantum system. In this context it should be noted that for identical pre- and
postselection the weak value is equal to the expectation value with [24, 27]

Aw =
〈ψ|Â|ψ〉
〈ψ|ψ〉

= 〈ψ|Â|ψ〉 = 〈Â〉. (3.54)

In contrast to expectation values, however, that always lie in the range of the
eigenvalue of the observable, weak values can be arbitrarily large or even complex
[4, 27, 47]. In principle for a given preselection state, which is not an eigenstate
of the measurement observable, it is possible to create an arbitrary complex weak
value by choosing a suitable postselection state. While the interpretation of real
weak values as physical quantities is less problematic, the meaning of complex
weak values has been regarded as a greater problem. The measurements of both
parts of the weak value are well defined as shifts of initial expectation values of
the two pointer observables caused by the double action of the weak measurement
procedure. In contrast to the standard quantum measurement, in this case both
the position and the momentum of the pointer carry information about the object
system [26, 53, 71].

Whatever information is gained by a weak measurement, in many accounts
[23, 24, 26, 71–73] it is pointed out that the state of the object system which is
projected onto the postselection state, is essentially the undisturbed initial pres-
election state. This motivates a range of theoretical and experimental scenarios
which aim to get some amount of information about complementary observables
from a single preselected system. Examples for such procedures are presented in
chapter 4 in the context of direct tomography and are also discussed in chapter 5
as mentioned above.

Minimal Ensemble Size

Just as in the case of weak standard measurements the information gained from
the pointer shifts proportional to ε is small because of the large uncertainty of
the corresponding observable [4, 27, 62]. Assuming a weak measurement of ob-
servables x̂ and p̂x with uncertainties ∆x and ∆p, in the linear regime of a weak
measurement of observable Â both shifts exhibit the same SNR proportional to
the corresponding part of the weak value with

δp

∆p
=

ε

∆x
Im [Aw] (3.55)
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δx

∆x
=

ε

∆x
Re [Aw] , (3.56)

where the formulation of momentum shift from eq. (3.53) for a pointer state
saturating the uncertainty relation was used.

The approximate minimal ensemble size required to resolve both shifts can be
calculated in analogy to the case of weak standard measurements by substituting
the modulus of the weak value |Aw| for the expectation value 〈Â〉 in eq. (3.33).
The minimal number N0 of measurements on the pointer system becomes [26, 62]

N0 ≈
1

|〈ψF |ψI〉|

(
∆x

ε|Aw|

)2

(3.57)

where the factor |〈ψF |ψI〉| takes into account the filtering losses caused by the
postselection. In principle it is thus possible to measure the weak value for an
arbitrary small interaction by repeated measurements on many identical systems
[27, 62]. It should be noted that for the above expression it is assumed that the
uncertainty of the final pointer is approximately the same as the uncertainty of
the initial state ∆x [26].

In the next subsection the validity of this assumption for weak measurements
in the strict sense will be presented. Just as in the case of standard measurements
with weak interaction the measurement outcome is obtained in a direct manner
by averaging over the pointer distributions. In the case of Aw = 0 the condition
obviously fails because there are no shifts to be measured. However, the definition
is consistent in the sense that in principle an infinite amount of measurements
would need to be conducted to assure that actually no shift has taken place.

3.2.3. Effects on Pointer

By considering the pointer state after the weak PPS measurement the conditions
for a weak measurement are eventually specified in this subsection. Furthermore,
the emergence of the final pointer state from the procedure of weak measurements
is discussed as well.

Final Pointer Shape

The analysis of the pointer wavefunction after interaction and postselection can
be continued from eq. (3.46). Assuming a small enough interaction parameter ε,
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3.2. Weak Measurements

all contribution of the order ε ≥ 2 can be neglected, which yields the approximate
expression for the final pointer state |ΦF 〉 with [9, 55, 69, 74]

|ΦF 〉 = N〈ψF |ψI〉
∑
n

(−i)n

~nn!
εnAnwp̂

n|Φ0〉

≈ N〈ψF |ψI〉
(
|Φ0〉 −

i

~
εAwp̂|Φ0〉

)
≈ N〈ψF |ψI〉

∑
n

(−i)n

~nn!
εn(Aw)np̂n|Φ0〉

= N〈ψF |ψI〉|ΦεAw〉,

(3.58)

where |ΦεAw〉 = e−
i
~ εAw p̂|Φ0〉 as defined in eq. (3.11).

The property expressed in the relation above can be seen as the fundamental
defining property of weak measurements. In the case of weak measurements the
interaction simply shifts the pointer wavefunction in good approximation propor-
tional to Aw [4, 27]. This behavior shows a striking similarity to the case of stan-
dard quantum measurements, where the initial object system is in an eigenstate
of the observable Â corresponding to eigenvalue a and the pointer successively
evolves into the state |Φαa〉. While the latter property holds for any interaction
interaction strengths α, the proportionality of the shift to the weak value remains
always an approximation, which, however, becomes arbitrarily good with decreas-
ing interaction strength ε.

Calculating the expectation values of the final pointer state for the observables
x̂ and p̂x recovers the linear expression formulated above. With N−1 = |〈ψF |ψI〉|
the position expectation value to first order in ε becomes

〈x̂〉F = 〈Φ0|e
i
~ εA

∗
w p̂xx̂e−

i
~ εAw p̂x|Φ0〉

= 〈Φ0|e
2
~ εIm[Aw]p̂xx̂|Φ0〉+ εAw〈Φ0|e

2
~ εIm[Aw]p̂x|Φ0〉

≈ 〈x̂〉+
2ε

~
Im [Aw] 〈p̂xx̂〉+ εAw = 〈x̂〉+

2ε

~
Im [Aw]

(
cxp −

i~
2

)
+ εAw

= εRe [Aw] + εIm [Aw]
2

~
cxp,

(3.59)

where it was assumed that 〈x̂〉 = 0 and the covariance from eq. (3.51) was used. In
an analog fashion the momentum expectation value can be calculated for 〈p̂x〉 = 0
as

〈p̂x〉F = 〈Φ0|e
i
~ εA

∗
w p̂x p̂xe

− i
~ εAw p̂x|Φ0〉 = 〈Φ0|e

2
~ εIm[Aw]p̂x p̂x|Φ0〉

≈ 〈p̂x〉+
2ε

~
Im [Aw] 〈p̂2

x〉

= ε
2

~
(∆px)

2Im [Aw] .

(3.60)
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It has thus been shown that for any weak measurement satisfying eq. (3.58)
the pointer shifts in position and momentum space exhibit a linear dependence
on the weak value. While the opposite implication is also true for most types
of pointers, in general the linear regime does not imply a weak measurement in
the sense presented here [26]. It should be noted that while the shape of the
pointer distribution is unaltered for weak measurements, the whole wavefunction
is rescaled by the factor |〈ψF |ψI〉| as a consequence of the postselection.

Regime of Weak Measurement

Beside the definition of the weak regime of measurements the other point of in-
terest are of course the conditions under which a PPS measurement exhibits the
property of weakness. In the derivation of the approximate final pointer state in
weak measurements in eq. (3.58) two approximations are made. For the first it is
assumed that

‖ i
~
εAwp̂x|Φ0〉‖ � ‖

(−i)n

~nn!
εnAnwp̂

n
x|Φ0〉‖ ∀n ≥ 2 (3.61)

and
ε

~
|Aw|∆px �

εn

~nn!
|Anw|(∆px)n ∀n ≥ 2, (3.62)

where ‖p̂x|Φ0〉‖ =
√
〈p̂2
x〉 = ∆px for 〈p̂x〉 = 0. Thus, for pointer states that

saturate the uncertainty relation the first condition can be expressed as [9, 26]

ε

∆x
� min

n≥2

[
n!

∣∣∣∣AwAnw
∣∣∣∣ 1
n−1

]
. (3.63)

The second condition is much simpler, requiring that

ε

~
|Aw|∆px �

εn

~nn!
|Aw|n(∆px)

n ∀n ≥ 2, (3.64)

which leads to [9, 26, 53]
ε

∆x
|Aw| � 1. (3.65)

It should be noted that the ratio of ε and ∆x is the relevant quantity to be consid-
ered for all bounds concerning weakness in indirect measurements with pointers,
for which ∆x∆px ≈ ~

2
. This reflects the already mentioned property that weakness

can be achieved either by weakening the interaction, or by increasing the pointer
uncertainty. Unlike in the case of standard measurements, however, where the
condition of weakness corresponds to minimal disturbance of the object system,
in the case of PPS measurements the relevant criterion for weakness is a minimal
disturbance of the pointer because the object system is postselected. A com-
parison of eq. (3.32) and eq. (3.65) clearly shows that the condition of a weak
interaction does not suffice to guarantee weak measurements in the case of large
weak values with |Aw| � ∆A [49].
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Emergence of Final Pointer State

The question arises, how the shape of the pointer distribution changes under the
influence of the postselection. Employing eq. (3.13) the probability distribution
P (x) of the pointer state ρ̂F after an interaction of arbitrary strength α can be
written as

P (x) =
∑
j

|cj|2|Φj(x)|2, (3.66)

where Φj(x) := 〈x|Φαaj〉 is the wavefunction of a pointer state shifted by αaj.
The probability distribution PF (x) of the final pointer state |ΦF 〉 resulting from
a postselection of the state above, can be interpreted as the joint probability
P (x∩F ) of measuring the pointer in state x and the object system in postselection
state |ψF 〉. It can be calculated as

PF (x) =
∑
j,m

cjd
∗
jc
∗
mdmΦj(x)Φ∗m(x)

=
∑
j

|cjd∗j |2|Φj(x)|2 +
∑
j 6=m

cjd
∗
jc
∗
mdmΦj(x)Φ∗m(x).

(3.67)

From the last expression it can be seen that the probability distribution of the
pointer state after postselection does not only contain the contributions of the
particular components |Φj(x)|2, but also several interference terms with arbitrary
complex coefficients determined by the choice of the postselection state

∑
j dj|aj〉

[9]. Therefore, the action of the postselection can be seen as the action of a quan-
tum eraser, which in some sense restores coherence between the components of the
pointer state. This allows for various interference effects, such as the emergence of
extraordinary large pointer expectation values, which are not caused by a putative
increase of probability of measuring a high spatial value, but rather by a decrease
in probability for lower values, caused by destructive interference of the particular
components [9, 10, 21, 26, 46, 54]. In fact the action of postselection as a local
filtering process ensures that P (x) ≥ PF (x) ∀x. For a strong interaction, designed
to resolve the eigenvalues in the pointer distribution, it is, however, impossible for
the postselection to restore coherence, which is the reason why in general weak
measurements also need to satisfy the usual condition of weak interaction [26].

A slightly different form of explanation has to be employed in the case when
the pointer system is measured prior to the postselection. While the procedure
of weak measurements was formulated in subsection 3.2.1 with a pointer mea-
surement after the postselection, in principle an opposite procedure is also in
agreement with the theory of weak measurements [26, 62]. In this variant the
pointer expectation values are measured for each system of the ensemble and the
outcomes of measurements on systems, which did not pass postselection are dis-
carded afterwards. The only requirement for this procedure is the possibility to
separate the outcomes after postselection, which can be for example achieved by
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an interaction of each system with a separate pointer system [4, 62]. This is for
example achieved in [54] where the polarizations of two single photons represent
the object and pointer systems. In the case of the measurement of a continuous
observable as x̂, an ideal projective measurement is of course impossible, but for
the sake of clarity an idealized projective measurement of the observable with
x̂ =

∫∞
−∞ x|x〉〈x| dx will be assumed, without loss of generality.

Starting from |C〉, the weakly entangled state by means of weak interaction, as
described in eq. (3.13), the first step of the alternative measurement procedure
is a direct projective measurement of the pointer represented by the projector
Π̂x = |x〉〈x|. With trΦ as the partial trace on the pointer system, the state of the
object system after the pointer measurement |ψM〉 becomes

|ψM〉 = Nx trΦ

(
Π̂x|C〉

)
= Nx

∑
j

cjΦj(x)|aj〉, (3.68)

where the normalization Nx =
√∑

j |cj|2|Φj(x)|2 corresponds to the probability

P (x) = N 2
x of measuring the outcome x. This measurement can be interpreted as

a weak POVM measurement with measurement operators close to unity [54, 57,
75]. Thus, in the case of a weak interaction with almost identical wavefunctions
{Φj}, the expression above represents approximately the initial state of the object
system, which is only slightly modified by the coefficients Φj(x) depending on
the outcome of the pointer POVM measurements. However, this backaction of
the pointer measurements is exactly what changes the probability of successfull
postselection of the resulting state. A value of x, at which the pointers would
interfere less destructively even for almost orthogonal postselection in the standard
weak measurement procedure described above, is a value for which the x dependent
coefficients modify the object state in such a way that it becomes less orthogonal
to the postselection. This can be seen straightforward by projecting onto the
postselection state, which yields

〈ψF |ψM〉 = Nx
∑
j

cjd
∗
jΦj(x). (3.69)

Consequently the expression |〈ψF |ψM〉|2 = P (F |x) denotes the probability of post-
selection conditioned of a prior pointer measurement of the value x. The probabil-
ity of the pointer measurement of x̂ after filtering of the results with respect to suc-
cessful postselection, effectively corresponds to a correction of the pointer proba-
bility distribution P (x) by multiplication with the conditioned probability P (F |x).
According to Bayes’ theorem, however, this expression is equal to the joint prob-
ability of measuring x and successful postselection with P (x∩F ) = P (x) ·P (F |x)
and a simple calculation confirms that the expression calculated in the case of an
antecedent pointer measurement is exactly the same as the probability distribution
calculated in eq. (3.67). This proves that the backaction of the weak measurement
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onto the object system exactly corresponds to the effect of the postselection on the
pointer distribution. In fact, some accounts also denote the pointer measurement
itself as a “postselection” [38].

Annihilation Operator Description

To conclude the presentation of weak measurements, an extraordinary formula-
tion of this concept should be mentioned, where the process of postselection is
described as the action of an annihilation operator on the pointer system [47].
The standard dimensionless annihilation or lowering operator â for a harmonic
potential is defined as [47]

â =

√
mω

2~
x̂+ i

√
1

2mω~
p̂x, (3.70)

with the parameters m and ω. Applying a reparametrization with ∆x :=
√

~
2mω

makes it possible to express the annihilation operator in the form

â =
1

2∆x
x̂+ i

∆x

~
p̂x. (3.71)

With the linear dependencies of the real and imaginary parts of the weak value
on position and momentum shifts, the weak value can be written as [47]

Aw = Re [Aw] + iIm [Aw] =
〈x̂〉F
ε

+ i
∆x

ε∆p
〈p̂x〉F

=
2∆x

ε
〈â〉F ,

(3.72)

with 2∆x
~ = 1

∆p
. The weak value can therefore be understood as proportional to

the expectation of the final pointer state with respect to the annihilation operator.
The authors of [47] also provide a possible interpretation for this representation.

In this perspective, the interaction can be seen as small excitation of the pointer,
which is initially in the ground state. Consequently the final pointer state has
some non-vanishing amplitude for the excited state. The action of the annihilation
operator then removes the ground state component, with a remaining amplitude
proportional to ε

∆x
Aw. “In other words, the annihilation operator isolates only

that part of the pointer state that is changed by the interaction.” [47]
It should be noted that all these expressions were obtained for a specific type

of pointer and are of course only valid in the linear regime of weak interaction.
Nevertheless, they represent an interesting relation and it remains to be seen
whether they contain any physical significance.
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3.3. Examples with Gaussian Pointers

To illustrate the nature of weak measurements in comparison with quantum mea-
surements without postselection, in the following section the final pointer distri-
butions for both scenarios are compared graphically.

3.3.1. Definition of States and Observables

As a basis for the graphical examples, the corresponding observable and states
are defined in the following paragraphs.

Object System

The object system in this example has five dimensions and the measured quantity
is represented by the non-degenerate observable Â, which is defined as

Â :=
∑
j

aj|aj〉〈aj|, (3.73)

with the orthonormal states {|aj〉} and the eigenvalues {aj} = {0, 1, 2, 3, 4}.
The two initial states |ψI1〉 and |ψI2〉 are defined as

|ψI1〉 =
1

5

(
|0〉+ 2|1〉+

√
15|2〉+ 2|3〉+ |4〉

)
, (3.74)

|ψI2〉 =
1

6

(
4|0〉+ |1〉+

√
2|2〉+ |3〉+ 4|4〉

)
, (3.75)

which both have the expectation value 〈Â〉 = 2. They differ, however, with respect
to their standard deviations, which are ∆A(1) ≈ 0.64 and ∆A(2) ≈ 3.61.

Furthermore the two postselection state |ψF1〉 and |ψF2〉 are employed with

|ψF1〉 =
1

N1

(
−|0〉 − |1〉+

1√
3
|2〉+ |3〉+ |4〉

)
, (3.76)

|ψF2〉 =
1

N2

(√
4|0〉+ 5|1〉 − 5|2〉 − 3|3〉+ |4〉

)
. (3.77)

Together with the corresponding preselections this implies the weak values A
(1)
w ≈

5.58 and A
(2)
w ≈ −0.31. These weak values are ideal for a demonstration of the

pointer behavior as both lie outside the range of eigenvalues while having moduli
which differ about more than one order of magnitude. Furthermore while for the
first PPS pair the weak value is larger than the standard deviation, for the second
pair the weak value is about one order of magnitude smaller than the standard
deviation.
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Pointer

The pointer system is an infinitely dimensional spatial system, on which the ob-
servable x̂ is measured. The initial pointer state |Φ0〉 is a Gaussian distribution
which is defined as [28]

〈x|Φ0〉 =

(
1

2πσ

) 1
4

e−
x2

4σ2 , (3.78)

where the parameter σ is equal to the standard deviation in position space with
∆x = σ. The standard deviation in momentum space is related to σ via ∆p = ~

2σ
.

Thus, the Gaussian function as a quantum wavefunction saturates the uncertainty
relation with ∆x∆p = ~

2
.

As discussed above, for this type of pointers the condition for weakness of
interaction (3.32) and the condition for weak measurements (3.65) depend on the
parameter ε

∆x
= ε

σ
. In the following examples ε is fixed at 1 and the interaction

is weakened by increasing σ. Employing the two conditions for weakness, the
boundary values for the object system states defined above are given in Tab. 3.1.

Case Value Condition
Preselection 1 only ∆A ≈ 0.64 σ � 0.45
Preselection 2 only ∆A ≈ 3.61 σ � 2.55

PPS-pair 1 A
(1)
w ≈ 5.58 σ � 5.58

PPS-pair 2 A
(2)
w ≈ −0.31 σ � 0.31.

Table 3.1.: Conditions for weakness calculated from ∆A and A
(j)
w using eqs.

(3.32) and (3.65).

3.3.2. Final Pointer States

In Fig. 3.2 the pointer states after both kinds of postselection are depicted for
different interaction strengths parametrized by σ. For the first PPS pair, the two
limiting values for weakness are 0.45 and 5.58, respectively. Therefore, in the case
of σ = 0.25 as depicted in a) both measurements are relatively strong, as the
eigenvalues are still resolved and it is possible to distinguish the five peaks. In
graph b) the value of σ is twice as high as the limiting value in the non-postselected
case and indeed it can be seen that the corresponding pointer shape is starting to
resemble the initial Gaussian profile centered at the expectation value of 2. Only
when σ becomes much larger, as depicted in graph c), also the weak measurement
condition becomes satisfied and the postselected profile approaches a Gaussian
centered at the weak value of 5.58 as well.

