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Abstract

For the applications in quantum information and experiments on the foun-

dations of quantum mechanics a robust narrow-band single photon source is

desirable. We report on single photon emission from the Silicon Vacancy

(SiV) centers in diamond fabricated by ion implantation. Single SiV centers

are photostable and have a spectrum consisting of a sharp zero phonon line

(FWHM is about 5 nm) at 738 nm and only very weak vibronic sidebands

at room temperature. The short luminescence lifetime of 1.2 ns enables an

efficient generation of single photons. We employed nitrogen doping to sup-

press nonradiative transitions of single SiV centers and used a diamond solid

immersion lens to improve the collection efficiency of single photons. It is

promising to build an efficient single photon source based on the SiV centers.
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Chapter 1

Introduction

After the wave interpretation of diffraction was given by Fresnel in 1815,

Maxwell formulated the electro magnetic wave equation in 1873. The wave

theory of light was generally accepted at the end of 19th century. The sit-

uation changed radically in 1901 with Planck’s hypothesis. In 1901, Max

Planck derived the spectral distribution of thermal light by postulating that

the energy of a harmonic oscillator is quantized, so called quanta. In addition

to that A. Einstein showed that the photoelectric effect could be explained

by the hypothesis that the energy of a light beam was distributed in discrete

packages.

Many optical experiments can be adequately explained using classical

theory of electromagnetic radiation based on Maxwell’s equations. The first

serious attempt to reveal the quantum nature of light was performed by Tay-

lor in 1909. He set up a Young’s slit experiment with strongly attenuated

light. To his disappointment, he found no noticeable change in the interfer-

ence pattern, even at very low intensities where less than one photon existed

in the apparatus at one time.

The experiment, which studies the intensity correlation of light field, was

done firstly by R. Hanbury Brown and R. Q. Twiss and effectively is the

birth of the modern quantum optics. In the Hanbury Brown-Twiss experi-

ment the photon bunching was observed for the thermal light [1], which is

a consequence of the large intensity fluctuations of thermal sources. This

type of photon bunching phenomena may be sufficiently explained both by

classical and quantum theory.

The invention of laser changed this situation dramatically. The classical

features of laser light are closer to radio waves, that is, it was rather like a
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plane wave field. Pioneering work [2] showed that laser light also had a pure

quantum aspect which had never been considered before [3].

The quantum theory gives different predictions than its classical counter-

part. This was first investigated by R.J. Glauber in his quantum formulation

of optical coherence theory [4], [5]. One such prediction is photon antibunch-

ing where the initial slope of the intensity correlation function is positive. A

classical theory of fluctuating field amplitudes would require negative prob-

abilities in order to give photon antibunching. In the quantum picture it is

easly visualized by assuming that photon arrivals one more regularly than

Poissonian.

The first antibunching of light, which is generated in resonance fluores-

cence from a two-level atom, was observed by Kimble et al. [6]. In this

experiment, an atomic beam is used and hence the photon antibunching was

convolved with the atom number fluctuations in the beam.

The development of quantum optics not only provides a deep insight into

the nature of light, it contributes also greatly to field of quantum information

processing which has been extensively investigated recently.

1.1 Why Single Photons?

There are two branches of modern cryptographic techniques: public-key en-

cryption and secret-key encryption. In public-key cryptography, messages

are exchanged using keys that depend on the assumed difficulty of certain

mathematical problems [7]. Each participant has a public key and a private

key ; the former is used by others to encrypt messages, and the latter by the

participant to decrypt them.

In secret-key encryption, a secret key is shared by two users, who use it

to transform plaintext inputs to an encoded cipher using a so called one-time

pad the security is absolutely guaranteed [7]. The main practical problem

with secret-key encryption is determining a secret key.

Quantum mechanics gives promising solution for this problem. One of

the best-known principles of quantum mechanics is that it is impossible to do

measurements on quantum system without running the risk of changing the

state of the system. This assumes the ultimate data security. If information is

encoded into several nonorthogonal states of a quantum system, any attempt

to get the information by measuring its properties can alter the particular
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state, therefore the presence of an eavesdropper will be detected1. This idea is

the foundation of the growing field generally known as quantum cryptography

or quantum key distribution [8]. The security of the transmission arises from

the fact that single photon is indivisible and its unknown quantum state

cannot be copied [9].