In the case of the second PPS pair, the situation is somehow reversed, because
the weak value is much smaller than the standard deviation of the preselection
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Figure 3.2.: Probability or intensity profiles in x-direction of the final pointer
states for different types of measurements. The figures on the left (a-c) depict the
first PPS pair and the figures on the right (d-f) the second pair. For each of the
state configurations three different values of σ are presented. In addition to the
non-postselected (blue) and postselected (orange) profiles, in Figures c), e) and
f) the postselected pointer state is also printed with a rescaling factor (dashed,
orange) to better illustrate its shape.
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state. For σ = 0.2 in graph d) both measurements can still be considered to
be strong. However, as can be seen in graphs e) and f) for larger standard de-
viations, the postselected pointer profile approaches the initial Gaussian profile
faster than the non-postselected profile. While in graph f) the former represents
in good approximation a Gaussian distribution centered close to the weak value
of −0.31, in the profile without postselection the two peaks corresponding to dif-
ferent eigenvalues can still be distinguished. This illustrates the independence of
the conditions for weak interaction and weak measurement.

Furthermore, the six figures illustrate how in the case of the postselected pro-
files (orange) the five peaks start to interfere for increasing σ. It can be seen that
for larger σ the pointer intensity is reduced at positions far from the weak values,
and increases around them. Another aspect that is shown is the strong reduc-
tion of overall intensity by the postselection. As the weak measurement becomes
weaker and the pointer resembles a Gaussian distribution centered around the
weak values more and more, the postselection probability decreases. The effective
postselected profile can only be modified by decreasing the intensity at certain
positions and never by adding intensity because the postselection is a filtering
process. Therefore, only when the initial uncertainty of the pointer reaches out
far enough into the region of the weak values, it becomes possible to create the
corresponding pointer profiles through interference of the eigenvalue components
with very low effective intensity.
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The following chapter deals with procedures for quantum state tomography based
on the concept of weak values and measurements, pursuing a twofold goal. One
concern is the introduction of the concept of direct state tomography, which relies
on weak measurements. In this context the basic principles and procedures are
delineated alongside a discussion of the Gaussian beam as the most common type
of pointer. At the same time the second aim of the chapter is realized, which
consists in the explicit description of the tomography experiment performed in
the course of this thesis.

4.1. Qubit Tomography

The discussion of quantum tomography, eventually presented in this section, is
founded on an initial introduction of the relevant qubit system alongside its prin-
cipal realization in polarization states.

4.1.1. Qubit Model of Polarization

The qubit system, which is the subject of the tomography procedures presented
in this chapter, is realized in the physical property of polarization, with which
it shares all important structural characteristics. Therefore, the presentation of
qubits, begins with a brief outline of the physical nature of polarization, which is
subsequently generalized to the abstract description of the polarization degree of
freedom as a quantum system.

Electromagnetic Waves

As an electromagnetic phenomenon, light satisfies a set of partial differential equa-
tions denoted as the Maxwell equations, which can be expressed as [35, 76, 77]

~∇× ~H = ε0
∂ ~E

∂t
, ~∇× ~E = −µ0

∂ ~H

∂t
,

~∇ · ~E = 0, ~∇ · ~H = 0,
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for the electric ~E(~r, t) and magnetic fields ~H(~r, t) in free space and the constants
ε0 and µ0 denoted as electric permittivity and magnetic permeability of free space.
These equations imply another relation for ~E and ~H with [76, 77]

∇2 ~E − ε0µ0
∂2 ~E

∂t2
= 0, (4.1)

which is known as the electromagnetic wave equation for the electric field. Exactly
the same relation holds for the magnetic field ~H.

The simplest solutions to the wave equation are plane waves of the form [35, 76–
78]

~E(~r, t) = ~E0e
−i(~k~r−ωt), (4.2)

~H(~r, t) = ~H0e
−i(~k~r−ωt) (4.3)

with the wavevector ~k, the field amplitudes ~E0 and ~H0 and the angular frequency
ω. The wavevector represents the spatial direction of propagation of the wave
and is related to the wavelength λ with |~k| = 2π

λ
[76–78]. Applying the Maxwell

equations to these solutions yields the condition that in free space ~k, ~E0 and ~H0

have to be mutually orthogonal. Consequently the oscillations of the two fields
lie in a plane perpendicular to the direction of propagation and the plane wave
represents a transverse electromagnetic (“TEM”) wave [76].

The energy flow of the electromagnetic wave is expressed by the Poynting vector
~S, which is defined as [35, 76, 77]

~S := ~E × ~H. (4.4)

The intensity I of the wave is consequently defined as time average of the modulus
of the Poynting vector. For the plane waves the intensity becomes [76, 77]

I := 〈|~S|〉t =
1

2
cε0| ~E0|2, (4.5)

which shows the proportionality of the intensity to the absolute squared amplitude
of the electric field.

Polarization

For any form of transverse waves propagating in three dimensional space, it is pos-
sible to define the concept of polarization. This is made possible by the existence
of 2-dimensional space in which the system can oscillate. For TEM waves the po-
larization is defined as the “time course of the direction of the electric-field vector”
[35, 76]. In general this course is elliptical and the light has elliptical polarization.
Special cases of polarization correspond to degenerate forms of this ellipse, namely
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a line and a circle with corresponding linear and circular polarization [35, 76, 78].
Unpolarized light is characterized by random changes of polarization so that no
definitive polarization direction can be assigned [77, 78].

To express the polarization formally, it is possible to employ the description
by Stokes parameters or alternatively the Jones vector [76, 78]. While the Jones
vector formalism can only be applied to polarized light, the Stokes parameters
describe any type of full or partial polarization. The Jones vector ~J is a two
dimensional vector in complex space, which is defined as [78]

~J :=

(
Ex
Ey

)
, (4.6)

where Ex and Ey denote the components of the electric field perpendicular to
the propagation direction z. In general Ex and Ey are complex numbers with
a relative phase. Any global phase of the two components is irrelevant for the
description of polarization because the wave character implies a global oscillation
in any case.

Because of the linearity of the Maxwell equations and the wave equation, any
sum of solutions is again a valid solution [76, 78]. Any superposition of electro-
magnetic waves can therefore be regarded as a single effective wave. In particular,
the superposition of two plane waves ~E1(~r, t) and ~E2(~r, t) with equal ~k and ω can
be expressed as

~E1(~r, t) + ~E2(~r, t) = ( ~E
(0)
1 + ~E

(0)
2 )e−i(

~k~r−ωt), (4.7)

which represents a new plane wave with the field amplitude ~ER = ~E1 + ~E2.
Employing the Jones vector formalism the polarization ~JR of the superposition
becomes

~JR =

(
E

(x)
R

E
(y)
R

)
=

(
E

(x)
1 + E

(x)
2

E
(y)
1 + E

(y)
2

)
= ~J1 + ~J2. (4.8)

This illustrates that the superposition of two polarized plane waves results in a
new plane wave that has also a well defined polarization, which can be simply
expressed by the sum of the Jones vectors representing the initial polarizations
[76, 78].

In consequence, it is possible to express any polarization as a superposition
of two basis states. The classification of polarizations presented above, alongside
with the spatial direction of the standard coordinate system, implies three natural
pairs of orthogonal polarizations, which constitute the three standard bases [78].
For linear polarizations, which are characterized by a real phase relation between
the x and y components of the polarization, there exist two natural basis sets.
The first set consists of horizontal and vertical polarizations { ~JH , ~JV } and the
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second one of diagonal or plus and antidiagonal or minus polarizations { ~JP , ~JM}.
The corresponding Jones vectors are defined as [76, 78]

~JH =

(
1
0

)
, ~JV =

(
0
1

)
, ~JP =

1√
2

(
1
1

)
, ~JM =

1√
2

(
1
−1

)
. (4.9)

The third natural basis consists of right and left circular polarizations { ~JR, ~JL},
which are characterized by a phase difference of π

2
and consequently defined as [76,

78]

~JR =
1√
2

(
1
i

)
, ~JL =

1√
2

(
1
−i

)
, (4.10)

where the definition in [78] is opposite. All other polarizations can be expressed
as superpositions of these pairs.

Qubits

The Jones vector formalism represents the polarization in a two dimensional com-
plex vector space, which implies a possible relation to 2-dimensional quantum
systems. Such quantum system represent the simplest kind of quantum systems
and are generally denoted as quantum bits or qubits. A qubit is represented by a 2-
dimensional Hilbert Space with the principal orthonormal basis states |0〉 and |1〉
[29, 35]. This constitutes an analogy to the classical bit, which can have the values
0 or 1. Contrary to a classical bit, however, a qubit system can be also in different
states |ψ〉 than these basis states, namely in all normalized superpositions [29, 35]

|ψ〉 = α|0〉+ β|1〉, (4.11)

with |α|2 + |β|2 = 1.
As is immediately clear from the Jones formalism the polarization of light rep-

resents one of the possible physical realizations of a qubit system [33, 35]. The

polarization bases expressed as Jones vectors { ~JH , ~JV , ~JP , ~JM , ~JR, ~JL} can be iden-
tified in a straight forward way with the kets {|H〉, |V 〉, |P 〉, |M〉, |R〉, |L〉}. The
principal qubit basis is thereby identified with the basis {|H〉, |V 〉} as |H〉 := |0〉
and |V 〉 := |1〉.

This quantum mechanical representation of polarization facilitates the attribu-
tion of polarization not only to electromagnetic waves but also to single photons
[76]. In this context the polarized light wave can be seen as an ensemble of pho-
tons sharing the same polarization, where each polarized photon represents an
instance of a qubit system with a pure quantum state. The quantum mechanical
algebra of vector spaces reproduces consistently all properties of polarization in
the quantum mechanical description, most notably single photon interference ef-
fects [76]. At the same time the relation of electrical field amplitude to intensity,
translates to the relation of wavefunction to probability density [35]. Employing
the density operator formalism, it is even possible to represent partially polarized
or unpolarized states as incoherent superpositions.
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Bloch Sphere

For single qubit systems there exists a very useful graphic representation on the
Bloch sphere, which is based on the fact that it is possible to represent the rota-
tion group on the 2-dimensional complex space of qubits as discussed in subsec-
tion 2.2.2. An arbitrary pure state |ψ〉 of a qubit can be parametrized by the real
parameters θ and ϕ as [29]

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 = cos

θ

2
|H〉+ eiϕ sin

θ

2
|V 〉. (4.12)

An interpretation of these parameters as spherical coordinates on a unit sphere
entails an association of qubit states with locations on the sphere as expressed in
Fig. 4.1.

Figure 4.1.: Bloch Sphere with pure state |ψ〉 defined by the angles θ and ϕ.
The three principal bases of polarization are identified with the three coordinate
directions x, y and z. In this representation the “orthogonality” in the Hilbert
Space is not equivalent to geometrical orthogonality and orthogonal quantum
states lie on opposite sides of the sphere.

It should be noted that a full rotation about ∆θ = 2π of the state |ψ〉 formulated
above returns the system to the same location on the sphere but the resulting
quantum state is −|ψ〉 and a rotation about 4π would be necessary to arrive at
the exact same expression for the qubit state. While the two quantum states
are effectively identical, because as mentioned in subsection 2.2.1, quantum states
actually correspond to rays in Hilbert space, this property nevertheless reflects
the fact that the group SO(3) is only locally isomorphic to SU(2) [30].
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The mapping of qubit states onto three dimensional real space illustrates very
well the representation of the rotation group in two dimensional complex space
with the Pauli matrices as generators of state rotation. In the mapping em-
ployed in this work, the polarization states {|P 〉, |M〉} represent the eigenbasis
{|+〉x, |−〉x} of σ̂x, {|R〉, |L〉} the eigenbasis of σ̂y and {|H〉, |V 〉} the eigenbasis
of σ̂z. A rotation about the angle α around axis ~n with ‖~n‖ = 1 can be expressed
as [33, 35]

Û = eiα~n~σ, (4.13)

where ~σ consists of the three Pauli matrices. This unitary operator corresponds
to a rotation of a quantum state in the Bloch sphere picture.

In the density operator representation any qubit state ρ̂ can be decomposed
into a superposition of operators in the form [29, 33, 35, 74]

ρ̂ =
1 + ~r~σ

2
, (4.14)

where ~r is a real valued vector in three dimensional space with ‖~r‖ ≤ 1, which
is denoted as the Bloch vector. It holds that ‖~r‖ = 1 if and only if ρ̂ is a pure
state [29]. This enables the most general definition of the Bloch sphere, where
each possible qubit state is uniquely represented by a corresponding point ~r inside
the Bloch sphere with pure states lying on the surface. Because of the structural
similarity to qubits, there exists a similar representation of polarization on the
Poincaré sphere. With exception of the explicit geometrical mapping of the states,
the two expressions are structurally completely equivalent and the Bloch sphere
effectively represents a rotated Poincaré sphere [35].

4.1.2. Tomography Procedures

After the introduction of the polarization qubit as the relevant object system, in
this subsection the tomography procedure related to weak measurements is pre-
sented and compared to conventional procedures, which employ standard mea-
surement procedures. Both theories are presented in the context of their specific
application to qubits.

Conventional Tomography

Conventional quantum state tomography (“QST”) reconstructs the density oper-
ator ρ̂ of an ensemble of identical systems by performing a set of measurements
on different incompatible observables [71, 79]. The procedure aims to record the
probabilities of different outcomes of these strong projective measurements and
approximates them through relative frequencies for measurements on a number
of ensembles. Because the measurement observables are incompatible, QST can
perform only one type of measurement on a single system and therefore requires
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a certain minimal ensemble size, to make any claims about the relevant quantum
state [23].

There exists a “direct analogy” between the QST for single qubits and the
measurement of polarization states, which employs the Stokes formalism [80]. In
the latter a set of four intensity measurements on light of constant intensity is
employed, three of which correspond to projection measurements on one of the
eigenstates of the natural polarization bases mentioned in the previous subsection.
The fourth measurement just measures the overall intensity of the light, which
corresponds to a projection on the identity operator. In the formalism of quantum
mechanics the four measured intensities {n0, n1, n2, n3} can be expressed with
probabilities multiplied by a proportionality factor N as [80]

n0 =
N
2

tr(ρ̂) n1 = N tr(ρ̂Π̂P )

n2 = N tr(ρ̂Π̂R) n3 = N tr(ρ̂Π̂H),

where the {Π̂H , Π̂P , Π̂R} denote projectors onto the corresponding polarization
states {|H〉, |P 〉, |R〉}. From these intensities the Stokes parameters {S0, S1, S2, S3}
are calculated with [80]

S0 = 2n0, S1 = 2(n1 − n0), S2 = 2(n2 − n0), S3 = 2(n3 − n0). (4.15)

The density matrix ρ̂ of the polarization state can then be written as a decompo-
sition into Pauli matrices as [79, 80]

ρ̂ =
1

2

3∑
j=0

Sj
S0

σ̂j, (4.16)

where σ̂0 := 1.
The same procedure can be employed to reconstruct the state of any qubit

system with projections into the eigenstates of the corresponding observables
{σx, σy, σz}. In particular, it is possible to measure the common polarization of
single photons, where the intensity measurements are replaced by determination
of frequencies of photon measurements [80]. The parameter S0 = N in this case
represents the normalization of these frequencies to relative frequencies, which
approximate the relevant probabilities of quantum mechanical measurement.

For multi-qubit systems, represented as states in a product space of single qubit
spaces, a generalized form of this procedure can be used. The n-qubit density
matrix can be expressed as [80, 81]

ρ̂ =
1

2n

3∑
j1,j2,...,jn=0

Sj1,j2,...,jn
S0,0,...,0

σj1 ⊗ σj2 ⊗ · · · ⊗ σjn (4.17)

69



4. Direct State Tomography

with the n-qubit Stokes parameters Sj1,j2,...,jn . These 4n− 1 parameters are calcu-
lated from 4n − 1 measured relative frequencies, which are normalized employing

the parameter S0,0,...,0 = N . Alternatively, the coefficients
Sj1,j2,...,jn
S0,0,...,0

can be ex-

pressed as elements of the correlation tensor T , which is defined with [81]

Tj1,j2,...,jn := tr( ˆρσj1 ⊗ σj2 ⊗ . . .⊗ σjn). (4.18)

The calculation of multi-qubit Stokes parameters in standard QST represents
an inversion problem for a 4n × 4n matrix, which means that the measurement
and postprocessing effort scales exponentially with the number of qubits n [24,
37, 81, 82]. For this reason various techniques have been developed to reduce the
number of necessary measurements and required postprocessing in cases where
additional information about the state is available [82]. Furthermore, there exist
scenarios where a QST has a specific goal, as the detection of entanglement in
the relevant state without the necessity of a complete reconstruction. It has been
shown that in such cases the number of measurements, which are necessary to
make a definitive statement, can be reduced significantly by choosing a suitable
subset of only a few measurements [81].

A fundamental problem of QST is the emergence of “unphysical states”, which
are represented by density operator with negative eigenvalues. As discussed in
subsection 2.2.1, the eigenvalues of density operators correspond to probabilities
in a certain basis representation of the state and therefore operators with negative
eigenvalues cannot be regarded as valid physical states. Due to the fundamental
quantum shot noise, especially measurements employing small ensemble sizes ex-
hibit a non-negligible probability of producing such unphysical operators. This
motivates a series of reconstruction methods, which try to estimate the physical
state that generated the measurement results with the highest probability [38, 83].
The employment of such methods, however, increases the postprocessing effort
even more. Furthermore, as has been shown in [84], common state reconstruction
schemes, like maximum likelihood or least square optimization, suffer from system-
atical errors and represent therefore a somewhat biased state reconstruction.

Concept of Direct State Tomography

Using weak measurements, it is possible to devise an alternative and fundamen-
tally different tomography scheme, where measurements of two non-commuting
observables are performed on the same quantum system. In so called direct state
tomography (“DST”) a weak measurement of one observable, which disturbs the
object system only slightly, is followed by a strong measurement of the other ob-
servable [23–25, 38, 71, 73, 79]. All results gained in the former measurement are
consequently divided into subensembles conditioned on different kinds of success-
ful postselection. It should be noted that the meaning of “direct” in the context
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of tomography is different from “direct measurements” as introduced in subsec-
tion 3.1.2. DST employs the usual indirect measurement for the weak part of the
procedure.

The basic principle of DST for single qubits can be illustrated by decomposing
a pure polarization state into corresponding weak values for the simplest case of a
postselection onto a single final state. An arbitrary qubit state |ψ〉 can be written
in the basis {|H〉, |V 〉} as [23, 24, 38, 73]

|ψ〉 =〈H|ψ〉|H〉+ 〈V |ψ〉|V 〉

=
〈ψF |ψ〉
〈ψF |H〉

〈ψF |Π̂H |ψ〉
〈ψF |ψ〉

|H〉+
〈ψF |ψ〉
〈ψF |V 〉

〈ψF |Π̂V |ψ〉
〈ψF |ψ〉

|V 〉,
(4.19)

where Π̂H = |H〉〈H|, Π̂V = |V 〉〈V | and |ψF 〉 denotes the postselection state. For
a choice of postselection |ψ′F 〉 that is unbiased with respect to the measurement
basis with 〈ψ′F |H〉 = 〈ψ′F |V 〉, as for example |ψ′F 〉 = |P 〉, the expression simplifies
to [23, 24, 38, 73]

|ψ〉 =
〈ψ′F |ψ〉√

2

(
〈ψ′F |Π̂H |ψ〉
〈ψ′F |ψ〉

|H〉+
〈ψ′F |Π̂V |ψ〉
〈ψ′F |ψ〉

|V 〉

)
. (4.20)

A measurement in the basis {|H〉, |V 〉} is represented by the observable σ̂z and
the corresponding weak value σw is defined as

σw :=
〈ψ′F |σ̂z|ψ〉
〈ψ′F |ψ〉

, (4.21)

which implies [24, 38, 71]

〈ψ′F |Π̂H |ψ〉
〈ψ′F |ψ〉

=
1 + σw

2
,
〈ψ′F |Π̂V |ψ〉
〈ψ′F |ψ〉

=
1− σw

2
. (4.22)

In conclusion the initial qubit state |ψ〉 can thus be expressed as

|ψ〉 = N
(

1 + σw
2
|H〉+

1− σw
2
|V 〉
)
, (4.23)

where N is a suitable normalization. Thus, the measurement of a single complex
weak value allows the determination of both complex coefficients of the pure state.

In the context of the usual procedure of weak measurements, DST corresponds
to a scenario where the preselection state is unknown and the measurement of
weak values for a known postselection state allows a direct calculation of the
complex state coefficients or respectively the entries of the density matrix [23, 24,
38, 71]. The real and imaginary parts of the weak value are obtained by measuring
different pointer observables. In the most simple case of the linear regime of
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weak measurements these quantities are simply proportional to the position and
momentum shifts of the pointer system.

Apart from DST there also exists the concept of quantum state estimation for
PPS systems, where both preselection and postselection states are not known and
have to be estimated [85]. The latter, however, describes a very different problem
and lies outside the scope of this thesis.

DST for Mixed Qubit States

After the general description of DST a formal derivation of the weak value de-
pendent expression for a potentially mixed preselection state ρ̂ is presented. For
a pure postselection state |ψF 〉 the weak value σw of the operator σ̂z is defined
as [26, 71, 73]

σw :=
〈ψF |σ̂zρ̂|ψF 〉
〈ψF |ρ̂|ψF 〉

, (4.24)

which simplifies to the usual definition from eq. (3.44) for a pure preselection. A
calculation analogous to the one presented in subsection 3.2.2 for pure preselection
states, shows that in the case of mixed preselection the pointer shifts in the linear
response regime have exactly the same dependence on the respective weak values
as in the pure case [26, 49, 73]. The experimental strategy for the tomography of
mixed qubits is the same as for pure qubits, in the sense that the corresponding
weak values are extracted from the position and momentum values of the pointer
state.

Because the density matrix of a qubit consists of more than 2 parameters, a
single complex weak value does not suffice to determine a general qubit state.
Therefore, instead of a filtering, the postselection consists in a complete strong
measurement which projects onto both eigenstates of a second incompatible ob-
servable B̂ and keeps all results [71, 73]. Effectively, this constitutes two distinct
weak values, each of which is defined with respect to a different postselection state.
In analogy to the formula for the pure qubit case, the density matrix is conse-
quently expressed in dependence on the projector weak values (Πm

j )w with [73, 79]

(Πm
j )w :=

〈bm|Π̂j ρ̂|bm〉
〈bm|ρ̂|bm〉

, (4.25)

where the lower index denotes the projection operator Π̂j = |aj〉〈aj| onto an eigen-

state of the weak measurement obsevable Â and the upper index the respective
postselection state |bj〉, which is an eigenstate of observable B̂.
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Using this definition, an element 〈am|ρ̂|aj〉 of the density operator in the mea-
surement basis can be expressed as [73, 79]

〈am|ρ̂|aj〉 =
∑
k

〈am|ρ̂|bk〉〈bk|aj〉

=
∑
k

〈bk|ρ̂|bk〉
〈bk|aj〉
〈bk|am〉

〈bk|Π̂mρ̂|bk〉
〈bk|ρ̂|bk〉

=
∑
k

〈bk|ρ̂|bk〉
〈bk|aj〉
〈bk|am〉

(Πk
m)w,

(4.26)

where the summation is performed over all eigenstates of the postselection. While
here this result is obtained for a qubit system, the dimensionality of the object
was of no importance for the derivation and in fact formula (4.26) is valid for any
finite dimensional quantum system. The quantities, which have to be determined
by measurements, are the postselection probabilities 〈bk|ρ̂|bk〉 of the undisturbed
initial state, as well as of course the weak values (Πk

m)w, which consist of a real and
an imaginary part. In consequence 2N2 + N real numbers have to be measured
in this scheme for an single object system of dimensionality N , which implies a
scaling of the measurement effort with N2. It should be emphasized that in this
case the number N refers to the number of dimensions of a single quantum system
and not to the number of qubit systems n in conventional mulit-qubit tomography
as discussed above.

In the case of a qubit object system with a weak measurement in the basis of
σ̂z and a postselection in the eigenstates of σ̂x, the full density matrix ρ̂ of the
preselection state in the basis of σ̂z can be expressed as [24]

ρ̂ =

(
pP (ΠP

H)w + pM(ΠM
H )w pP (ΠP

H)w − pM(ΠM
H )w

pP (ΠP
V )w − pM(ΠM

V )w pP (ΠP
V )w + pM(ΠM

V )w,

)
, (4.27)

where the undisturbed postselection probabilites are defined as pP := 〈P |ρ̂|P 〉
and pM := 〈M |ρ̂|M〉. Just as in the case of the pure qubit state it would suffice
to measure the complex weak value σw with respect to both postselection states
|P 〉 and |M〉 to determine the respective projector weak values. Additionally, the
probabilities pP and pM would have to be measured as well, which means that
in summary the measurement of 6 real quantities is required to determine the
unknown preselection qubit state in this procedure. It should be also noted that
the expression presented in equation eq. (4.27) does not rely on any approxima-
tions and the quality of state determination depends only on the precision of the
6 values mentioned above.

A different and very general approach to DST, which should be also at least
briefly mentioned, is the formalism formulated in [57]. The latter describes the
weak interaction with a immediate pointer measurement similar to the scenario
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discussed in subsection 3.2.3 as a POVM measurement on the object system.
The weakness of the interaction allows an approximation of the POVM operators
as linearly disturbed unity operators, which facilitates the inference of the initial
quantum state from the joint probability distribution of the pointer measurements.
The discussion presented in this thesis however, focuses on the exact expression
form eq. (4.27).

Evaluation of DST

The main advantage of DST is the experimental and calculational simplicity re-
flected in eq. (4.26). Generally it is possible to determine the unknown quantum
state from the measurement results with a much smaller postprocessing effort
compared to QST [24, 37, 38, 86]. In contrast to QST, DST requires no global
state reconstruction at all and the entries of the density matrix are obtained
separately or “locally” through analytical calculation in real time [24, 71, 87].
Furthermore, the simultaneous gain of information about two complementary ob-
servables, which is reflected in the complex valued weak value, usually entails
simpler experimental setups [37, 73, 86]. Therefore, DST is especially suitable
for the tomography of high dimensional quantum states, where the complexity of
the systems prohibits a practical application of conventional QST. Such measure-
ments of high dimensional systems were successfully implemented in [25], where a
27-dimensional orbital angular momentum state was measured and in [87], where
a DST together with a compressed sensing technique was employed to determine
a 192-dimensional spatial wavefunction.

Apart from the mentioned advantages, however, DST as presented above also
exhibits a series of disadvantages. For instance, the large uncertainty of the weak
measurement entails the necessity of a large amount of measurement runs, which
causes DST to be far less efficient than QST [37, 79, 87]. As discussed in chapter 3,
a certain minimal amount of ensembles has to be measured to determine the
weak value with sufficient precision in the linear pointer response regime. In
consequence a DST, which aims to extract the weak values through linear pointer
shifts, usually requires several orders of magnitude more measurement runs than
a comparable QST [37, 87].

If the interaction strength ε is increased, the amount of necessary ensembles
is reduced but as eq. (3.65) shows this causes the linear approximation to break
down. In fact even for a small ε, suitable combinations of pre- and postselection
will result in very large weak values, which will also invalidate the approximations
of the linear regime [37, 38, 86]. As most DST schemes rely on a weak value
measurement through linear relation to pointer shifts, they consequently exhibit
a fundamental bias, which causes systematical errors in the state determination
especially for states that are orthogonal or almost orthogonal to some postselection
states [24, 37, 38, 79, 86].
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4.1. Qubit Tomography

Additionally to the approximation encountered in the measurement of the weak
value, approaches to DST usually employ also a second approximation. The undis-
turbed postselection probabilities 〈bn|ρ̂|bn〉, as formulated in eq. (4.26), are a uni-
versal part of most DST schemes [23, 24, 57, 73, 79]. However, they represent
additional unknown quantities, which would have to be measured by postselect-
ing the unknown quantum state without any interaction. Therefore, it is common
to approximate them with the already accessible probabilities of postselection
〈bn|ρ̂′|bn〉 for states ρ̂′, which are weakly disturbed by the interaction. Because
there is always some backaction of the weak interaction on the object system,
the probability 〈bn|ρ̂′|bn〉 is not exactly equal to 〈bn|ρ̂|bn〉 for a finite interaction
strength ε [23, 54, 57, 73]. Nevertheless, all approaches mentioned above approx-
imate the postselection probabilities, assuming a negligible change due to a very
weak interaction.

Qubit Weak Values

To conclude the discussion of DST for qubits, a parametrization of pure qubit weak
values is presented. Recalling eq. (4.12), a polarization qubit can be expressed as

|ψ〉 = cos
θ

2
|H〉+ eiϕ sin

θ

2
|V 〉, (4.28)

where the parameters θ and ϕ correspond to angles on the Bloch sphere. For the
postselection state |P 〉 = 1√

2
(|H〉 + |V 〉) and observable σ̂z the weak value σw of

a pure preselected qubit becomes [88]

σw =
〈P |σ̂z|ψ〉
〈P |ψ〉

=
cos θ

2
− eiϕ sin θ

2

cos θ
2

+ eiϕ sin θ
2

(4.29)

As proposed in [24], the ability to perform weak tomography for pure qubits
can be demonstrated by measuring the weak values of states lying on circles on
the Bloch Sphere, which coincide with the 3 principal planes denoted as XY , Y Z
and ZX. For all pure states lying in the XY -plane, it holds that θ = π

2
, which

implies a weak value dependence only on ϕ with

σXYw =
1− eiϕ

1 + eiϕ
= −i tan

ϕ

2
∈ C. (4.30)

In the same manner it is possible to calculate the weak values for states in the
Y Z-plane (ϕ = π

2
) as

σY Zw =
cos θ

2
− i sin θ

2

cos θ
2

+ i sin θ
2

= e−iθ, (4.31)

and for states in the Y Z-plane (ϕ = 0) as

σZXw =
cos θ

2
− sin θ

2

cos θ
2

+ sin θ
2

= − tan
θ̃

2
∈ R, (4.32)
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with θ̃ := θ − π
2
.

As can be seen from eq. (4.30) and eq. (4.32), the modulus of the weak values
corresponding to these planes has a similar form of angular dependence and can
take arbitrary values from [0,∞[. However, while the weak values from XY -plane
are strictly imaginary, the states from the ZX-plane imply strictly real weak
values. The weak values corresponding to the Y Z-plane have a constant modulus
of 1 and an arbitrary complex phase. To faithfully determine an initial pure qubit
state, the DST procedure as presented in eq. (4.23) must be able to determine
the weak values formulated above as exactly as possible from the measurements
performed on the pointer system.
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4.2. Gaussian Beam as Pointer

4.2. Gaussian Beam as Pointer

As presented in chapter 3, the defining characteristic of weak measurements is
the pointer state after weak interaction and postselection. Therefore, the next
segments are dedicated to an in-depth analysis of the pointer system used in most
weak experiments so far, namely the Gaussian beam.

4.2.1. Physical Properties

In the following subsection the properties of the Gaussian beam are discussed on
the foundation of a short description of the basic principle of a laser.

Laser Modes

The acronym “LASER” denotes the process of Light Amplification by Stimulated
Emission of Radiation [77]. A schematic sketch of a typical laser oscillator is
presented in Fig. 4.2.

Figure 4.2.: Laser cavity with gain medium. The energy constantly pumped
into the gain medium is emitted via stimulated emission into the light field inside
the cavity. While mirror M1 has a high reflectivity, mirror M2 is partially trans-
mitting, which allows a portion of the light to leave the resonator. For a similar
figure see [77]

The main components consist of two mirrors forming an optical Fabry-Perot
resonator or cavity with a gain medium inside [76–78]. The geometry of the
cavity allows only specific types of resonant standing waves, which are denoted
as the modes of the resonator. While one of the mirrors is highly reflective to
minimize losses, the other mirror has a non-vanishing transmission coefficient and
continuously transmits a fraction of the intensity of the resonating modes. At
the same time energy is continuously delivered or pumped into the gain medium.
As a consequence the atoms of the medium are elevated into excited states, and
successively decay back into lower energy states emitting the energy in form of light
into the cavity. This process, however, does not happen randomly. The presence of
the light field inside the cavity stimulates emission of light with the same phase,
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4. Direct State Tomography

polarization and direction, which means that the same modes are continuously
amplified, compensating for the losses through the partially transmitting mirror
[77, 78]. With the addition of further filtering mechanisms, it is possible to attain
the emission of a single well defined spatial mode with a small divergence and a
very narrow frequency spectrum, which corresponds to a large coherence length
[76–78].

In a typical laser cavity with spherical mirrors the possible modes can be repre-
sented as Hermite-Gaussian TEMmn modes denoted by the two integer indices m
and n [76–78]. Corresponding to the shape of the mirrors, all Hermite-Gaussian
modes share the same parabolic phase dependence, where the surfaces of equal
phase are denoted as wavefronts or phasefronts. The particular modes differ, how-
ever, in the numbers of nodes in their intensity profiles in x and y direction, which
are represented by the two indices m and n. The field amplitude Emn(x, y) of a
general TEMmn mode can be written as [76, 77]

Emn(x, y, z) = E0
w0

w(z)
Hm

(√
2

x

w(z)

)
Hn

(√
2

y

w(z)

)
e
−x

2+y2

w2(z) e−ik
x2+y2

2R(z) eiϕ(z),

(4.33)
where Hn denotes the Hermite polynomial of order n and ϕ(z) an additional z-
dependent phase factor. The z-dependent values R and w represent the radius of
the phasefront curvature and the characteristic transverse beam size called waist,
with w0 := w(0), respectively.

Gaussian Beam

The most commonly used laser mode is the TEM00 mode also known as the
Gaussian beam, which has many useful properties [76–78]. Employing eq. (4.33)
with m = n = 0, the complex amplitude of the Gaussian Beam EG can be written
as [76]

EG(x, y, z) = E0
w0

w(z)
e
−x

2+y2

w2(z) e−ik
x2+y2

2R(z) e−i(kz−ζ(z)). (4.34)

The particular shape of the Gaussian beam is governed by the wavelength λ = 2π
k

and the waist w0 at z = 0. These two parameters determine the character-

istic length zR :=
πw2

0

λ
, which is denoted as the Rayleigh range [76, 78]. The

z-dependence of the parameters w, R and ζ can then be expressed in relation to
zR with [76, 78]

w(z) = w0

√
1 +

(
z

zR

)2

, (4.35)

R(z) = z

[
1 +

(zR
z

)2
]
, (4.36)

ζ(z) = arctan
z

zR
. (4.37)
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The parameter ζ represents the Guoy phase and expresses a phase retardation of
π, which the beam acquires traveling from z = −∞ to z = ∞ in comparison to
a plane wave or a spherical wave [76]. In Figure Fig. 4.3 a cross section in the
xz-plane through a Gaussian beam is depicted.

Figure 4.3.: Gaussian beam with waist w0 in focus z = 0 and waist wzR =
√

2w0

at z = ±zR. For |z| → ∞ the beam diverges with the angle 2θ. Similar figures
can be found in [76, 78]. The thick curved lines represent the waist of the beam.

As can be seen in the graphic the parameters are defined in such a way that
a longitudinal position of z = 0 corresponds to the focus of the beam with the
minimal waist w0. For z = zR the waist of the beam is increased to w(zR) =

√
2w0.

In the regions |z| � zR the waist is approximately linear in z and diverges on a
cone described by the half angle θ0 = λ

πw0
[76, 78]. The ratio of wavelength

to beam waist in the focus thus determines the divergence of the beam. The
radius of curvature at the focus z = 0 goes to infinity, which corresponds to flat
phasefronts without any curvature. For |z| � zR the radius scales linearily with
z and consequently the wavefront approximate the wavefronts of a spherical wave
[76]. At z = zR the wavefront reaches its maximum curvature with a minimal
radius of R(zR) = 2zR.

Transverse Wavefunction

The formulation of the spatial field amplitude of the Gaussian beam in eq. (4.34)
enables the derivation of a transverse spatial wavefunction of the photons in the
mode at longitudinal position z. Because the complex amplitude can be written
as a product of the amplitudes in x and y direction, it is sufficient to formulate
the one dimensional wavefunction φz(x) with

φz(x) =

(
2

πw2
z

) 1
4

e
− x2

w2
z e−ik

x2

2Rz , (4.38)
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where all global phases were neglected and a suitable normalization was chosen
with

∫∞
−∞ |φz(x)|2 dx = 1. In the expression above the index z indicates a z-

dependence of the corresponding quantities. The full transverse wavefunction Φz

at longitudinal position z can be written as the product of the x and y wavefunc-
tions with Φ(x, y) = φz(x)φz(y). The quantum states of the two spatial dimensions
are thus separable and uncorrelated, which enables a separate evaluation.

A calculation of the position expectation value x0 := 〈x̂〉 and the standard
deviation ∆x for the one dimensional wavefunction yields

x0 = 0, ∆x =
wz
2
, (4.39)

which allows a reparametrization with ∆z := wz
2

. The wavefunction then becomes

φz(x) =

(
1

2π∆2
z

) 1
4

e
− x2

4∆2
z e−ik

x2

2Rz , (4.40)

which exactly resembles the Gaussian pointer distribution introduced in chap-
ter 3, except of course the quadratic phase term. Thus, in the focus plane with
z = 0 the transverse spatial wavefunction of the photons in the TEM00 mode is
represented by a standard Gaussian profile. Furthermore, the calculation of the
standard deviation shows that the phase term does not influence the variance of
the wavefunction, which only depends on the waist wz.

The other set of relevant quantities are the respective expectation value p0 :=
〈p̂x〉 and standard deviation ∆p in momentum space, which are calculated to

p0 = 0, ∆p =
~
w0

=
~

2∆0

. (4.41)

In contrast to the position uncertainty which increases as the beam travels away
from the focus plane, the momentum uncertainty stays constant. A Gaussian
beam therefore only saturates the uncertainty with ∆x∆p = ~

2
in the focus plane.

Another quantity that is important to evaluate in the context of weak measure-
ments is the covariance of position and momentum cxp = Re [〈x̂p̂x〉] as defined in
chapter 3. Calculating the covariance in the case of the Gaussian beam yields

cxp = −~
2

z

zR
, (4.42)

which clearly shows that outside the focal plane there exists a correlation between
the position and the momentum of the Beam. Furthermore, the magnitude of the
covariance becomes arbitrarily large as z goes towards ±∞.

Fourier Optics

As demonstrated in subsection 2.2.2 the momentum wavefunction ψ̃(p) can be ob-
tained by a Fourier transform of the wavefunction ψ(x) in position space. There-
fore, to determine the momentum expectation value p̂x the Gaussian Beam after
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4.2. Gaussian Beam as Pointer

weak interaction and postselection has to be transformed. In optics there exist
two principal implementations of such a Fourier transform, the far-field Fourier
transform and the Fourier transform via a lens [76].

In the context of the theory of Fraunhofer diffraction it is possible to formulate
the distribution of the complex amplitude g(x, y) at a large enough distance z = d
as the Fourier transform of the field amplitude f(x, y) at z = 0 [76, 78]. This
description employs an approximation, which is valid for an initial amplitude

confined to a circle with radius rI with
r2
I

λd
� 1 and for the final amplitude confined

to a circle with radius rF , which fulfills the same restriction [76]. For a larger
distance d, the regions, which are faithfully transformed, get larger and a full
Fourier transform is realized in the far-field with d→∞. The complex amplitude
in the far-field is then proportional to the Fourier transformed initial amplitude
f̃(kx, ky) with a parametrization as [76]

g(x, y) ∝ f̃
( x
λd
,
y

λd

)
. (4.43)

The other method of optical Fourier transform employs a lens with focal length
f > 0. A lens of this type Fourier transforms the amplitude in the front focal
plane into its back focal plane. The result is a proportionality relation between
the two focal planes, which resembles the equation above for the far-field case [76].