The most common Quantum-Key-Distribution(QKD) protocol, which

has been implemented in experiments over the last years [7], is the BB84

protocol, which uses single photons as information carriers [10]2. A security

analysis for this protocol under realistic system parameters and against in-

dividual attacks has been performed [11], [12]. This analysis shows that the

performance of a quantum cryptography system, in terms of communication

distance and secure communication rate, is determined by the characteristics

of the source of single photon, and of the single-photon detectors.

The most important question of QKD is its security. In real quantum

cryptography experiments, a single photon source is usually replaced by at-

tenuated laser pulses (i.e., weak coherent states), which occasionally give

out more than one photon. This opens up the possibility of sophisticated

eavesdropping attacks such as a photon number splitting attack, where Eve

stops all single-photon signals and splits multi-photon signals, keeping one

copy herself and re-sending the rest to Bob. The security of practical QKD

systems has previously been discussed in [13].

Hwang [14] proposed the decoy state method as an important weapon to

combat those sophisticated attack: by preparing and testing the transmission

properties of some decoy states, Alice and Bob are in a much better posi-

tion to catch an eavesdropper. Hwang specifically proposed to use a decoy

state with an average number of photon of order 1. Hwangs idea was highly

innovative.

Quantum information processing requires indistinguishable photons, iden-

tical in frequency and without a phase jump, so they can interfere with each

other. And the light source should be efficient, emitting a photon in a large

fraction of the possible time slots [15].

Single-photon source research is now focused on developing true single-

photon sources that are suitable for different practical applications. The

1see www.laserfocusworld.com/articles/255503
2C.H. Bennett and G. Brassard proposed BB84, the first quantum cryptography pro-

tocol, in 1984, but it was not until 1991 that the first experimental prototype based on
this protocol was made operable over a distance of 32 centimeters.
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main goals are:

• High efficiency, which can be explained by the fraction of time slots

occupied by single photons, which is also proportional to the probability

the time slot will contain two or more photons instead of one.

• Generation of photons that are indistinguishable from each other.

• High repetition rates and a design that easily couples photons into a

transmission fiber or free space. Current efforts are aimed at confining

a light-emitting species-as a gas or solid-inside an optical cavity that

helps control and couple emission.

1.2 Sources of Single Photons

Any bright light source can be attenuated so that, on average, one photon

arrives at a detector in a specific time interval. However, for a classical light

source, the number of photons will sometimes be zero, two, or more; it is

only the mean value that equals one. The smallest uncertainty in the photon

number for a classical light source is achieved with a Poissonian distribution.

A typical stream of classical light pulses is illustrated in figure 1.1;

In recent years a variety of implementations for single photon sources

have been investigated. Among them are schemes based on single molecules

or atoms [16], [17], [18], single ions trapped in cavities [19], color centers in

diamonds [20], [21], quantum dots [22], [23] and parametric down conversion

(PDC) [24], [25]. These sources differ in the wavelength and purity of the

emitted photons, their repetition rate and whether they produce a photon on

demand or heralded, i.e, announced by an event. The latter is for example

the case with PDC-sources. PDC produces randomly photon pairs and the

presence of one photon is indicated by the detection of the other.

In 1977 the first experiment on single photon was done by Kimble et al..

The sodium atoms were continously excited by a dye-laser beam and the

fluorescence was collected from the atoms at a right angle to both the laser

and atomic beams. They produced of antibunched photons and measured

resonance of the fluorescence from sodium atoms [6]. The sodium atoms enter

the interaction region randomly, thus the single photon emission is convolved

by Poissonian distribution of atoms. Afterwords a single ion was hold inside a
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Figure 1.1: A pulsed classical source (top), and a pulsed single-photon source
(bottom)

Paul-Trap and laser cooling was used. Considerable efforts were undertaken

to reduce its motion before measuring the resonance flouresence [26].

Figure 1.2: Typical optical excitation scheme for a single-photon source. A single
quantum system is raised from its ground state to a higher excited state by a laser
pulse, relaxes nonradiatively to a lower excited state, and emits a photon through
spontaneous emission

The experiments done with these set-ups are not easy to be used in practi-

cal applications. Several recent experiments employed quantum dots, organic

molecules and colour centers. In such systems, optical excitation is accom-

plished by focusing a laser pulse onto the quantum system. These systems

usually have at least three levels as shown in figure 1.2, so that the laser does

not have to be tuned to the same wavelength as the emitted photon. Oth-

erwise, separating the emitted single photon from the scattered laser light

(typically 108 photons) is difficult. For quantum dots, which have very high
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quantum efficiency, to produce a triggered stream of single photons, pulsed

excitation can be used [27], [28], [29]. There is no shelving or photobleaching

problem in these sources. That material would be compatible with semi-

conductor technologies, allowing the sources to be incorporated into larger

structures. The quantum dots have some problems with collection of the

photons which do not leave this high refractive index material. Improve-

ment of collection efficiency is needed. As a solution microcavities can be

used. If a QD is in resonance with the cavity mode, the spontenous emis-

sion goes mainly into cavity mode, and the spontaneous emission rate can

be enhanced [30].