The increasing correlation between position and momentum for a Gaussian
beam in free space can be seen as a representation of this transformation. As the
beam distance from the focus gets larger, the spatial distribution starts to resemble
the momentum distribution more and more. Because of the large distance d and
the huge waist due to the divergence, a measurement of the beam in the far-field
is highly impractical. Therefore, in experimental setups the momentum space is
accesses via a Fourier lens [24, 38].

4.2.2. Pointer Response

After establishing a description of the physical properties of the Gaussian beam,
it is possible to evaluate this specific type of pointer in the context of the theory
of weak measurements.

Exact Shifts

In the following paragraphs, a calculation of the exact shifts δx and δp in position
and momentum space after a PPS measurement is presented. The expressions are
formulated for an interaction represented by the qubit observable σ̂z character-
ized by the weak value σw. The weak value is constituted by arbitrary pre- and
postselection states |ψI〉 and |ψF 〉, which are parametrized as

|ψI〉 := α|H〉+ β|V 〉, |ψF 〉 := γ|H〉+ δ|V 〉. (4.44)
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Consequently the weak value can be written as

σw =
〈ψF |σ̂z|ψI〉
〈ψF |ψI〉

=
αγ∗ − βδ∗

αγ∗ + βδ∗
. (4.45)

Continuing from the formulation of the final pointer state |ΦF 〉 after postselec-
tion as expressed in eq. (3.37), the final pointer state in the case of a σ̂z interaction
becomes

|ΦF 〉 = N (αγ∗|Φ+ε〉+ βδ∗|Φ−ε〉) (4.46)

with the normalization coefficientN = (|αγ∗|2 + |βδ∗|2 + 2Re [αβ∗γ∗δ〈Φ−ε|Φ+ε〉])−
1
2 .

The expectation value of a pointer observable q̂ can thus be calculated as

〈q̂〉F =
|αγ∗|2〈Φ+ε|q̂|Φ+ε〉+ |βδ∗|2〈Φ−ε|q̂|Φ−ε〉+ 2Re [αβ∗γ∗δ〈Φ−ε|q̂|Φ+ε〉]

|αγ∗|2 + |βδ∗|2 + 2Re [αβ∗γ∗δ〈Φ−ε|Φ+ε〉]
.

(4.47)
The relevant quantities, which need to be evaluated for the calculation of the

expectation value shifts, are 〈Φa|x̂|Φb〉 and 〈Φa|p̂x|Φb〉. Employing the analysis
presented in (A.1.2) the expectation values can be expressed as

〈x̂〉F =
ε (|αγ∗|2 − |βδ∗|2)− 2εIm [αβ∗γ∗δ] z

zR
e
− ε2

2∆2
0

|αγ∗|2 + |βδ∗|2 + 2Re [αβ∗γ∗δ] e
− ε2

2∆2
0

, (4.48)

〈p̂x〉F =

~ε
∆2

0
Im [αβ∗γ∗δ] e

− ε2

2∆2
0

|αγ∗|2 + |βδ∗|2 + 2Re [αβ∗γ∗δ] e
− ε2

2∆2
0

. (4.49)

A substitution of the weak value expressions derived in (A.2.1) yields the final
exact expressions for the pointer shifts with

〈x̂〉F =
εRe [σw]− εIm [σz]

z
zR
e
− ε2

2∆2
0

1− 1
2
(1− |σw|2)(1− e

− ε2

2∆2
0 )

, (4.50)

〈p̂x〉F =

~ε
2∆2

0
Im [σz] e

− ε2

2∆2
0

1− 1
2
(1− |σw|2)(1− e

− ε2

2∆2
0 )

. (4.51)

The two formulas describe the dependence of the Gaussian beam pointer on the
weak value of the system for interactions of arbitrary strength ε. An expansion
in orders ε confirms that they exactly match the approximations for the linear
regime of weak measurements (3.51) and (3.53). In the case of the position shift
it is necessary to employ the covariance for the Gaussian beam calculated in
eq. (4.42). Furthermore, this results agree with the explicit expression for the
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position shift in the case of a Gaussian profile calculated in [26], which, however,
does not consider the z-dependent curvature.

The quadratic phase term in eq. (4.38), which is responsible for the correlation,
has its origin in the manner in which the pointer evolves propagating through
space. This evolution increases the dependence of the shift on the imaginary part
of the weak value, which is initially only present in the momentum shift. For
|z| → ±∞ the position shift is totally dominated by the imaginary part of the
weak value, which exactly corresponds to the far-field Fourier transform into the
momentum space.

Interaction Regimes

For a real weak value σw increasing from 0 to ∞, the response of the Gaussian
pointer in the focus plane with z = 0 is presented in Fig. 4.4 according to eq. (4.50).

As can be seen from Fig. 4.4 the linear approximation of the shifts eventually
breaks down in all cases, when the magnitude of the weak value becomes too large
[26, 49, 61, 89]. In the case of purely imaginary weak values, the same behavior is
expected in momentum space. For a certain weak value a maximal displacement of
the pointer is achieved and |〈x̂〉F | begins to drop towards 0 with further increasing
weak values [26, 49]. A calculation of the gradient of the exact expressions (4.50)
and (4.51) yields the extremal shifts {δxex, δpex} and the corresponding weak

values σ
(x,ex)
w , σ

(p,ex)
w depending on the parameter ε

∆
with

δxex = ± ε√
1− f(ε)

δpex = ±
~ε

2∆2
0
e
− ε2

2∆2
0√

1− f(ε)

σ(x,ex)
w = ±

√
1 + f(ε)

1− f(ε)
σ(p,ex)
w = ±i

√
1 + f(ε)

1− f(ε)
,

where f(ε) := e
− ε2

∆2
0 . These expressions agree with the extremal shifts calculated

in [70]. For ε > 0 these extremes always exist and always correspond to weak

values outside of the spectrum of eigenvalues [−1, 1] with 1+f(ε)
1−f(ε)

> 1, ∀ε > 0.

In Fig. 4.4 the estimation of the validity of the linear regime provided in
eq. (3.65) is confirmed and the approximation appears valid for |σw| ≤ 0.1∆

ε
.

However, as can be seen in Fig. 4.5, where the region of small real weak values
with |σw| < 1 is presented, for sufficiently large ε

∆
, the linear approximation is

also incorrect in the case of small weak values.

The latter behavior is caused by the non-vanishing expression 1− |σw|2 in the
denominators of the eqs. (4.50) and (4.51) for |σw| � 1. This constitutes a
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Figure 4.4.: Mean values of pointer position for strictly real weak values and
three different interaction strengths ε

∆0
. For comparison also the approximate

linear response of the pointer is plotted as well. The dashed lines represent the
values where the weak values are exactly one order of magnitude smaller than the
boundaries given by the condition for weak measurements, so that 0.1∆0

ε
= |σw|.

The horizontal line at δx
ε

= 1 denotes the boundary of the amplification region
with pointer shifts beyond the range of eigenvalues [−1, 1].

violation of the other condition for the linear response eq. (3.63), which in the
case of Â = σ̂z can be expressed as

ε

∆
� |σw|. (4.52)

The region where the shift of the pointer exceeds the range of the eigenvalues
[−1, 1] is denoted as the amplification region. Considering Fig. 4.4, it can be seen
that for sufficiently small interaction parameters ε

∆
, there exists a considerable

overlap between the amplification region and the linear response regime. This
property is used in weak amplification techniques, which will be briefly presented
below.

As mentioned in subsection 4.1.2, the role of the pointer shifts in tomography
is the determination of weak values and the unavoidable breakdown of the ap-
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Figure 4.5.: Mean values of pointer position for small real weak values σw ∈ [0, 1]
and three different interaction strengths ε

∆0
. The curve for ε

∆0
= 0.1 is dashed to

make it distinguishable from the linear response curve.

proximation for a subset of states causes a bias in procedures relying on the linear
regime. In Fig. 4.6 the probability distribution for qubit weak values is given for
the case of postselection onto |P 〉 and random pure preselection states equally
distributed over the surface of the Bloch sphere.

The low probability of finding a weak value outside of a relatively small interval
around 0, validates the assumptions that in the case of qubits, large weak values
will be sufficiently rare and most unknown states will be determined with good
precision. If the pointer response is well known as in the case of the Gaussian
pointer presented in this work, it is possible to reduce the bias in state determi-
nation even further by inverting the functional dependence of the shifts on the
weak values, thus gaining precise expressions for the determination of the latter
from the shifts. This approach, however, is limited by the fact that the pointer
response curve as presented in Fig. 4.4 is not injective over the whole region of
weak values. While the precision of the state determination could be increased
by considering the exact response curve up to the maximum, the shifts caused by
the very rare larger weak values would be falsely attributed to lower ones.

Another approach, which aims to remove the bias of DST, is the introduction
of coupling-deformed pointer observables as presented in [79, 86]. The basic prin-
ciple of the latter is to avoid the measurement of usual observables as x̂ or p̂x,
and to modify the measurement apparatus instead in such a way that effectively
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Figure 4.6.: Distribution of weak values for qubits obtained via a Monte-Carlo
simulation of 105 random initial qubit states, equally distributed over the Bloch-
sphere. As can be seen, large moduli of weak values are very improbable and most
initial states imply weak values with moduli in the range [0, 5]. Similar diagrams
for random pre- and postselection can be found in [88].

a different type of measurement is realized. An exact knowledge of the pointer
response behavior for the usual observables allows a precise definition of the new
coupling deformed observables, which cause a linear pointer response ideal for the
purpose of DST. As the authors claim, the necessary experimental modification
is small and a huge advantage lies in the possibility to introduce a stronger inter-
action leading to a higher efficiency of the DST [79, 86]. In this work however, a
different procedure based on the inversion of the exact pointer response expres-
sions is presented below, which allows the precise and unbiased reconstruction of
arbitrary pure qubit states.

Exact DST Procedure

In contrast to DST procedures for qubits that include mixed states as expressed
in eq. (4.27), the tomography of pure qubits does not require two distinct types
of postselection. For the determination of the unknown state the measurement
of a single complex weak value is sufficient as described in eq. (4.23). Therefore,
a second measurement result provided by another measurement with a different
postselection is redundant and can be used in cases where the first measurement is
imprecise. In the scheme proposed in [24] the probability factors 〈ψF |ρ̂|ψF 〉 from
eq. (4.27), which scale the contribution of the respective weak value according to
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the probability of successful postselection, filter the incorrect measurement results
obtained for close to orthogonal postselection. While this approach mitigates the
greatest part of the error, some bias is still left because of the reliance on linear
approximations for the pointer shifts and the approximation for the undisturbed
postselection probability as discussed in subsection 4.1.2.

The approach presented in this thesis also proposes the conduction of a second
postselection on a state orthogonal to the first postselection. In the case of the
postselection states |P 〉 and |M〉, the pointer response for an initial qubit state in
the ZX-plane of the Bloch sphere, parametrized by the angle θ, is presented in
Fig. 4.7.

Figure 4.7.: Shifts of mean pointer x-position in dependence of Bloch sphere
angle θ of the initial state. The solid lines represent the shifts for P - (blue) and for
M -postselection (orange). The dashed lines signify the postselection probabilities,
which are proportional to the measured intensities. The vertical lines mark the
positions of the principal polarization states on the horizontal axis of the diagram.
For P -postselection the intensity is higher in the region θ ∈ [0, 180◦], in which the
response curve is fully invertible and vice versa for M -postselection.

The diagram illustrates that in the region with θ ∈ [0, 180◦], where one of the re-
sponse curve for M -postselection is not injective the curve for the P -postselection
can be inverted and vice versa for θ ∈ [180◦, 360◦]. An exact tomography proce-
dure would thus compare the probabilities of the two postselections and choose the
one that yielded the higher postselection probability for the state determination.
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As presented in detail in (A.2.2), in this Boolean scheme the two kinds of postse-
lections lie on opposite sides of the Bloch sphere and effectively divide the latter
into two halves. Only states from the region closer to the respective postselection
state are determined from the data acquired using this particular postselection.
It has been calculated above that the maximal pointer shift and thus the point
until which the response curve can be inverted, lies always in the region of ampli-
fication and corresponds to a weak value outside the range of eigenvalues. As also
presented in (A.2.2), preselection states, for which such weak values are obtained,
are located in the half of the Bloch sphere that is opposite to the postselection
state as well. This is also confirmed by the formulas for the qubit weak values on
the three principal Bloch planes as presented in eq. (4.30), (4.31) and (4.32).

Combining the equations (4.50) and (4.51) and keeping only solutions corre-
sponding to response regions without amplification yields

σw = Aσ
(
〈x〉F , 〈p̂x〉F

)
eiϕσ
(
〈x〉F ,〈p̂x〉F

)
, (4.53)

with the explicit form of the functions Aσ and ϕσ calculated explicitly in (A.2.3).
The expression (4.53) represents an exact analytical formula for the calculation
of weak values from measured shifts of Gaussian pointers. Successively the corre-
sponding weak values can be inserted into eq. (4.23) or a similar formula for the
case of postselection into |M〉 to calculate the unknown state. Together with the
Boolean decision scheme based on the amount of postselection probability they
constitute an exact and unbiased state determination scheme via weak measure-
ments.

Weak Amplification

Although the procedure of weak amplification has a different purpose than QST,
the methods share the same dependence on pointer systems and therefore the ba-
sics of this experimental method are briefly discussed at this point. Contrary to
QST in the experimental scenario of high precision metrology the unknown quan-
tity is not a quantum state but rather the interaction between two systems, which
can be parametrized by the interaction parameter ε [26, 38, 90, 91]. Considering
one of the systems as the object system in a well known preselection state and
the other system as the pointer, ε can usually be determined from the measured
pointer shift. A reorganization of eq. (3.30) yields

ε =
δx

〈Â〉
(4.54)

with the measured pointer shift δx and the expectation value of operator Â de-
pending on the preselection state of the object system and the interaction observ-
able Â. In principle, employing this relation, it is possible to measure arbitrarily
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weak interactions if the properties of the object and pointer systems are well
known.

For ideal measurement devices the uncertainty in the determination of δx due to
statistical shot noise can be reduced by a high enough number of measurements as
discussed in subsection 3.1.3. However, usually there exist technical restrictions
denoted as technical noise, which limit the resolution of the measurement on
the pointer [90–92]. In general any experimental implementation of a pointer
measurement has a lower resolution limit δ, which cannot be overcome , no matter
how many measurement runs are conducted. In such a case, as already proposed
in [4], the introduction of a postselection, which constitutes a large weak value Aw
in the object system, can amplify the pointer shift above the technical resolution
limit, allowing a measurement of the interaction strength [9, 38, 90–93]. The
necessary magnitude of the weak value can be estimated employing eq. (3.52) as

δx > δ ⇒ Re [Aw] >
δ

ε
. (4.55)

This expression is only valid in the linear response regime and it has to be made
sure that the effective process still constitutes as weak measurement, which, how-
ever, can be easily accomplished by tuning the pointer uncertainty ∆x so that
condition (3.65) is fulfilled.

While this method allows experimental sensitivity beyond the usual measure-
ment resolution, it should be noted that it has the same dependence on statistical
noise as an unamplified measurement. In fact, in the case of an ideal pointer
measurement the larger shift is exactly balanced by the lower number of statis-
tics due to filtering postselection [38, 58, 90–92, 94]. Therefore, the method of
weak amplification provides neither an advantage nor a disadvantage if the major
source of experimental errors is quantum statistical noise. Still a certain ben-
efit of weak amplification lies in the fact that the same resolution is obtained
with just a fraction of measurement events, which can be useful if the detection
device cannot accommodate arbitrarily large measurement frequencies [38, 70].
If, however, technical noise is a limiting factor on the measurement resolution,
weak amplification can increase the resolution by several orders of magnitude and
thus represents a very useful experimental technique as has been demonstrated in
various experiments [22, 91–93, 95].

In this context it should be noted that in the exact tomography scheme pre-
sented above, only the unamplified response region is employed. It is generally
difficult to combine tomography methods with weak amplification because of the
unavoidable breakdown of injectivity in the region of large weak values. However,
considering a scenario with dominant technical noise, an arbitrary number of en-
sembles and an adjustable postselection, it is possible to devise a tomography
scheme that incorporates the benefits of weak amplification. In this procedure
the postselection is carefully varied until it is possible to measure a pointer shift
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in an invertible regime. In consequence, it is possible to extract the weak value
from the amplified pointer shift, which allows the subsequent calculation of the
coefficients of the unknown pointer state, knowing of course, which postselection
state was set.
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4.3. Tomography Experiment

The introduction of polarization qubits as the object system alongside suitable
procedures for their tomography and the subsequent account of the properties of
a Gaussian beam pointer in the previous sections are now complemented by the
presentation of the tomography experiment conducted during this thesis.

4.3.1. Description of Experiment

The presentation of the experiment begins with a short overview over the experi-
mental setup together with a brief discussion of the relevant optical components.

Basic Principle

The aim of the experiment is to demonstrate the ability of DST for pure polariza-
tion qubits by reproducing the experimental procedure presented in [24]. Similar
to the approach in the original experiment, the idea is to prove the performance
of the procedure by faithfully measuring the polarization state of the pure states
on the principal axes of the Bloch sphere as parametrized in section 4.1. Because
of the analytical relation between the pointer response curves, the corresponding
weak values and the complex state coefficients, it is in fact sufficient to demon-
strate a successful measurement of the expected pointer response curves for the set
of polarizations mentioned above. After it has been shown that the pointer system
behaves as expected and that this behavior is measurable with sufficient accuracy,
a tomography procedure would simply consist in the reversal of this measurement
process with a succeeding calculation of the respective state coefficients or density
matrix. With this experimental setup both the original procedure for mixed state
presented in [24], and the exact DST procedure presented above would be possible
to realize.

The pointer system employed in this DST is the one dimensional horizontal
spatial degree of freedom of photons, denoted as the x-direction. Object and
pointer system thus represent different degrees of freedom of the same particles,
which means that the direct destructive pointer measurement has to be conducted
after the postselection. The measured pointer observables are position x̂ and mo-
mentum p̂x with momentum as the generator of the interaction. The interaction
operator is σ̂z, which implies that the polarization is correlated with a translation
of the spatial wavefunction in x-direction. It should be noted that such an experi-
mental configuration in the context of weak measurements was already used in the
first realization of weak measurements in [21], however, without the measurement
of the momentum of the pointer.
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Setup

In Fig. 4.8 the experimental setup is presented.

Figure 4.8.: Experimental setup for the DST experiment. The half wave plate
HWP0 rotates the polarization leaving the first fiber, to vary the amount of
intensity passing through the V -polarizer (POL0). The two wave plates HWP1

and QWP1 are used to rotate the V -polarization state into an arbitrary different
pure polarization state, which represents the preselection. After the spatial mode
filtering in the second fiber along with the polarization compensation provided
by the compensator (PC), the beam is coupled out into the region of interaction,
where it is focused on the camera employing the two lenses L1 and L2. The
weak interaction is created by two YVO4 crystals and the successive postselection
is provided by the P -polarizer (POL2). Eventually the position distribution is
measured on the camera without the Fourier lens, which is subsequently inserted
into the setup for a measurement of pointer momentum.

The laser light is collected into a fiber and diverted to the intensity control
region, where it is coupled out having acquired some random polarization. The
following half wave plate rotates the polarization, which changes the amount of
intensity transmitted by the subsequent V -polarizer as long as the initial polar-
ization is not circular. This combination of waveplate and polarizer therefore
effectively constitutes a method to gradually tune the intensity of the beam. A
combination of another half wave plate and a quarter wave plate is used to rotate
the vertically polarized state to an arbitrary pure state on the Bloch sphere as
described below. In this way, the preselection state is prepared and the rest of
the setup is designed not to change this polarization state anymore until the weak
measurement.

The beam is coupled into another fiber to restore the shape of the mode, which
is necessarily disturbed by the preceding optical components. However, the fiber
performs a random rotation of polarization and therefore additional polarization
compensation is required. As presented below, the latter is achieved by the me-
chanical polarization compensator and the set of subsequent crystals, which are
primarily used to perform the weak interaction.
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The restored Gaussian beam is coupled out of the fiber, focused by a pair of
lenses and directed onto a second set of crystals, which apply the weak interaction.
By displacing the H and V components of the polarization by different amounts
in x-direction, these crystals weakly correlate the polarization with the position of
the photons. After postselecting with another P -polarizer, the spatial probability
distribution of the beam is measured. For this position measurement the beam is
focused on the camera, which allows to measure the real part of the weak value
without any contribution from the imaginary part. To measure the momentum
distribution a third lens is positioned in such a way that its front focal plane
coincides with the camera position of the position measurement. A measurement
of the spatial distribution at the back focal plane with the camera consequently
measures the Fourier transform of the initial distribution, which corresponds to
the momentum.

From these intensity distributions the position and momentum expectation val-
ues in x-direction are calculated, which allow the determination of the pointer
response curves. Subsequently, the theoretical models for the pointer response
are fitted onto the data to demonstrate the measurement of the expected pointer
response for the prepared preselection states.

Laser System

The employed laser system consists of a grating stabilized laser diode. In the exter-
nal cavity method a certain wavelength of the emitted light is selected and reflected
back into the resonator to stimulate the amplification of a narrow wavelength spec-
trum [96, 97]. This feedback can be accomplished by different setups, one of which
is the Littrow configuration, which uses a blazed grating to selectively reflect the
first diffraction order of a certain wavelength back into the source [78, 96, 97].
The blazing of the grating, which consists in a sawtooth profile on the grating
surface, shifts the maximum of intensity from the 0th order to a different order of
diffraction for a particular wavelength [78, 98].

A part of the remaining intensity leaves the resonator by diffraction in other
orders and is coupled into an optical fiber. Such a setup effectively constitutes the
filtering of a very small wavelength range in the resonator [96, 97]. The employed
laser diode thus emits approximately monochromatic light with a wavelength of
about 805 nm.

Fibers and Couplers

Optical fibers are cylindrical optical waveguides consisting of a transparent cylin-
drical core enclosed by transparent cladding. Because the refraction index n1 of
the core is higher than the refraction index n2 of the cladding, light falling on the
core-cladding boundary under an angle large enough is reflected totally, which
enables a guided light propagation with very few losses [76, 78, 99]. Only light
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which enters the fiber with an angle of incidence with the fiber axis smaller than
the critical angle θC = arcsin(n2

n1
) is guided through the fiber. Furthermore, the

fiber cannot be curved too much or the condition for total reflection breaks down
as well [76, 99].

Light in fiber propagates in the form of light modes, each of which maintains
its spatial distribution [76, 99]. If the core diameter of the fiber is small enough,
only the fundamental mode is guided and the fiber is denoted as a single mode
fiber in contrast to multi mode fibers, which allow the simultaneous propagation
of several distinct modes. Since the fundamental mode in fibers resembles the
Gaussian TEM00 mode, a single mode fiber can be used to restore a distorted
Gaussian beam [76]. Because of the relatively small waist of the beam in the single
mode fiber, standardized fiber couplers are used to couple light into and out of
optical fibers. Couplers consist of a mount to fix the fiber and a lens that is used
to focus or collimate the highly dispersive beam leaving or coming into the fiber.

Due to random stress and imperfections the propagation of polarized light
through a usual single mode fiber results in a random rotation of the polarization
[76]. Using a polarization compensator, which induces additional controlled me-
chanical stress, in principle it is possible to vary this polarization rotation until
the fiber effectively conserves the polarization state. Such a procedure, however,
involves a process of random trial and error and is not very time efficient. There-
fore, in experimental reality, it is much more practical to use the mechanical
polarization compensator only to achieve a conservation of polarization for two
states of a linear polarization basis and use an additional device to compensate
for the remaining phase difference, which the fibers still introduces between the
two basis states. This phase compensation in the experiment is achieved by the
pair of birefringent crystals after the fiber as will be presented below.

Waveplates

The operating principle of wave plates or wave retarders consists in the introduc-
tion of an additional phase between two orthogonal components of linear polariza-
tion for a specific wavelength [76, 78]. While half wave plates introduce a phase of
π and thus can be used to rotate the axis of linear polarization, quarter wave plates
introduce a phase of π

2
enabling a conversion from linear to circular polarization.

However, the action of waveplates on general elliptically polarized light is more
complex and can be described by certain transformation matrices [35, 76]. For the
configuration employed in the state preparation of this setup, which consists of a
half wave plate acting on a linear polarization followed by a quarter wave plate,
the transformation matrix T̂ can be expressed as T̂ (θH , θQ) = T̂Q(θQ) · T̂H(θH),

where T̂H and T̂Q denote the transformations induced by the single waveplates
and θH and θQ the corresponding rotation angles of the waveplates with respect
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to the horizontal polarization direction. The unitary transformation matrices of
the waveplates can be expressed in the {|H〉, |V 〉} basis as [35]

T̂H(θH) :=

(
cos(2θH) sin(2θH)
sin(2θH) − cos(2θH)

)
, (4.56)

T̂Q(θQ) :=

(
cos2(θQ)− i sin2(θQ) (1 + i) cos(θQ) sin(θQ)

(1 + i) cos(θQ) sin(θQ) sin2(θQ)− i cos2(θQ)

)
. (4.57)

It should be noted that the matrices in [35] are formulated for a different definition
of the circular polarizations, which means that the matrix T̂Q is conjugated.

For an initial vertical polarization |V 〉 all linear polarizations |ψL〉 in the ZX-
plane of the Bloch sphere can be obtained by removing the quarter wave plate
and simply rotating the half wave plate with |ψL〉 = cos(2θ′H)|H〉 + sin(2θ′H)|V 〉,
where θ′H := θH − π

4
. With the rotation angle θ′′H := −θH + π

4
of the half wave

plate, an introduction of the quarter wave plate at angle θQ = 0 entails the state
|ψY Z〉 = cos(2θ′H)|H〉 + i sin(2θ′H)|V 〉, which corresponds to states in the Y Z-
plane. Eventually states |ψXY 〉 = 1√

2
(|H〉+ exp(i4θ′′′H)|V 〉) on the XY -plane can

be obtained by turning the quarter wave plate to θQ = π
4
, with θ′′′H := −θH − π

8
.

The combination of the two waveplates, therefore, allows the preparation of all
pure qubit states described in subsection 4.1.2 necessary for the evaluation of the
tomography procedure.

Polarizers

Devices that allow the filtering of a single well defined polarization states are
denoted as polarizers. There exist a range of possible principles for the implemen-
tation of polarizers, such as selective absorption (dichroism), reflection, scattering
and birefringence, which all have to exhibit an asymmetry with the respect to the
relevant polarization and the component orthogonal to it [78]. The polarizers
employed in this experiment are dichroic polarizers with a coating of identically
oriented prolate silver particles, which absorb photons that exhibit a certain linear
polarization [100]. By rotating the polarizer it is therefore possible to use it as a
polarization filter for arbitrary linear polarizations.

Focusing Procedure

As can be seen from the explicit expression for the pointer position (4.50) there
is always a contribution of the imaginary part of the weak value to the position
expectation value for all longitudinal z-positions of the Gaussian beam with z 6= 0
. Therefore, the experimental strategy is to focus the beam onto the camera in
order to assure an undisturbed measurement of the real part of the weak value.
This is realized by a pair of plano-convex lenses, each with a focal length of 20
cm as presented in Fig. 4.9.
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Figure 4.9.: Schematic focusing procedure of the Gaussian beam onto the camera
using the lenses L1 and L2 with focal lengths of 20 cm. Lens L2 is gradually
displaced until the focal plane of the beam coincides with the camera position.
The solid red line represents the desired scenario while the dashed lines correspond
to not-optimal lens positions.

The exact positioning of the focal plane onto the camera is achieved by weak
measurement. In the case of the employed P -postselection, the preselection states
|R〉 and |L〉 imply the strictly imaginary weak values −i and i, as can be seen from
eq. (4.30) or eq. (4.31). Therefore, for a position measurement in the focal plane,
there should be no difference in the expectation value of the pointer positions δxR
and δxL for these states. Only for z 6= 0 such a difference δxz := δxR − δxL will
be observable. Using eq. (4.50) it is possible to express the z-dependence of the
position difference δxz as

δxz = 2ε
z

zR
e
− ε2

2∆2
0 = 2ε

z

zR
e
− 2ε2

w2
0 . (4.58)

To focus the beam, lens L1 and the camera are placed on fixed positions while
lens L2 is moved until the position difference δxz as measured on the camera
disappears. Based on the resulting distance between lens and focal plane of ap-
proximately 37.5 cm and on the measured beam waist of about 760 µm it is
possible to estimate the variation of δxz induced by a displacement of lens L2, as
presented in Fig. 4.10.

In comparison to the estimated values, Fig. 4.11 contains the measured values of
δxz. The approximately linear progression of the position differences is reproduced
well by the data. However, the slope of the fit to the measured values and the
slope of the calculated linear approximation differ by a factor of approximately
2.45. While the reason for this discrepancy is unclear, some possible explanations
will be discussed in subsection 4.3.3. Nevertheless the procedure allows to identify
a location of lens L2, which entails the coincidence of camera position and focal
plane.
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Figure 4.10.: Expected differences in mean position for R- and L preselection
for a displacement of lens L2. The differences are expressed as multiples of the
interaction strength ε and show an approximately linear dependence on the z-
position of the lens close to the focal plane. As the focal plane is moved beyond
the camera and consequently z changes its sign, also the sign of the difference δxz
is switched. It should be noted that the calculation is complicated by the fact
that a change in the position of lens L2 affects several parameters such as the
Rayleigh range, the z-position of the focal plane and the distance between lens
and camera.

Figure 4.11.: Measured differences δxz in mean position for R- and L preselec-
tion for a displacement of lens L2. While it is possible to confirm the estimated
linear dependence of δxz on the displacement of lens L2, the measured slope is
approximately 2.45 times larger than in the estimation as presented in Fig. 4.10.
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Pointer Measurement

The camera employed to measure the intensity distributions of the Gaussian beam,
which are proportional to the probability distribution of the pointer state, is a
WinCamD CMOS camera manufactured by DataRay [101]. It has an active area
of 6.7 cm × 6.7 cm and a resolution of 1 Mpixel. For the determination of the
mean beam position in x-direction, the intensity distribution is averaged over the
y-direction, which gives rise to a one-dimensional beam profile as presented in
Fig. 4.12. To determine the mean value of this profile, a Gaussian function is
fitted onto the distribution after a background subtraction has been performed.
For this correction simply the lowest intensity value is subtracted from every data
point as was also done in the original experiment [24].
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Figure 4.12.: Determination of mean values from intensity profiles. The two
depicted intensity profiles represent extreme cases, as for profile a) the mea-
sured intensity is maximized with a preselection state that is equal to the P-
postselection and profile b) corresponds to an almost orthogonal preselection state
|ψ〉 = cos θ

2
|H〉+ sin θ

2
|V 〉 with θ ≈ 294◦, which entails a much smaller overall in-

tensity after postselection. The robustness of the fit of a Gaussian distribution to
additional background is demonstrated and no significant change can be observed
if the background is corrected. In contrast, the centroid of the distribution is
heavily dependent on the background, especially in the case of low signal inten-
sity. For the measurements performed in this thesis the method of a Gaussian fit
with additional background subtraction was employed with errors corresponding
to the confidence intervals of the fit parameters for the x-position of the fitted
profile.
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4.3.2. Birefringent Crystals

Birefringent crystals represent a critical component of the experiment as they per-
form the weak measurement interaction and are furthermore employed to correct
for the polarization rotation in the mode filtering fiber as discussed above. An
analysis of their complex properties is presented below.

Optically Anisotropic Media

It is possible to characterize materials with respect to the spatial dependence of
their optical properties. Because solid matter with a crystal structure has well
defined spatial axes, there exist cases when the optical properties of the crystal
vary corresponding to the spatial directions. In the latter case such materials
are denoted as optically anisotropic crystals in contrast to isotropic crystals with
spatially independent optical properties [76, 78, 102].

In a medium the Maxwell equations presented in section 4.1 change their form,
relating the electric and magnetic fields not directly to each other, but rather
to the corresponding flux densities, where ~D denotes the electric flux density or
electric displacement field and ~B the magnetic flux density [76, 78]. The electric
and therefore also optical properties of a medium can be characterized by the
relation of ~D to the electrical field ~E. In an optically isotropic medium the two
fields have a linear relation with ~D = ε ~E, where ε is the electric permittivity of the
medium. In an optically anisotropic medium, however, the relationship is more
complex and expressed by the electric permittivity tensor ε̂, with Dj =

∑
m ε̂jmEm

[76, 78].
The form of the permittivity tensor depends on the choice of coordinates and it

is always possible to find coordinate directions, which imply a diagonal form of the
tensor. These directions are denoted as the principal axes of the medium, to each
of which corresponds a certain value of electric permittivity ε̂jj. Consequently it
is possible to calculate separate refractive indices nj for each of the principal axes

with nj =
ε̂j
ε0

, where ε0 is the permittivity of free space already encountered in
the context of the Maxwell theory of light. Optical properties of media can be
characterized by the relations of these three indices.

In the case of three equal indices of refraction, the permittivity tensor is effec-
tively equal to a constant and the medium is optically isotropic. If exactly two
of the indices are equal, the medium possesses a single axis with a different index
denoted as the optical axis and is therefore described as uniaxial. Eventuallly
if all three indices differ, the medium is called a biaxial medium [76, 78, 102].
Uniaxial media can be distinguished by the relation of the single refraction index
nE denoted as the extraordinary, to the pair of equal indices integrated into a sin-
gle ordinary index of refraction n0. The Yttrium orthovanadate crystals (YVO4)
employed in this experiment are uniaxial crystals. Their refraction indices can
be ascertained employing the empirical Sellmeier equations, which allow a calcu-

100



4.3. Tomography Experiment

lation of the refraction index from empirically determined Sellmeier coefficients
in dependence on the wavelength [99]. For Sellmeier coefficients provided by the
manufacturer [103] and the employed wavelength of 805 nm the two refractive
indices can be calculated to n0 = 1.97 and nE = 2.18. Because the extraordinary
refraction index nE is larger than the ordinary n0, the crystals are denoted as a
positive unixial medium [76, 78].

Double Refraction

The existence of a spatial direction with an extraordinary refractive index in uni-
axial crystals entails a different refraction behavior for different orientations of
the electric field, denoted as birefringence or double refraction [76, 78]. In con-
sequence, the crystal acts differently on certain polarization states, depending on
the orientation of the polarization with respect to the optical axis. A certain ori-
entation of the optical axis defines a linear polarization basis with one component
definitely orthogonal to the axis and the other potentially non-orthogonal. In fact
only in the case, where the direction of light propagation coincides with the direc-
tion of the optical axis, both polarization components are necessarily orthogonal
to the optical axis. In the general case, however, only one of the components is
completely orthogonal and therefore effectively experiences an isotropic medium
characterized by the ordinary index of refraction n0 [76, 78]. Consequently the
part of beam with the latter polarization is denoted as the ordinary beam. The
other part of the beam, denoted as the extraordinary beam experiences in general
an unusual refraction behavior, which depends on the angle between the direction
of propagation and the direction of the optical axis [76, 78].

The standard refraction of an optical beam at a boundary plane separating two
media characterized by different indices of refraction n1 and n2 is given by Snell’s
law as [76, 78, 99]

n1 sin(θ1) = n2 sin(θ2), (4.59)

where the angles θ1 and θ2 denote the angles of incidence and emergence with
respect to the normal direction of the plane. Passing from the medium of a smaller
index to a medium with a larger index, the beam is thus refracted towards the
normal vector and vice versa. It should be noted that while the refraction of the
ordinary beam always agrees with the law of Snell, this is in general not the case
for the extraordinary beam [76, 78, 102]. Only if the latter is exactly parallel to
the optical axis, it is possible to describe its refraction behavior by the standard
refraction law, employing the extraordinary refraction index nE.

The YVO4 crystals employed in this experiment are flat cuboids with a thick-
ness of approximately 300 µm and an optical axis that coincides with the front
plane of light incidence. Therefore, to achieve an interaction in the basis {|H〉, |V 〉},
there exist two possible orientations of the crystals suitable for the experiment as
presented in Fig. 4.13.
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Figure 4.13.: Possible orientations of the optical axis in a YVO4 crystal, corre-
sponding to a discrimination of polariazation states with respect to the {|H〉, |V 〉}
basis. While the optical axis lies always in the front plane of the crystal, in case
a) it is parallel to the rotation axis and in case b) perpendicular to the latter.

While in case a) the V -component is orthogonal to the optical axis and there-
fore constitutes the ordinary beam with the H-component as the extraordinary
beam, the situation is opposite in case b). However, there exists also another
crucial difference between the two possible orientations of the crystals. Because
the optical axis in case b) coincides with the axis of rotation, the extraordinary
V -component remains always parallel to the optical axis, which means that even
though it represents the extraordinary beam it still obeys Snell’s law of refraction
as stated above. In case a) the optical axis is rotated along with the crystal, which
entails that the extraordinary H-component has an intermediate direction with
respect to the optical axis.

The reason for unusual behavior of the extraordinary beam in the case where it
is neither orthogonal nor parallel to the optical axis, lies in the fact, that the prop-
agation direction in the standard refraction law is defined according to the direc-
tion of wavevector of the beam ~k [76, 78]. However, in the case of an anisotropic
medium the direction of beam propagation represented by the Poynting vector
does not coincide with the wavevector, if the beam experiences a combination
of two different refraction indices [76, 78]. Consequently the beam travels at an
oblique angle with its wavefronts. The refraction of the wavefronts obeys Snells
law with a modified refraction index inside the medium n(θ), which lies between

102



4.3. Tomography Experiment

the values of the ordinary and the extraordinary indices and can be calculated
as [76]

1

n2(θ)
=

cos2(θ)

n2
0

+
sin2(θ)

n2
E

, (4.60)

where θ denotes the angle between the wavevector and the optical axis. At the
same time, the direction of the Poynting vector is rotated away from the wavevec-
tor towards the optical axis by an angle ρ, which can be expressed as [104]

ρ(θ) = θ − arctan

((
n0

nE

)2

tan(θ)

)
. (4.61)

In the case of crystal orientation a), this property leads to a smaller effective de-
flection for the extraordinary beam even though it experiences the larger refraction
index, as will be presented below.

Beam Displacement

For symmetry reasons both the ordinary and the extraordinary component recover
their old directions of propagation after leaving the crystal. The consequence of
the double refraction is therefore a different displacement of the two polarization
components of the beam [21, 102]. If the displacement is small enough compared
to the waist of the Gaussian beam, it constitutes the intended weak interaction
between the polarization object system and the spatial pointer.

Preselecting the states |H〉 and |V 〉, the setup is used for a beam position
measurement without postselection. In Fig. 4.14 the measured beam displacement
of the differently oriented YVO4 crystals for several crystal rotation angles is
presented alongside theoretical models.