Single organic molecules were incorparated in a crystalline host as dilute

impurities. By collecting light from a small volume of the sample, lumi-

nescence from these molecules can be isolated spatially and also selected

spectrally by filtering out the narrow zero phonon line of one molecule lu-

minescence. The antibunching measurement were done on the flourecence of

single organic molecules. It has been detected at low temperature [31] and

room-temperature [32]. But there is a disadvantage of these molecules. They

stop emitting light after some active time, which is known as photobleaching.

Nitrogen vacancay centers in synthetic diamond crystals have also been

used. NV centers are formed by a substitutional nitrogen atom with a va-

cancy trapped at an adjacent lattice position. The light emission from NV

centers has high quantum efficiency. They do not have any photobleach-

ing effect. Antibunching at room temperature was observed [20], [33]. The

disadvantage of this center is the shelving in metastable levels. They stop

emmiting light if they are in the metastable level. Another problem is that

the light emitted has a wide spectrum.

In this thesis, we have studied Si-V centers in dimaond. The high pho-

tostability and the narrow emission bandwidth of about 5 nm at room tem-

perature make SiV centres interesting as a single photon source in practical

quantum cryptography. We have used a diamond Solid-Immesion-Lens(SIL)

to improve collection efficiency.

1.3 Outline

This thesis will detail our work on using Si-V centers as single photon source

and on improving collection efficiency by using a SIL. Chapter 1 and 2 rep-

resent the introduction and the background information and form a starting
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point for the rest of my thesis, while chapter 3 contains the properties of di-

amond used in experiments. Chapter 4 explains the experimental techniques

which we have been used for investigating the colour centers. Finally, the

experimental results are presented in chapter 5.
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Chapter 2

Quantum Optics Toolbox

2.1 Photon Counting Statistics

The average photon number detected in a certain time is determined by the

intensity of the light beam, but the fluctuation in the count rate is gov-

erned by the statistical properties of the incoming photon stream. There

are three different types of photon statistics; Poissonian, super-Poissonian,

and sub-Poissonian. Poissonian and super-Poissonian statistics in photode-

tection experiments is consistent with the classical theory of light, but not

sub-Poissonian statistics.

The basic function of the experiment investigating photon statistics is to

count the number of photons that strike the detector in a user-specified time

interval T. In the quantum picture of light, a light beam can be considered as

a stream of photons. The photon flux Φ is defined as the average number

of photons passing through a cross section of the beam in unit time. Φ can

be calculated by dividing the energy flux I by the energy of the individual

photons:

Φ =
IA

~ω
=

P

~ω
, (2.1)

where A is the area of the beam and P is the power.

Photon counting detectors are specified by their quantum efficiency η,

which is defined as the ratio of the number of photocounts to the number of

incident photons. The average number of counts registered by the detector

in a counting time T is thus given by:
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N(T ) = ηΦT =
ηPT

~ω
. (2.2)

The corresponding average count rate R is given by:

R =
N

T
= ηΦ =

ηP

~ω
. (2.3)

The maximum photon counting rate that can be registered with a photon

counting system is usually determined by the fact that the detectors need a

certain amount of time to recover after each detection event. A ’dead time’

must elapse between successive counts. This sets a practical upper limit on

R of around 106counts/sec.

2.1.1 Coherent Light: Poissonian Photon Statistics

In classical physics, light is considered to be an electromagnetic wave. A

perfectly coherent light beam which has constant angular frequency ω, phase

ϕ, and amplitude ε0 can be descirbed as follows:

ε(x, t) = ε0 sin(kx− ωt + ϕ) , (2.4)

where ε(x, t) is the electric field of the light wave and k = ω
c

in free space.

Intensity, I, of the beam is proportional to the square of the electric field, and

is constant if ε0 and ϕ are time independent, which means that the average

photo flux is constant in time. Such a field can be approximated by a laser

field. Consider a light beam of constant photon flux Φ. The average number

of photons within a beam segment of length L is given by:

n̄ =
ΦL

c
. (2.5)

We assume that L is large enough that n̄ takes a well-defined integer

value. We now subdivide the beam segment into N subsegments of length

L/N . N is assumed to be sufficiently large that n̄
N

<< 1.

”What is the probability P(n) of finding n photons within a beam of length

L containing N subsegments?”
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Figure 2.1: Poissonian distributions for mean value 0.1, 1, 5, and 10.

The answer is given by some mathematical derivations and is known as

Poissonian distribution

P (n) =
n̄n

n!
e−n̄, n = 0, 1, 2... . (2.6)

The Poissonian statistics can be applied to the count rate of a photon-

counting system detecting individual photons from a light beam with a con-

stant intensity. In this case the randomness originates from chopping the

continuous beam into discrete energy packets with an equal probability of

finding the energy packet within any given time subinterval.

Poissonian distributions are uniquely characterized by their mean value

n̄. Representative distributions for n̄=0.1, 1, 5 and 10 are shown in figure 2.1.

It is apparent that the distribution peaks close to n̄ and gets broader as n̄
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increases. Fluctuations of a statistical distribution about its mean value are

usually quantified in terms of variance. The variance is equal to the square

of the standard deviation ∆n. And is the defined by:

V ar(n) = (∆n)2 =
∞∑

n=0

(n− n̄)2P (n) . (2.7)

It is a well known result for Poissonian statistics that the variance is equal

to the mean value n̄:

(∆n)2 = n̄ . (2.8)

The standard deviation for the fluctuation of the photon number is there-

fore given by:

∆n =
√

n̄ . (2.9)

This makes clear that the ratio between standart deviation and the mean

value decreases as n̄ gets larger.

2.1.2 Classification of Light by Photon Statistics

From a classical perspective, a perfectly coherent beam of constant intensity

is the most stable type of light that can be predicted. This therefore provides

a bench mark for classifying other types of light according to the standard

deviation of their photon number distributions. In general, there are three

possibilities

• Sub-Poissonian Statistics:∆n <
√

n̄,

• Poissonian Statistics:∆n =
√

n̄,

• Super-Poissonian Statistics:∆n >
√

n̄,

where n̄ and ∆n are mean value and standard deviation, respectively.

The difference between the three different types of statistics is illustrated

in figure 2.2. In this figure, the photon number distributions of Super-

Poissonian and Sub-Poissonian light are compared to that of a Poissonian
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Figure 2.2: Comparison of the photon statistics for light. The distributions have
been drawn with the same mean photon number.

distribution with the same mean photon number. We see that distributions

of Super-Poissonian and Sub-Poissonian light are, respectively, broader or

narrower than Poisson distribution.

If there are any classical fluctuations in the intensity, then we would

expect to observe large photon number fluctuations than for the case of

perfectly coherent beam. Since perfectly coherent beam obeys Poissonian

statistics, it follows that all classical light beams with time-varying intensities

will have Super-Poissonian photon number distribution.

Sub-Poissonian light, by contrast, has a narrower distribution than the

Poissonian case and is therefore ’quiter’ than perfectly coherent light. Now

we have already emphasized that a perfectly coherent beam is the stablest

form of light that can be envisaged in classical optics. It is therefore appar-

ent that Sub-Poissonian light has no classical counterpart, and is therefore

an example of non-classical light.

Super-Poissonian Light

Super-Poissonian light is defined by the relation: ∆n >
√

n̄. Super-

Poissonian statistics has a classical interpretation in terms of fluctuations in

the light intensity. A real light source has certain unstability in intensity, and

therefore the observation of Super-Poissonian statistics is common place.

Chaotic light is an example of Super-Poissonian Statistics. The light from

a discharge lamp is generally called chaotic light. Chaotic light has partial

coherence; with classical intensity fluctuations on a time scale determined by
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the coherence time τc.

Figure 2.7 shows a computer simulation of the time dependence of the

intensity of the light emitted by a chaotic source with a coherence time of

τc. It can be supposed that each atom emits at the same frequency , but

due to random collision the phase of the light from the individual atoms is

constantly changing. The summation of the randomly phased light from the

millions of light emitting atoms in the source causes the fluctuations. As we

can see from the graph the intensity fluctuates above and below the average

value 〈I〉 widely comparable to τc.

Sub-Poissonian Light

Sub-Poissonian light is defined by the relation: ∆n <
√

n̄. Sub-Poissonian

light has a smaller photon number uncertainty than Poissonian statistics.

A perfectly coherent beam with constant intensity has Poissonian photon

statistics. We thus conclude that Sub-Poissonian light is more stable than

perfectly coherent light. Sub-Poissonian light has no classical equivalent.