Except for the extraordinary beam in the case of the horizontal orientation of
the optical axis a), theoretical models based on the Snell law were fitted onto the
measured data. In the other case the displacement of the extraordinary beam was
modeled employing eqs. (4.60) and (4.61).

The measured behavior shows good agreement with the theoretical models. Be-
cause both crystal orientations cause a greater displacement of the V -component,
even though in one case it represents the ordinary and in the other the extraordi-
nary beam, it is necessary to rotate both crystals in the same direction to avoid
a compensation. In Fig. 4.15 the effective separation of the beam components is
illustrated schematically. While both beams accumulate a common spatial off-
set, the relevant quantity is the separation of the polarization components, which
effectively constitutes the weak interaction.
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Figure 4.14.: Measured beam displacements induced by the two YVO4 Crystals
with horizontal (a) and vertical (b) orientation of optical axes. The squares and
rhombs represent measured values and the lines the theoretical models. In both
cases the V -component of polarization is displaced by a greater amount. In graph
a) for angles 20, 25 and 30 a distortion effect can be seen in the values for the
V -component, which might be caused by a deformation of the beam profile origi-
nating from stains or dirt on the crystal. Furthermore, the fact that at an angle
of 0 there is no overlap of the two components in case a), might be explained by
an imperfect cut of the crystal, where the optical axis is not perfectly parallel to
the incident plane. In consequence a walk off of the extraordinary component can
be observed even for a crystal rotation of 0.
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Figure 4.15.: Schematic beam propagation through interaction crystals, as seen
from above. While in crystal 1 the optical axis lies in the horizontal plane and
consequently the H-polarization component experiences extraordinary refraction
behavior, for crystal 2 the V -polarization component represents the extraordinary
beam. However, in the latter case the refraction of the extraordinary beam obeys
Snell’s law because the optical axis is parallel to the polarization direction.

Phase Shift

As mentioned above in the context of the compensation of polarization rotation
in the fiber, the birefringent YVO4 crystals do not only cause a beam displace-
ment but a shift in phase as well. Because the two beam components experience
different refractive indices, they effectively cover a different optical pathlength
leff = njlj, when traveling the length lj through the crystals [76, 78, 99]. In
Fig. 4.16 the calculated geometrical lengths, alongside the effective pathlengths of
the two polarization components, are plotted for the case of a vertically oriented
optical axis.

As becomes clear in Fig. 4.16, the small ratio of wavelength λ to crystal thickness
d entails a pathlength difference of several wavelengths, which also implies a phase
difference ∆ϕ of several periods. Therefore, the interaction effectively disturbs
the preselection polarization if the relation ∆ϕ = ±m2π with m ∈ N is not
fulfilled. As shown in Fig. 4.17, however, for large enough rotation angles the
phase difference between the beam components is much more sensitive to small
angular rotations than the beam displacement.

Consequently, it is possible to fine tune the phase difference by slightly rotating
one of the crystals after a suitable angle for the desired amount of beam separation
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Figure 4.16.: Optical (orange) and geometrical (blue) pathlength differences
between the ordinary and extraordinary component for a single YVO4 crystal
with a vertically oriented optical axis in dependence on the angle θ between crystal
and incident beam. The crystal has a thickness of 300 µm and the differences in
pathlength are given in multiples of λ = 805 nm.

has been found. This ensures the correct phase relation between the weakly
separated H- and V -components upon postselection.

Concerning the difference in pathlength, another beneficial effect of the oppo-
site orientation of the respective crystal axes of the two crystals stems from the
fact that the absolute path difference as presented in Fig. 4.16 is at least partly
compensated when the beam successively passes through both crystals. Because
both of them have approximately the same thickness and the geometrical path
lengths of the H- and V -polarized components are approximately equal, the over-
all difference in optical pathlength is reduced as different components experience
the larger refractive index in the two crystals. In this way, an absolute pathlength
difference above the coherence length of the laser can be avoided.
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Figure 4.17.: Sinus of calculated phase shift ∆ϕ between H- and V -polarization
components of beam, induced by passage through YVO4 crystal with a thickness
of 300 µm for a wavelength of 805 nm. The phase shift is plotted in dependence
on the angle θ between crystal and incident beam.

4.3.3. Evaluation of Experiment

In conclusion of the description of the tomography experiment, the results of the
weak measurements are presented. While the data agree with the predictions
under most aspects, also some fundamental discrepancies have been observed,
which will be discussed as well.

Pointer Position

In Fig. 4.18 the measured pointer position response curves for preselection states
on the principal planes of the Bloch sphere are presented. In the case of XZ-plane
there is a discrepancy between the theoretical prediction for the validity range
of the linear response regime and the measured mean position values. While the
shape of pointer response fits very well to the expected curve, it implies an effective
beam waist that is smaller than the measured waist by a factor of 15.6. The origin
of this phenomenon is unclear and possible explanations will be discussed below.

Apart from this single inconsistency, however, the three curves are in good
agreement with the theoretical predictions. For pure preselection states from the
Y Z-plane, a cosine shape is expected with extreme displacements for H- and
V -polarizations and no displacement for R- and L-polarizations. In fact, the
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4. Direct State Tomography

Figure 4.18.: Measured pointer response curves in position space. The green
lines represent fits of the theoretical predictions to the measured data points
(red), where each point is weighted with its inverse error. The values of zero
displacement and ε are calculated by averaging over the values determined by the
three fits. In the case of ZX-plane the additional dashed green line represents the
expected response corresponding to a smaller value of ε

∆0
.
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vanishing position difference of the latter states was used to identify the correct
camera position in the first place. The cosine shape resembles a pointer response
without postselection, as the imaginary phase between the components prohibits
any interference effects between the two components for a measurement in the
focal plane with z = 0. Consequently the intensity after postselection is constant
for all preselection states, which is reflected in the equal errors of all data points
from the Y Z-plane.

In the unamplified region of the ZX-plane, the pointer response shows also the
expected behavior with H- and V -polarization data points at the same positions as
in the case of the Y Z-plane. Furthermore, as expected the P data point exhibits
no displacement and the fit also implies zero displacement in the case of M -
polarization, which could not be measured due to a very low intensity. However,
in the amplified region the displacement of the mean values of the pointer is much
smaller than implied by the measured values of ε and ∆0, even under consideration
of the larger error due to low signal intensity.

For the measurement in the XY -plane no pointer displacement is expected at
all, as these preselection states imply strictly imaginary weak values as presented
in subsection 4.1.2. This property is confirmed very well by the data. However, for
data points close to the M -preselection even small deviations from these symmet-
rical amplitudes are amplified by the postselection, which explains the relatively
large displacements in this region. This sensitivity is also reflected in the large
slope of the approximately linear pointer response curve in the ZX-plane close to
M -polarization.

Pointer Momentum

Unfortunately the employed procedure was not suited to measure the momentum
distribution. The reason for this is the relatively large beam waist in the focal
plane where the position measurement is performed, which entails a Fourier trans-
formed profile with a very small waist wFT < 50 µm. In consequence, the shifts in
momentum space are also reduced proportionally and it is not possible to resolve
them with the camera employed in this setup. The experiment could be improved
by a reduction of the beam waist in the focal plane, which could be achieved by
a replacement of the second lens used in the focus procedure by a lens with a
smaller focal length. This would result in a larger beam diameter in the Fourier
plane as presented in Fig. 4.19.

Discrepancies between Experiment and Theoretical Predictions

Two fundamental discrepancies between the theoretical calculations and the mea-
sured data have emerged in the course of the experiment. The first problem
consists in unexpectedly large position shifts for imaginary weak values, which
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Figure 4.19.: Schematic illustration of the improvement of momentum measure-
ment through modification of the focus procedure. While a reduction of the focal
length f2 of lens L2 to 15 cm (a), entails a smaller beam waist for the position
measurement, the waist in the Fourier plane becomes larger than in the case of
f2 = 20 cm (b).

have been measured outside the focal plane of the beam as described in subsec-
tion 4.3.1 and presented in Fig. 4.10 and Fig. 4.11. The second is the breakdown
of the linear response for much smaller weak values than expected as illustrated
in Fig. 4.18.

Both phenomena cannot be explained by the formalism as described in this
thesis and consequently it must be assumed that some physical factors have not
been yet described correctly. A hint to the source of a possible problem might
be the fact that in the original experiment [24] it has been emphasized that the
phasefront of the beam also has to be approximately flat in the region of interac-
tion. Therefore, in the original experiment the beam is also focused on the quartz
crystal, which applies the interaction. In the case of the experiment performed
in this thesis the phasefront is also approximately flat in the region of interaction
as it lies close to the focal plane (∆l ≈ 20 cm) compared to the Rayleigh length
(zR ≈ 2.25 m) but no additional focusing of the beam is performed.

Another effect that was compensated in the original experiment but neglected
in the present one, are internal reflections in the crystal, which add additional
intensity at x-positions that are further displaced from then the main beam [24].
Therefore, the authors employ an additional iris onto which the beam focused
again to filter out the additional reflected beams. Such internal reflections could
disturb the measurement especially in the case of almost orthogonal postselection,
where the intensity of the main signal is heavily reduced. In contrast, for com-
ponents that undergo internal reflections in the crystal, the separation between
the H- and V -components increases, which reduces the interference effects of the
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postselection. In the similar experiment [21], where also a quartz crystal was
employed, internal back-reflections are also mentioned as a problem.

A different explanation, which seems only relevant to the reduced pointer dis-
placements for large weak values from the ZX-plane, could be a fault in the
determination of the mean pointer position. While in this thesis the latter was de-
termined by fitting a Gaussian profile onto the intensity distribution as presented
in Fig. 4.12, this method is expected to fail for weak values with sufficiently large
moduli, for which the pointer distribution no longer represents a single Gaussian
as discussed in section 3.3. In the latter cases it would be necessary to measure the
mean of the distribution by a calculation of the centroid instead of a Gaussian fit.
However, as illustrated in Fig. 4.20, the ratio of signal to background, which was
achieved in this experiment was not sufficient to allow significant centroid mea-
surements for low signal intensities. This could have been improved by increasing
the power of the laser.

Figure 4.20.: Pointer response for different kinds of mean value determination.
The measured mean position values correspond to preselection states from the
ZX-plane of the Bloch sphere. Both kinds of Gaussian fits (red and green) yield
very similar values even for small signal intensities in the region of almost orthog-
onal postselection with θ ≈ 270◦. In contrast, the centroid values converge to the
centroid of the background for low signal intensities.

At this point it does not seem to be clear, how these possible explanations
are related to the two deviating effects that where measured in the course of the
experiment. While it is possible that the two are related and point to a single
property that has not been captured correctly in the theoretical description, they
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might also have different causes. It is also possible that some completely different
effect, which has not been described in this thesis, might be responsible for the
discrepancies.

As the reason for the reduced amplification of the pointer response is unknown,
it is difficult to conclude whether a DST procedure could be realized with the
present setup. If the only discrepancy between observed and predicted pointer
behavior is a different effective position uncertainty, which implies an amplification
breakdown at smaller weak values, then it should be possible to conduct the
tomography under consideration of this modified parameter. However, it might be
the case that the phenomenon responsible for the discrepancy also affects the form
of the pointer response for states outside the three measured plains of the Bloch
sphere. In these cases the validity of the inversion formula (4.53) is not assured
and a definitive statement about the validity of the DST procedure cannot be
given as long as the origin of the discrepancy is not understood. In any case the
procedure is not complete without a measurement of the momentum shift, which
is absolutely necessary for the determination of states with the DST schemes
described here. Only if additional information about the phase relation between
the |H〉 and |V 〉 components of the initial state is available, it is possible to make
statements about this state based only on a position measurement of the pointer.
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The final chapter is dedicated to the discussion of the meaning of weak values in
quantum mechanics. It aims to give an overview over the origins and motivations
of the most common interpretations and controversies regarding weak values and
measurements. In this context also a minimal and non-controversial definition
of the concept is given. Eventually also a set of theoretical proofs for a basic
property of weak measurements is given alongside a possible interpretation and a
proposal for an experimental confirmation.

5.1. Interpretation of Weak Measurements

In the following section the most important elements of the interpretational con-
troversy surrounding the concept of weak values are delineated.

5.1.1. Time-Symmetrical Quantum Mechanics

As the inception of the concept of weak values lies in the time-symmetrical formu-
lation of quantum mechanics, the discussion of the interpretation of weak values
begins with an presentation of this approach. Subsequently the emergence of
counterfactual claims is described and illustrated in the context of the three box
problem.

Two-State Vector Formalism

The concept of time-symmetrical quantum mechanics was first introduced by Aha-
ranov, Bergmann and Lebowitz in [5] alongside the concept of pre- and postse-
lected measurments as already mentioned in chapter 3. As was pointed out by
ABL, most of the laws of classical physics are time-symmetric or in other words
“form invariant under time reversal” [5]. A comparison with quantum mechanics
discloses that the standard quantum mechanical evolution, as expressed by the
Schrödinger equation, shares this property and in fact describes reversible and
deterministic processes. It is only the reduction of the wavefunction introduced
by the measurement postulates, which constitutes an irreversible process, thus
breaking the time symmetry for quantum mechanics [5, 53, 62, 64]. The addition
of a time-asymmetric component to otherwise symmetrical laws might vindicate
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the consideration, whether this asymmetry is a fundamental property of the the-
ory or a contingent feature, which simply depends on the standard perception of
time [27, 62].

It is possible to identify the concept of the quantum state itself as the source of
the time-asymmetry because in its preparation it is defined by a complete mea-
surement in the past, which yielded a reduction into the particular state [27]. In
contrast, a future measurement is fundamentally undetermined as long as an in-
compatible observable is measured. Therefore, it might be feasible to reformulate
the theory by introducing a state determination that is related to past and future
in a symmetrical way. In consequence, an additional set of conditions is intro-
duced, which is regarded as providing additional information about a quantum
state at an earlier point in time [27, 66, 69, 105]. Such a concept is of course
incompatible with standard quantum mechanics, where a pure quantum state is
considered as the complete description of the system and no structures are pro-
vided that would allow the conditioning of measurements on this state on the
future. Nevertheless, it was proposed [62, 66], to regard pre- and postselected
quantum systems as physical systems to which two sets of boundary conditions
can be attributed. The resulting ensembles, which are determined by past and
future conditions in a symmetrical way, allow for a completely time symmetric
formulation of quantum measurement at least for the time interval between pre-
and postselection [62, 67].

The formalism introduced to represent time-symmetric quantum ensembles em-
ploys two quantum states to represent a physical system determined by two sets of
conditions and is therefore denoted as the two-state vector formalism (“TSVF”).
A two-state vector is expressed as [27, 62, 66]

〈ψF | |ψI〉, (5.1)

where |ψI〉 represents the “forward evolving” state, which is determined by mea-
surements performed in the past (preselection) and |ψF 〉 the “backward evolving”
state determined by measurements performed in the future (postselection). This
formulation of a physical state in dependence of two quantum states eventually
motivates a range of claims, which are not element of the standard quantum
mechanical description as will be discussed below.

System in between Measurements

The time-symmetric approach to quantum mechanics represented by the TSVF,
identifies the ABL formula (3.38) as the relevant description for measurements of
pre- and postselected systems. The ABL rule is introduced in subsection 3.2.1
as the conditioned probability of measuring the outcome aj for a potentially de-

generate observable Â defined as Â =
∑

j ajΠ̂j with the projectors {Π̂j}. In the
standard description the initial quantum state |ψI〉 is interpreted as the state
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that is strongly measured and the subsequent postselection |ψF 〉 constitutes as
second projective measurement of the resulting state. From the perspective of
TSVF, however, the interpretation of the ABL formula is symmetric with respect
to the two conditions of pre- and postselection, which is in agreement with the
formal symmetry of the expression under exchange of the two states. Thus, the
formula is interpreted as a new kind of time symmetric measurement postulate,
which is valid for pre- and postselected ensembles and allows statements about
measurement outcomes between these two defining conditions [27, 62].

As long as the interpretation of the ABL formula is factual and thus considers
measurements Π̂j that are actually carried out, it is unproblematic and in com-
plete agreement with the predictions of standard quantum theory [67, 106]. In
fact, even the contextuality of the formalism is not controversial if the measure-
ments are actually performed. For two observables Â and B̂ with different sets of
projectors into the corresponding eigenspaces, the summed postselection proba-
bility in the denominator may be different, even if both sets of projectors contain
Π̂j. In consequence the ABL formula may yield different probabilities for a mea-

surement of the value corresponding to Π̂j for the two observables. This difference
is not paradoxical because each observable provides different possibilities for the
reduction of the initial state, which may possess very different overlaps with the
postselection state [10, 20]. Therefore, the overall conditional probability changes
not because the actual measurement of the value corresponding to Π̂j has different
probabilities for the two observables, but rather because the sets of alternative
states are different.

As discussed above, the knowledge of a quantum state in standard quantum
mechanics allows the formulation of statements about the outcomes of future
measurements on the system. From the perspective of a time-symmetrized ap-
proach it might appear equally legitimate to “reverse the projection postulate”
and to formulate claims about the outcomes of past measurements that could have
been carried out before the postselection [67, 106]. Statements of the latter kind
are usually denoted as counterfactual claims [107]. These are, however, at odds
with the usual interpretation of quantum mechanics, where the state after the
measurement is in a fundamentally undetermined superposition of basis states of
another incompatible observable. Consequently it is impossible to attribute any
distinct eigenvalue of the second measurement observable to the state before the
measurement is factually carried out implying a state reduction. In other words,
the notion of histories or trajectories does not exist in standard quantum mechan-
ics [12, 64, 67]. In contrast, counterfactual theories effectively imply an epistemic
interpretation of the quantum state, which regards the wavefunction as a rep-
resentation of incomplete knowledge of the system that can be complemented
with additional information provided by the postselection state as proposed in
[5, 52, 75]. This is opposed to an ontic view, which attributes physical reality
to the quantum state as it constitutes a complete description of physical systems
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[42, 108]. However, the consequence of the ontic interpretation is the necessity of
a reduction postulate, which can be avoided in epistemic approaches. While it is
far beyond the scope of this thesis to discuss the diverse field of considerations
about the question what a quantum state represents, the presented notions might
facilitate a discussion of the role of weak values in counterfactual interpretations
as presented below. In the successive segment, however, the transition from a
factual use of the ABL rule to a counterfactual application will be explicated on
the basis of a common example.