Therefore, the observation of Sub-Poissonian statistics is a clear signature of

the quantum nature of light. Let us consider the properties of a beam of light

in which time intervals ∆t between the photons are identical, as illustrated

schematically in figure 2.3(a). The photo-count obtained for such a beam in

a time T would be integer value determined by:

N = Int(η
T

∆t
) , (2.10)

which would be exactly the same for every measurement. The experimenter

would therefore obtain the histogram shown in figure 2.3(b), with n̄ = N

given by equation (2.10). This is highly sub-Poissonian, and has ∆n = 0.

Photon streams of the type shown in figure 2.3(a) with ∆n = 0 are

called photon number states. Other types of sub-Poissonian light can be

conceived in which the time intervals between the photons in the beam are not

exactly the same, but are still more regular than the random time intervals

appropriate to a beam with Poissonian statistics.
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Figure 2.3: (a) Beam of light containing a stream of photons with a fixed-time
spacing ∆t between them. (b) Photon counting statistics for such a beam.

2.2 The second order correlation function

”How can we quantify how good a single photon source is?” Normalized sec-

ond order correlation is a function which can be used to answer this question.

It can be written as:

g(2) =
〈ε∗(t)ε∗(t + τ)ε(t + τ)ε(t)〉
〈ε∗(t)ε(t)〉〈ε∗(t + τ)ε(t + τ)〉

=
〈I(t)I(t + τ)〉
〈I(t)〉〈I(t + τ)〉

, (2.11)

where ε(t) and I(t) are the electric field amplitudes and intensity of the light

beam at time t. The 〈· · · 〉 indicates the time average computed by integrating

over a long time period. Such that, 〈I(t)〉 = 〈I(t + τ)〉 for a source which

has a constant average intensity.

First of all, we need the second order correlation function to analyse the

results that we have derived classiccally in terms of intensity fluctuations. We

assume that we are testing spatially coherent light from a small area of the

source. In these conditions the second order correlation function investigates

the temporal coherence of the source.

The time scale of the intensity fluctuations is determined by the coherence

time τc of the source. The intensity fluctuations at times t and t + τ will be

completely uncorrelated with each other , if t >> τc. The time dependent

intensity can be written as:
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I(t) = 〈I〉+ ∆I(t) (2.12)

with 〈∆I(t)〉 = 0, we than have from equation (2.21) that:

〈I(t)I(t + τ)〉τ>>τc
= 〈I〉2 . (2.13)

Therefore;

g(2)(τ >> τc) =
〈I(t)I(t + τ)〉

〈I(t)〉2
= 1 . (2.14)

On the other hand for the case τ << τc, there will be correlations between

the fluctuations at the two times. If τ = 0, we have;

g(2)(0) =
〈I(t)2〉
〈I(t)〉2

. (2.15)

For any conceivable time dependence of I(t), it will always be the case

that

g(2)(0) ≥ 1 (2.16)

and

g(2)(0) ≥ g(2)(τ) . (2.17)

We can give an explanation of the validity if the inequality above. First

,we can consider a perfectly coherent monochromatic source which has a

time independent intensity I0. In this case, it is clear that g(2)(τ) = 1 for all

values of τ since I0 is constant. Finally we can consider any source which has

a time varying intensity. Because there are intensity fluctuations above and

below the average, 〈I(t)2〉 ≥ 〈I(t)〉2 and the squaring process exaggerates the

fluctuations above the mean value. Putting all these arguments together, it

can be realized that, we expect g(2)(τ) to decrease with τ , for any source

with a time varying intensity, reaching the value of unity for large τ . We

expect a constant value of g(2)(τ) = 1 in the special case where I(t) does not

vary with time. It can be seen that these conclusion are in agrement with

equation (2.16) and (2.17).
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Light Source Property Comment

Classical light

{
g(2)(0) ≥ 1

g(2)(0) ≥ g(2)(τ)

g(2)(0) = 1 when

I(t) = const.

Perfectly coherent light g(2)(τ) = 1 Applies for all τ

Gaussian chaotic light g(2)(τ) = 1 + e−π( τ
τc

)2 τc =coherence time

Lorentzian chaotic light g(2)(τ) = 1 + e
−2

|τ |
τ0 τ0 =lifetime

Table 2.1: Properties of the second order correlation function for classical light

It is instructive to considered the explicit forms of the second order cor-

relation function for the various forms of light that we usually consider in

clasical optics. We already know that perfectly coherent light has g(2)(τ) = 1

for all τ . The values of g(2)(τ) for the chaotic light from an atomic discharge

lamp can be calculated by assuming simple models of the source. The second

order correlation functions for different types of light are given by in table

below:

We have classified light according to whether the statistics were sub-

Poissonian, Poissonian, or super-Poissonian. We now make a different three-

fold classification according to the second order correlation function g(2)(τ).