Three Box “Paradox”

The so called “three box paradox” or “three box problem” represents an important
example, which is often discussed in the context of the time-symmetrical formula-
tion of quantum mechanics with PPS ensembles [11, 13, 20, 27, 66, 68, 105, 109].
In this example the “three boxes” are respresented by an orthonormal basis of a
3-dimensional Hilbert space, denoted as {|1〉, |2〉, |3〉}, with |1〉 corresponding to
the particle “being in box 1” and so on. The state of this PPS system is described
by the two state vector 〈ψF | |ψI〉 with the two states

|ψI〉 =
1√
3

(|1〉+ |2〉+ |3〉), |ψF 〉 =
1√
3

(|1〉+ |2〉 − |3〉). (5.2)

According to the time-symmetric approach, the results of measurements per-
formed on the three box system between pre- and postselection have to be cal-
culated via the ABL rule. Because of the contextuality of the ABL formula,
however, it is not enough to specify a single projector, but instead a complete
eigendecomposition of a well-defined observable on the three box system [26]. For
this particular discussion of the three box example, the observables Â, B̂, Ĉ and
D̂ are considered, with

Â := α|1〉〈1|+ β (|2〉〈2|+ |3〉〈3|) ,
B̂ := α|2〉〈2|+ β (|1〉〈1|+ |3〉〈3|) ,
Ĉ := α (|1〉〈1|+ |2〉〈2|) + β|3〉〈3|,
D̂ := α|1〉〈1|+ β|2〉〈2|+ γ|3〉〈3|,

(5.3)

where α, β and γ denote different eigenvalues. It should be noted that the iden-
tification of measurement outcomes with eigenvalues rather than final states in
the following discussion is motivated by the aim to express different projector
decompositions of the measurements. This corresponds to the description of in-
direct measurement, where different states associated with the same eigenvalue
are correlated with the same pointer state and therefore not distinguished by the
measurement interaction.
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For a measurement of observable Â, the ABL rule yields a probability of 1 to
measure the eigenvalue α, which is interpreted as “finding the particle in box 1”
[27, 66]. In the same manner, a measurement of observable B̂ implies that the
particle “is” also with certainty in box 2. As a “paradoxical” result it is concluded,
that in the case of this PPS system, the particle is both in box 1 and box 2 with
certainty. Furthermore, a measurement of observable Ĉ yields the eigenvalue α
only with probability of 4

5
, which suggests that the particle might not be found

in the boxes when they are measured in combination. Eventually, the context
dependence of the ABL formula is demonstrated, when observable D̂ is measured
and the probability of “finding the particle in box 1“ or “finding it in box 2” is
only 1

3
. Although both the measurement of observable Â and D̂ contain the space

of state |1〉 as a non-degenerate eigenspace and the same projective measurement
with the projector |1〉〈1| is carried out, the probabilities given by the ABL rule
for a measurement of value α are different.

While this results might appear surprising at first glance, in the factual case they
are in perfect agreement with the standard formulation of quantum mechanics as
already discussed above. A standard projective measurement of observables Â, B̂
and Ĉ will cause a reduction of the preselection state into one of two alternatives,
one of which is orthogonal to the postselection. Consequently, the conditional
probability of the non-orthogonal outcome alternative becomes 1. In the case of a
measurement of observable D̂, all resulting states after the projective measurement
have the same postselection probability and therefore all of them are identified as
potential outcomes by the ABL formula. Employed in this way, the ABL formula
represents a method to calculate probabilites of measurement outcomes in pre-
and postselected systems that is consistent with the standard theory of quantum
measurement [11].

If the predictions of the ABL rule are, however, extended to counterfactual
scenarios, they become highly problematic. The statement that the pre- and
postselected particle “is in both boxes simultaneously” effectively identifies en-
sembles that are fundamentally distinct from the perspective of standard quantum
mechanics. A measurement of observable Â separates the initial preselected en-
semble in a superposition state of three boxes into two subensembles, one of which
collapsed into the state |1〉 and the other in the state 1√

2
(|2〉 − |3〉). A projective

measurement of observable B̂ yields a subensemble in state |2〉 and another in
state 1√

2
(|1〉 − |3〉). Thus, from the perspective of standard quantum mechanics

the different measurements correspond to two complete distinct scenarios and an
identification of the ensemble in state |1〉 after the measurement of observable
Â and the ensemble in state |2〉 after the measurement of observable B̂ is not
warranted [11, 65, 67, 109]. As one critic remarks pointedly,

“. . . arguing that the system is in two different states at the same time
is no more meaningful than to use the same piece of plasticine to make
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first a ball, then a cube, and later argue that a body can be round and
cubic at the same time.” [20]

5.1.2. Weak Values as Measurement Outcomes

While in the previous subsection the implications of the TSVF are discussed
without reference to weak values, the role of the latter in the context of these
controversies is presented in the following paragraphs.

Weak Values as Average Values

Despite the problematic nature of counterfactual claims as demonstrated in the
discussion of the three box example presented above, it has been proposed [12,
27, 57–59, 63, 72, 75] that it is possible to experimentally proof such claims by
performing weak measurements, which do not disturb the system significantly and
thus effectively provide information about counterfactual scenarios. Thus, in these
approaches weak measurements are seen as factual observations of counterfactual
scenarios [11, 15]. In this context the property of weak values to be potentially
arbitrarily large or even complex, invites certain highly non-standard conclusions
as presented below.

As pointed out in [11, 15], such an employment of weak measurements effec-
tively compares the meaning of weak values as outcomes of weak measurements
to the meaning of expectation values as mean outcomes of standard quantum
measurements. This interpretation is denoted as the “realistic, straightforward
interpretation” (“RSFI”) of weak values [11]. In fact a range of expressions of
this kind can be found in the relevant literature as for example the claim that a
set of weak measurements allows the determination of an “accurate mean value
for the observable of interest” [72], the proposal of “determining the mean value
[...], as a weak value” [110] or simply the treatment of weak values as “conditioned
expectation values” [64], as already presented in section 3.2. The assertion of the
“measurement” of a “spin component of 100” for a spin-1

2
from [4] also represents

an instance of this controversial identification of weak values and expectation
values, as was already pointed out in the earliest of criticisms [6, 7, 9].

One consequence of this equal treatment are claims about the measurements
of unusual values that imply “several peculiar phenomena that occur in between
measurements” [59]. Furthermore, weak measurements as an experimental real-
izations of counterfactual statements, are regarded as allowing the introduction
of the concept of quantum trajectories or similar statements about the “past of
quantum particles” [12, 57, 72, 75, 110, 111]. The fact that the weak value of an
observable for a certain pre- and postselected ensemble could be measured in a
direct pointer response, is used as a basis to attribute this value to the observable
and treat the weak value in the same way as the expectation value of an usual pre-
selected ensemble. This approach consequently allows counterfactual statements
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about the trajectories of photons passing through double slits [72] or the path of
particles traveling through an interferometer [12, 13]. An explicit example of such
epistemic conclusions is presented below, when the three box problem is revisited
from the perspective of weak measurements.

Weak Three Box Measurement

In the following the claim that weak measurements “explain” the three box “para-
dox” is illustrated. As proposed in [12, 13], the weak probing of the particle’s
presence in the boxes is conducted via weak interactions described by the three
projectors Π̂1 = |1〉〈1|, Π̂2 = |2〉〈2| and Π̂3 = |3〉〈3|. Calculating the correspond-

ing weak values Π̂
(j)
w , which are defined as

Π̂(j)
w :=

〈ψF |Π̂j|ψI〉
〈ψF |ψI〉

, (5.4)

where |ψI〉 and |ψF 〉 are the usual three box pre- and postselection states, yields

that Π̂
(1)
w = Π̂

(2)
w = 1 and Π̂

(3)
w = −1. These weak values are then interpreted in

connection to a novel form of weak “number operators” that signify the presence
of particles, including the unusual statement of a particle number of −N in box
3 [27].

Furthermore, it is possible to measure all three of these weak values simulta-
neously when three successive weak measurements are performed. In fact, in the
limit of a sufficiently weak interaction the shifts caused by a series of arbitrary
weak measurements simply add up without changing the shape of the pointer
distribution. This is seen as a suggestion that weak measurements are able to
probe properties of a PPS system, which it possesses simultaneously. Because it
is even possible to measure weak values corresponding to complementary observ-
ables simultaneously in this manner, it is argumented that weak measurements
can reveal the values of non-compatible observables at the same time [46, 62, 67].
The latter property is denoted as the “sum rule” of weak measurements.

In modified versions of the three box scenario nested interferometers are con-
sidered, which can be described by the two-state vectors [12, 13]

〈ψF | =
1

2
(〈1|+ i〈2|) +

1√
2
〈3| 1

2
(|1〉+ i|2〉) +

1√
2
|3〉 = |ψI〉, (5.5)

〈ψF | =
1√
3

(〈1|+ i〈2|+ 〈3|) 1√
3

(|1〉+ i|2〉+ |3〉) = |ψI〉, (5.6)

respectively. In both examples, the fact that the weak value measurements of
the projectors Π̂1 and Π̂2 are non-zero, while the weak value of the projector
Π̂1 + Π̂2 vanishes, is used to conclude that the path of quantum particles through
the interferometers did not consist of a “set of continuous trajectories” [13].
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Thus, the weak values that can be obtained from weak measurements on three
or more dimensional systems of this type are seen as the basis for claims about
the state of PPS systems between the two conditioning projections in the past
and the future. Because the weak values can be obtained with an arbitrarily weak
interaction, they are regarded as a genuine property of the system, which only
depends on the pre- and postselection states and not on the factual conduction of
a strong projective measurement.

Weak Values as Relative Amplitudes

The controversial claims in the context of weak measurements can be unraveled
if the identification of weak values with expectation values is critically analyzed.
While this identification is usually grounded on the similar linearity in the pointer
response as already presented in subsection 3.2.2, there are no formal reasons that
would justify the treatment of a weak measurement on equal grounds as the stan-
dard measurement of an observable [7, 9, 11, 15]. This fact is even conceded by
proponents of epistemic interpretations of weak values [107]. What is overlooked
in accounts that treat weak values as usual measurement outcomes is the fact that
the procedure of weak measurement is fundamentally distinct from the standard
quantum measurements, where the interaction is used to resolve the eigenstates
of the observables in the pointer response and a consecutive pointer measurement
has the function of identifying the corresponding probability distribution [7, 20].
The pointer response in the standard sense of measurements is thus just a means
to measure probabilites. In the concept of weak measurements, this pointer re-
sponse is used to obtain the measurement value in a fundamentally different way,
which is of course also possible for a standard expectation value, which can be
directly measured from a shifted pointer distribution even if the eigenstates are
not resolved. However, it follows by no means from the formalism of quantum
mechanics that the weak value obtained from such a measurement of a pointer
shift has any direct relation to the expectation value of the particular pre- and
postselected subensemble [11].

While in general there is no formal connection between weak values and usual
expectation values of observables, there exists a clear relation between the com-
plex amplitudes of the wavefunction in the basis of the weak measurement and
the corresponding weak values. This relation is the foundation of DST and has
been presented in detail in chapter 4. Instead of an identification with standard
outcomes of measurements it seems therefore more justified to regard weak values
as “relative probability amplitudes” as presented in [11, 20]. As discovered in [4],
PPS ensembles exhibit the property that it is possible to measure these relative
probability amplitudes, denoted as “weak values”, directly from the pointer re-
sponse. This makes it possible to measure the coefficients of the wavefunction in
a novel and useful way. All further claims about the meaning of these quantities
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5.1. Interpretation of Weak Measurements

appear unwarranted if one considers that weak measurements simply probe the
quantum state in between pre- and postselection [20, 73].

Therefore, considering the three box example with weak measurements, it is no
surprise that both box states can be weakly measured simultaneously as they are
both in superposition in the preselection state. From the formal point of view,
this does not in any way entail the conclusion that the particle is in both boxes
at once and the simultaneous measurement of both weak values rather allows the
statement that the system is in a superposition state, which can potentially be
reduced into one of the box states [20]. As discussed above, the former type of
claims might be natural from the point of view of a time-symmetrized theory,
but should be differentiated from standard expressions as “expectation values” or
“measurement outcomes”.

In the same sense it is to be understood that DST measures incompatible ob-
servables at the same time. The weak measurement indeed provides information
about both observables but only in the sense in which the knowledge of a wave-
function would provide the same information [20, 73]. Consequently it is also
not surprising and in complete agreement with standard quantum theory that
large pointer shifts can emerge, which can even affect complementary pointer
observables in the case of complex weak values [7, 11, 20]. As presented in subsec-
tion 3.2.3 in detail, they can be seen as a consequence of interference effects, which
arise when the pointer states corresponding to the eigenstates of the measurement
observable are weighted with the complex coefficients of pre- and postselection.
In the same way it is possible to explain the effects attributed to weak traces or
trajectories.
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5.2. Weak Values as Weak Eigenvalues

While a RSFI of weak values appears highly problematic, it is still possible to
draw a realistic interpretation of weak values from a very particular perspective.
Below, the basic concept of such an approach is delineated alongside a subsequent
description of a suitable experiment to confirm the postulated reality of weak
value in this specific sense.

5.2.1. Operational Meaning of Pointer Response

In the following paragraphs the operational definition of physical reality is ex-
tended to the model of indirect measurement and a series of proofs are presented,
which show the reality of the weak value in the sense of this definition.

Operational Definition Measurement

Apart from the RSFI discussed above, there exists also a different realistic inter-
pretation of weak values, which, however, takes a radical operationalist standpoint
without the reference to mean values. “Operationalism” refers to the proposition
that the meaning of physical quantities is completely determined by the proce-
dures employed to measure them [32, 112]. It can be argued [63] that historically
the definition of an element of reality in physics has always been epistemic as
expressed in the definition given by Einstein, Podolsky and Rosen in their famous
paper [113]. The EPR definition is stated as:

“If, without in any way disturbing a system, we can predict with
certainty (i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of physical reality corresponding
to this physical quantity.” [113]

Because a quantum system, which is in the eigenstate |a〉 of some observable
corresponding to the eigenvalue a, will yield this eigenvalue upon measurement
of that observable with certainty, the authors consequently consider the property
of the system described by the eigenstate |a〉 as an element of reality [113]. As
discussed in chapter 3, the pointer shifts corresponding to object systems in eigen-
states of the weak interaction observable entail pointer evolutions that shift the
pointer wavefunction without changing its shape. Therefore, it can be argued
that elements of reality in the sense of EPR correspond to measurement results,
where the shape of the pointer wavefunction is conserved. In consequence a novel
definition of the concept of an “element of reality” is proposed, which explicitly
relates to the change in pointer distributions caused by the interaction with the
relevant object system. It is stated as follows:
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5.2. Weak Values as Weak Eigenvalues

“If we are certain that a procedure for measuring a certain variable
will lead to a definitive shift of the unchanged probability distribution
of the pointer, then there is an element of reality: the variable equal
to this shift.” [63]

The latter definition implies the reality of weak values for the interaction regime
defined in weak measurements. As discussed in section 3.2 and expressed in
eq. (3.58), the pointer state after a weak measurement can be approximately de-
scribed by an interaction parametrized by the weak value, exactly in the same way,
in which an eigenvalue parametrizes the shift of the pointer in a usual standard
measurement. Therefore, in the very strict operational sense proposed above, this
structural similarity between the two pointer evolutions motivates the claim that
the weak value can be regarded as a real property of PPS systems, which manifests
itself upon an arbitrary interaction with other systems, as long as this interaction
is sufficiently weak [27, 63, 107].

Quantitative Analysis of Pointer States

As a quantitative confirmation of the epistemic reality of weak values in the sense
presented above, a comparison between the relevant pointer states is proposed
[114]. For this purpose three types of pointer states after interactions with object
systems described by characteristic values of different types are considered. The
first type of pointer is the result of an interaction with an object system in an
eigenstate of the measurement observable and is denoted as a “pointer associated
with an eigenvalue”. A pointer state, after an interaction with an object system
described by a superposition of eigenstates and measured without postselection,
yielding the expectation value as a measurement outcome is consequently called a
“pointer associated with an expectation value”. Eventually a “pointer associated
to a weak value” is considered, which interacted weakly with the object system in
a preselection state and was subsequently filtered with respect to a postselection.
Each of the pointer types can be described by a single value pertaining to the
object system, an eigenvalue, an expectation value, and a weak value.

It can be proven that in the limit of weak interactions, there exists a funda-
mentally greater similarity between the pointer coupled to an eigenvalue and the
pointer coupled to a weak value case than between the pointer coupled to an
eigenvalue and the one coupled to an expectation value if all three values are
equal. In the context of the definition of physical reality presented above, that
similarity can be regarded as a confirmation of the structural similarity between
a PPS system and a system in an eigenstate of the measurement observable in
a strictly epistemic sense [114]. The theoretical proofs for this assertion will be
presented in the next segments after the necessary formalism has been introduced.

For an interaction parametrized by the small parameter ε, the generator p̂,
the initial pointer state |Φ0〉 and the observable Â with the eigenbasis {|aj〉}
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corresponding to the eigenvalues {aj}, the pointer state |Φe〉 after interaction
with an object system in the eigenstate |ak〉 is simply |Φεak〉 following the usual
definition introduced in the context of eq. (3.13). For a preselected object system
in the superposition state |χI〉 =

∑
j γj|aj〉, with an expectation value 〈Â〉 =∑

j |γj|2aj is equal to eigenvalue ak, the final pointer state ρ̂exp is a mixed state
with

ρ̂exp =
∑
j

|γ|2|Φεaj〉〈Φεaj |, (5.7)

as presented in eq. (3.28). The pointer state |Φw〉 coupled to a pre- and post-
selected object system such that the weak value Aw = ak is obtained, can be
expressed as

|Φw〉 =
1

N
〈ψF |e−iεÂ⊗p̂|ψI〉|Φ0〉 (5.8)

with pre- and postselection states |ψI〉 and |ψF 〉, the normalizationN =
√
〈Φw|Φw〉

and the notation |a〉|b〉 := |a〉 ⊗ |b〉.
To show that the operational reality of the weak value is similar to that of eigen-

values, the fundamental similarity between pointer wavefunctions of the pointer
coupled to the eigenvalue and to the weak value has to be confirmed [114]. As the
relevant quantity to evaluate the similarity of the states, the fidelity or “overlap”
is considered as defined in chapter 2. The following proof thus aims to show a fun-
damental difference between two fidelities F (|Φe〉, |Φw〉) and F (|Φe〉, ρ̂exp), which
can be expressed as

F (|Φe〉, |Φw〉) = |〈Φe|Φw〉| =
1

N

∣∣∣〈Φεak |〈ψF |e−iεÂ⊗p̂|ψI〉|Φ0〉
∣∣∣ , (5.9)

F (|Φe〉, ρ̂exp) =
√
〈Φe|ρ̂exp|Φe〉 =

√∑
j

|γj|2
∣∣〈Φεak |Φεaj〉

∣∣2. (5.10)

Comparison of Weak Value and Eigenvalue

In order to evaluate the fidelity in the weak value case, it is instructive to expand
eq. (5.9) in powers of ε as

|〈Φe|Φw〉| =
1

N

∣∣∣∣∣∑
n

(−i)n

n!
εn〈ψF |

(
Â− ak

)n
|ψI〉〈p̂n〉

∣∣∣∣∣ , (5.11)

where 〈p̂n〉 := 〈Φ0|p̂n|Φ0〉. Keeping terms up to fourth order in ε and using the
relation Aw = ak ∈ R yields the approximate expression

|〈Φe|Φw〉| ≈
|〈ψF |ψI〉|
N

∣∣∣1− ε2

2

(
A2
w − (Aw)2

)
〈p̂2〉+

iε3

6

(
A3
w − 3A2

wAw + 2(Aw)3
)
〈p̂3〉

+
ε4

24

(
A4
w − 4A3

wAw + 6A2
w(Aw)2 − 3(Aw)4

)
〈p̂4〉

∣∣∣,
(5.12)
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where Anw denotes the higher order weak values as defined in eq. (3.44) with
Anw 6= (Aw)n.

The normalization N can be expanded in the same manner which yields

1

N 2
≈ |〈ψF |ψI〉|2

(
1− ε2

(
Re
[
A2
w

]
− (Aw)2

)
〈p̂2〉 − ε3

3

(
Im
[
A3
w

]
− 3AwIm

[
A2
w

])
〈p̂3〉

+
ε4

12

(
Re
[
A4
w

]
− 4AwRe

[
A3
w

]
+ 3|A2

w|2
)
〈p̂4〉

)
.

(5.13)

Inserting eq. (5.13) into eq. (5.12), expanding in powers of ε again and keeping
only terms with ε4 or lower, results in the final expression for the overlap in the
weak value case

|〈Φe|Φw〉| = 1− 1

8

(
〈p̂4〉 − 〈p̂2〉2

) ∣∣∣A2
w − (Aw)2

∣∣∣2ε4 +O(ε5), (5.14)

which can be rewritten as

|〈Φe|Φw〉| = 1− 1

8

(
∆(p̂2)

)2
(∆Aw)4ε4 +O(ε5), (5.15)

where ∆Aw := |A2
w − (Aw)2| 12 is the weak uncertainty as defined in [62].

It is thus proven that for any pre- and postselection states, which generate some
weak value, the fidelity between the pointer state following the postelection and
the pointer state corresponding to an eigenvalue equal to the weak value, scales
at least with order ε4.

Comparison of Expectation Value and Eigenvalue

As in the weak value case this fidelity from eq. (5.9) is expanded in orders of ε,
also in the expectation value case, which results in√

〈Φe|ρ̂exp|Φe〉 ≈
(∑

j

|γj|2
∣∣∣1− iε(aj − ak)〈p̂〉 − ε2

2
(aj − ak)2 〈p̂2〉

∣∣∣) 1
2

≈
(∑

j

|γj|2
(

1 + ε2
(
a2
j − 2ajak + a2

k

)
〈p̂〉2

− ε2
(
a2
j − 2ajak + a2

k

)
〈p̂2〉

)) 1
2

(5.16)

Using the relation 〈An〉 =
∑

j |γj|2anj and the fundamental assumption 〈Â〉 =
ak, this expression simplifies to√

〈Φe|ρ̂exp|Φe〉 ≈
√

1− ε2 (〈p̂2〉 − 〈p̂〉2)
(
〈Â2〉 − 〈Â〉2

)
⇒

√
〈Φe|ρ̂exp|Φe〉 = 1− ε2

2
(∆p)2 (∆A)2 +O(ε3).

(5.17)
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Contrary to the weak value case, the lowest order of scaling in the expectation
value case ε2 does not vanish, as long as the preselection state is not an eigenstate
of Â and the initial pointer state is not an eigenstate of p̂. Thus, it can be
argued that for a sufficiently weak interaction with ε → 0, the overlap between
the pointer coupled to an eigenvalue and the pointer coupled to a weak value (5.15)
is infinitely better than the overlap between the eigenvalue and the expectation
value pointers (5.17). An experimental observation of these properties would
confirm the operational reality of weak values as presented above.

5.2.2. Experimental Confirmation of Overlaps

The fundamentally different scaling behaviors between the three pointer states
can be confirmed in a simple interferometric experiment as described below.

Principle of Setup

To measure the fidelity between the different pointer states a similar interaction
principle is employed, as for the DST presented in chapter 4. While the Gaussian
beam pointer is suitable without any reservations, in a dichotomic polarization
object system it is impossible to prepare a superposition state that corresponds
to an expectation value which is equal to one of the two eigenvalues. As proposed
in [114], however, it is possible to emulate a third eigenstate with the eigenvalue
0 by the absence of any interaction. Therefore, in the proposed experiment with
an interaction parametrized by the operator σ̂z the characteristic value is chosen
to be zero. The corresponding eigenvalue ak = 0 is realized by the absence of
interaction, the expectation value 〈σ̂z〉 = 0 by a preselected system only with the
preselection state |ψI〉 = |P 〉 and the weak value σw = 0 by using the same state
as a postselection with |ψF 〉 = |ψI〉 = |P 〉.

The setup employed to measure the fidelity between the different pointer states
is a Mach-Zehnder-interferometer as described in [78] and depicted in Fig. 5.1.

While in the reference-arm the pointer coupled to the eigenvalue is prepared
by an absence of interaction, in the test-arm both the states corresponding to the
expectation value and to the weak value can be created by inserting or removing
the postselection polarizer. As discussed in subsection 4.3.2, it is possible to vary
the interaction strength ε by rotating the YVO4 crystal, which enables an analysis
of the scaling behavior of the fidelities. To compensate for the intensity losses due
to the postselection it is necessary to reduce the intensity in the reference-arm to
equal the intensities in the two arms. The latter step effectively corresponds to the
renormalization of the weak value pointer state after the projective postselection.
Eventually the value of the fidelity can be measured by evaluating the intensity
change in one of the output ports when the phase between the two interferometer
paths is varied, as discussed below.
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5.2. Weak Values as Weak Eigenvalues

Figure 5.1.: Setup for the measurement of the fidelites for different pointer states.
The beam-splitters BS1 and BS2 and the two mirrors M1 and M2 are standard
elements of a Mach-Zehnder-interferometer. They are used to create two beam
paths or “arms”, which are overlapped again after different sets of operations have
been executed in each arm. In the lower test-arm the pointer states corresponding
to expectation values and weak values can be prepared with the two polarizers
POL1 and POL2, which represent pre- and postselection and an YVO4 crystal,
which creates the weak interaction. In the upper reference-arm, where the pointer
state corresponding to eigenvalue 0 is prepared, the intensity can be varied by ro-
tating the polarizer POL3, which changes the amount of light transmitted by
the successive polarizer POL4. For practical reasons, the polarizer POL4 is ro-
tated to P -polarization, just as the postselection polarizer POL2. An additional
component is used to change the phase relation between the two arms, which is
necessary for the measurement of the visibility.

The expected scaling behavior of the fidelity for the Gaussian beam pointers
corresponding to the object system states defined above is presented in Fig. 5.2.

Visibility as Measure for Fidelity

A fundamental difficulty appears in the case of the pointer state coupled to an
expectation value, where the object system and the pointer system are in a non-
separable state. Because the two systems are realized as different degrees of
freedom of the same particle, it is not trivial to experimentally realize a separated
projection of the mixed pointer state onto the pointer state corresponding to an
eigenvalue from the reference-arm. In the experiment, however, the symmetry of
the interaction allows the measurement of a quantity that is proportional to the
pursued fidelity. For the comparison of the weak value and the eigenvalue this
problem does not arise because in both cases the pointer state is separable from
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Figure 5.2.: Scaling of fidelities between the eigenvalue pointer and the pointers
corresponding to the weak value and to the expectation value. The fidelity is
plotted in dependence on the interaction strength ε

∆
, where ∆ is the standard

deviation of the Gaussian pointer profile.

the object state, and it is possible to generate the necessary overlap by simply
rotating the two object states into the same polarization state.

The quantity calculated for the evaluation of the fidelity is the visibility V ,
which is defined as [78]

V =
Imax − Imin
Imax + Imin

, (5.18)

where Imax and Imin represent the maximal and minimal intensities, which are
recorded when the superposition of the two states is varied between maximally
constructive and maximally destructive interference by changing the phase rela-
tion between the two arms of the interferometer. The composite state |Ce〉 in the
case corresponding to the eigenvalue can be written as

|Ce〉 = |P 〉 ⊗ |Φ0〉. (5.19)

In the case of the expectation the non-separable state |Cexp〉 becomes

|Cexp〉 =
1√
2

(|H〉 ⊗ |Φε〉+ |V 〉 ⊗ |Φ−ε〉) . (5.20)
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Assuming a maximal intensity Imax in the case of the phase ϕ and consequently
a minimal intensity Imin with the phase ϕ+ π, the visibility can be expressed as

V =
‖|Ce〉+ eiϕ|Cexp〉‖2 − ‖|Ce〉 − eiϕ|Cexp〉‖2

‖|Ce〉+ eiϕ|Cexp〉‖2 + ‖|Ce〉 − eiϕ|Cexp〉‖2
,

=
4Re [eiϕ〈Ce|Cexp〉]

4
= Re

[
eiϕ〈Ce|Cexp〉

]
=

1

2

(
Re
[
eiϕ〈Φ0|Φε〉

]
+ Re

[
eiϕ〈Φ0|Φ−ε〉

])
.

(5.21)

For the states used in the experiment the fidelity F (|Φe〉, ρ̂exp) from eq. (5.9),
can be reformulated to

F (|Φe〉, ρ̂exp) =

√
1

2

(
|〈Φ0|Φε〉|2 + |〈Φ0|Φ−ε〉|2

)
. (5.22)

To relate the quantities from eqs. (5.21) and (5.22), it is necessary to assume real
and strictly positive pointer wavefunctions, as it is the case with the employed
Gaussian profiles. This implies ϕ = 0 because in the latter case a maximal in-
tensity corresponds simply to an additive superposition of the two wavefunctions.
Consequently the visibility can be expressed as

V =
1

2
(|〈Φ0|Φε〉|+ |〈Φ0|Φ−ε〉|) . (5.23)

It becomes clear that it is the symmetry of the interaction with 〈Φ0|Φε〉 =
〈Φ0|Φ−ε〉, which eventually allows the identification of the measured visibility
with the relevant fidelity as

V = |〈Φ0|Φ±ε〉| =
√
|〈Φ0|Φ±ε〉|2 = F (|Φe〉, ρ̂exp). (5.24)

By a measurement of the visibilities under variation of the interaction strength ε,
it is therefore possible to measure the scaling behaviors of both fidelities for the
different pointer states prepared in the test-arm.
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6. Conclusions

In this thesis the intricate field of weak measurement and values has been dis-
cussed. While different interpretations of the concept of weak values have been
presented, no definite conclusion about their status and meaning in physics can
be given at this point. It has been demonstrated how weak values emerge natu-
rally from PPS measurements and how they manifest in linear pointer responses
for interactions that satisfy suitable conditions. Furthermore, it has been dis-
cussed how the unusual pointer shifts encountered in weak measurements, emerge
naturally from interference effects caused by the relation between pre- and postse-
lection. These formal results can be captured in total by the standard formulation
of quantum mechanics and while they surely present an unique way to consider
quantum systems, they do not seem to introduce new physics.

If, however, the time-symmetric approach to quantum mechanics, which lies at
the origin of weak values, is combined with a radical operationalist perspective
on quantum measurement, the formalism of weak values seems to imply the pos-
sibility of gaining more information about physical systems than permitted by
the standard quantum theory. The corresponding claims about the past of quan-
tum particles, including such elements as negative particle numbers, have been
shown to be extremely controversial and founded in a highly unusual concept of
measurement outcomes. In contrast, an interpretation of weak values as relative
probability amplitudes has proven a more substantial approach, which is com-
pletely consistent with the standard interpretation of quantum mechanics and is
used in the procedure of direct state tomography.

While the controversy regarding the meaning of weak values is surely one of
the most prominent subject of the field, the formalism of weak values can be also
very useful in practical implementations, independently of the interpretation. As
has been presented in this thesis, experimental techniques as direct state tomog-
raphy and weak amplification have proven the usefulness of weak measurements
in various applications. However, as pointed out by critics, these procedures
display their potential only under very specific experimental conditions, which
limits the scope of their applicability. While direct state tomography appears to
be especially suited for the analysis of high dimensional quantum systems, weak
amplification is only useful in scenarios with unlimited statistics and dominating
technical noise. For the direct state tomography of pure qubits also an exact and
unbiased boolean scheme was proposed.
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The direct state tomography experiment that was reproduced in the course
of this thesis could not overcome two principal discrepancies between theoretical
predictions and the data. While the measured pointer response curves showed
good agreement with the theory with respect to most of their properties, the
linear regime of the pointer response broke down for much smaller weak values
than expected. Furthermore, in the process of the calibration of the experiment a
much larger contribution of imaginary weak values to the pointer shift has been
observed, than was predicted by the theoretical calculations as presented in this
thesis. While some possible explanations for these phenomena were discussed, no
definite explanation can be given at this point.

In the context of the operational interpretation of weak values as the real prop-
erties of PPS systems, a proof for the scaling of the fidelities between different
pointer states after interaction was developed. While this result surely represents
an interesting property of weak measurements, it is, however, debatable what
kind of interpretational conclusions it implies. Because weak measurements do
not involve any empirical content, which is not included in standard quantum me-
chanics, the question may arise how relevant the debate about their interpretation
is to physics. Even in the radically operational interpretation, the counterfactual
claims about the past of particles pertain only to their weak interactions and in
the case of strong measurements the time-symmetric ABL rule still contains the
element of state reduction. The issue of an interpretation of weak measurements
beyond the scope of standard quantum mechanics, therefore seems to be related
mainly to the definition of notions as “reality” and “measurement”, which are the
subject of an ongoing discourse about the meaning of physical theories in general.
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A. Appendix

A.1. Formulas for Gaussian Beams

A.1.1. Standard Gaussian Profile

The square-normalized Gaussian profile FG(x) is defined as

FG(x) :=

(
1

2π∆2

) 1
4

exp

(
− x2

4∆2

)
, (A.1)

with 〈x̂〉 = 〈p̂x〉 = 0, ∆x = ∆ and ∆p = ~
2∆

.
A product of Gaussian profiles shifted differently in position space can be ex-

pressed as

FG(x− a)FG(x− b) =
1√

2π∆2
exp

(
− 1

4∆2

[
(x− a)2 + (x− b)2])

=
1√

2π∆2
exp

(
− 1

2∆2

(
x− a+ b

2

)2
)

exp

(
− 1

8∆2
(a− b)2

)
,

(A.2)

which implies the overlap∫ ∞
−∞

FG(x− a)FG(x− b) dx = exp

(
− 1

8∆2
(a− b)2

)
. (A.3)

A.1.2. Curved Gaussian Profile

For the curved Gaussian profile FC(x) of a Gaussian beam defined in subsec-
tion 4.2.1 as

FC(x) :=

(
1

2π∆2
z

) 1
4

exp

(
− x2

4∆2
z

)
exp

(
−ik x2

2Rz

)
, (A.4)

with ∆z := wz
2

and all z-dependent quantities signified with the index z, the
overlap can be calculated as∫ ∞

−∞
F ∗C(x− a)FC(x− b) dx = exp

(
−(a− b)2

8∆2
0

)
, (A.5)
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with the important identity

1 + ( k
2Rz

)2w4
z

w2
z

=
1

w2
0

⇔
1 + 16( k

2Rz
)2∆4

z

4∆2
z

=
1

4∆2
0

. (A.6)

The position expectation value 〈x̂〉 becomes∫ ∞
−∞

xF ∗C(x− a)FC(x− b) dx =

(
a+ b

2
− ia− b

2

z

zR

)
exp

(
−(a− b)2

8∆2
0

)
, (A.7)

with the important identity

kw2
z

2R2
z

=
z

zR
. (A.8)

For the momentum expectation value 〈p̂x〉 it can be obtained that∫ ∞
−∞

F ∗C(x− a)(−i~∂x)FC(x− b) dx = i~
a− b
4∆2

0

exp

(
−(a− b)2

8∆2
0

)
. (A.9)

A.2. Formulas for Qubit Weak Values

A.2.1. Reformulation of Weak Value Expressions

An arbitrary qubit weak value can be separated into real and imaginary parts
with

σw =
αγ∗ − βδ∗

αγ∗ + βδ∗
=
|αγ∗|2 − |βδ∗|2 + 2iIm [αβ∗γ∗δ]

|αγ∗|2 + |βδ∗|2 + 2Re [αβ∗γ∗δ]
, (A.10)

which implies

Re [σw] =
|αγ∗|2 − |βδ∗|2

|αγ∗|2 + |βδ∗|2 + 2Re [αβ∗γ∗δ]
, (A.11)

Im [σw] =
2Im [αβ∗γ∗δ]

|αγ∗|2 + |βδ∗|2 + 2Re [αβ∗γ∗δ]
. (A.12)

The modulus of the weak value can be rewritten as

|σw|2 =
|αγ∗|2 + |βδ∗|2 − 2Re [αβ∗γ∗δ]

|αγ∗|2 + |βδ∗|2 + 2Re [αβ∗γ∗δ]
(A.13)

and

1− |σw|2 =
4Re [αβ∗γ∗δ]

|αγ∗|2 + |βδ∗|2 + 2Re [αβ∗γ∗δ]
. (A.14)
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A.2. Formulas for Qubit Weak Values

A.2.2. Foundation of Boolean Direct State Tomography
Scheme

For the following proofs it is instructive to define new coordinates θ′ and ϕ′ on
the Bloch sphere, with which an arbitrary qubit state |ψ〉 is parametrized as

|ψ〉 = cos
θ′

2
|P 〉+ eiϕ

′
sin

θ′

2
|M〉

=

(
cos

θ′

2
+ eiϕ

′
sin

θ′

2

)
|H〉+

(
cos

θ′

2
− eiϕ′ sin θ

′

2

)
|V 〉.

(A.15)

For a division of Bloch sphere into two half spheres with the |P 〉 and |M〉 states
at the poles, states with θ′ ∈]π

2
, 3π

2
[ lie in the “M half sphere”, and the others in

the “P half sphere”.
The moduli of the qubit weak values |σ(P )

w | and |σ(M)
w | for P - andM -postselection

can thus be expressed as

|σ(P )
w | =

∣∣∣∣〈P |σ̂z|ψ〉〈P |ψ〉

∣∣∣∣ =

∣∣∣∣∣eiϕ
′
sin θ′

2

cos θ′

2

∣∣∣∣∣ = | tan
θ′

2
| (A.16)

|σ(M)
w | = | cot

θ′

2
|. (A.17)

The latter result proofs that states in the half spheres corresponding to the post-
selection states, always imply weak values with moduli smaller than one and vice
versa.

It remains to proof that the postselection probability for states from the same
half sphere as the postselection state is also higher than for states from the op-
posite half, which represents the basis for the boolean tomography scheme as
presented in subsection 4.2.2. For a preselection state |ψ〉 = α|H〉 + β|V 〉 with
α = cos θ′

2
+ eiϕ

′
sin θ′

2
and β = cos θ′

2
− eiϕ′ sin θ′

2
as defined above, the state after

the interaction |ψIA〉 can be written as

|ψIA〉 = α|H〉|Φε〉+ β|V 〉|Φ−ε〉. (A.18)

For the postselection state |ψF 〉 = 1√
2
(|H〉 ± |V 〉) the probability of postselection

|〈ψF |ψIA〉|2 becomes

|〈ψF |ψIA〉|2 =
1± Re [αβ∗] e

− ε2

2∆2
0

2

=
1± cos θ′e

− ε2

2∆2
0

2
.

(A.19)

Thus, for finite ε the probability of postselection is therefore always higher for pre-
selection states from the same half of the Bloch sphere as the postselection state.
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Appendix

By executing both postselections and considering only the data corresponding to
higher intensities, the exact DST scheme will always only evaluate weak values
from the unamplified region of the eigenvalues, which correspond to the invertible
region of the pointer response.

A.2.3. Inversion of Pointer Response

The inversion of eqs. (4.50) and (4.51) for z = 0 is facilitated if σw is expressed
in polar form with

σw = Aσeiϕσ . (A.20)

In this case the Ansatz for the modulus Aσ becomes

A2
σ[

1− 1
2
(1−A2

σ)(1− e
− ε2

2∆2
0 )

]2 = (δx̃)2 + (δp̃)2 , (A.21)

which under the assumption Aσ ≥ 0 represents a quadratic equation with the
normalized shifts δx̃ and δp̃ defined as

δx̃ :=
〈x̂〉F
ε
, δp̃ :=

2∆2
0

~εe
− ε2

2∆2
0

〈p̂x〉F . (A.22)

Employing sxp as a short notation for the measured shifts as

sxp := (δx̃)2 + (δp̃)2 =

(
〈x̂〉F
ε

)2

+

(
2∆2

0〈p̂x〉F

~εe
− ε2

2∆2
0

)2

, (A.23)

the solution of eq. (A.21) can be expressed as

Aσ =
1±

√
1− (1− e

− ε

∆2
0 )sxp

(1− e
− ε

2∆2
0 )
√
sxp

, (A.24)

where “−” represents the desired solution.
For the calculation of the phase ϕσ various cases have to be distinguished as

ϕσ =


arctan( δp̃

δx̃
) if δx̃ > 0

arctan( δp̃
δx̃

) + π if δx̃ < 0
π
2

if δx̃ = 0, δp̃ > 0

−π
2

if δx̃ = 0, δp̃ < 0

. (A.25)
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