This classification is based on the value of g(2)(0) and proceeds as follows:

Classical decription Photon stream g(2)(0)

Chaotic Bunched > 1

Coherent Random 1

None Antibunched < 1

Table 2.2: Classification of light according to the photon time intervals. Anti-
bunched light is a purely quantum state with no classical equivalent. classical
light must have g(2)(0) ≥ 1.

If we compare the properties of light of table ?? and 2.2 we can realize

that bunched and coherent light are compatible with the classical results, but

antibunched light not. Antibunched light has no classical counterpart and

is thus a purely quantum optical phenomenon. Simply we can illustrate the

difference between the three different types of light in terms of the photon

streams. This is shown in figure 2.4;
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Figure 2.4: Statistics of photon arrival times in light beams with different en-
tropies (different degrees or ordering). The statistics can be quantum-random, as
in maximum-entropy black-body radiation (following a Bose-Einstein distribution
with a certain bunching in time; top), or may be quite different if the radiation
deviates from thermodynamic equilibrium, e.g. for anti-bunched photons (where
photons tend to avoid one another; center), or a uniform photon density as in stim-
ulated emission from an idealized laser (bottom). The characteristic fluctuation
timescales are those of the ordinary [first-order] coherence time of light, fully de-
veloped on extremely short timescales (of order picoseconds for a 1 nm passband of
optical light.), but traces of which are detectable also with slower, experimentally
realistic time resolutions [34].
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In the middle is the case where the time intervals between the photons are

random. Below it we have the case were the photons spread out with regular

time intervals between them, and above it where they clump together in

bunches. These three cases correpond to coherent, antibunched and bunched

light, respectively. Now we will discuss these three type of light in more

detail.

2.2.1 Coherent light

Perfectly coherent light has g(2)(τ) = 1 for all values of τ including τ = 0. It

thus provides a convenient reference for classifying other types of light.

Perfectly coherent light has Poissonian photon statistics, with random

time intervals between photons. It implies that the probability of detection of

a photon is the same for all values of τ independent of any previous emission.

We can thus say that coherent light has g(2)(τ) = 1 for all values of τ as a

manifestation of the randomness of the Poissonian photon statistics.

2.2.2 Bunched light

Bunched light 1 is defined as light with g(2)(0) > 1. It consists of a stream of

photons with the photons all clumped together in bunches. This means that

if we detect a photon at time t = 0, there is a higher probability of detecting

another photon in short times than in long times. Hence we expect g(2)(τ) to

be larger for small values of τ than for bigger ones, so that g(2)(τ) > g(2)(∞).

As we have seen before classical light must satisfy the conditions equation

(2.16) and (2.17). It is clear that bunched light satisfies these conditions

and is therefore consistent with classical interpretation. And from table

?? it is also clear that cahotic light(whether Gaussian or Lorentzian) also

satisfies these conditions. The chaotic light from a discharge lamp is therefore

bunched.

2.2.3 Antibunched light

In antibunched light the photons come out with regular gaps between them,

rather than with random spacing. If the flow of photons is regular, then

1The tendency for photons to bunche together may be considered to be a manifestation
of the fact that they are bosons.
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there will be long time intervals between observing photon counting events.

In this case, the probability of detection of second photon after one photon is

detected is small for small values of τ and then increases with τ . Antibunched

light has:

g(2)(0) < g(2)(τ) ,

g(2)(0) < 1 .
(2.18)

This is not in agrement with equation (2.16) and (2.17) which apply

to classical light. It is apparent that observation of photon antibunching

is purely quantum effect with no classical counterpart. The sub-poissonian

light, like antibunched light, is also a clear signature of the quantum nature

of light. Here we can think about; whether photon antibunching and sub-

Poissonian photon statistics are different manifestations of the same quantum

optical phenomenon. Thus although the two phenomena are not identical,

it will frequently be the case that non-classical light will show both photon

antibunching and sub-Poissonian photon statistics at the same time.

2.3 Optical Hanbury Brown and Twiss Ex-

periment

Hanbury Brown and Twiss were two astronomers. They aimed to measure

the diameters of stars. For this purpose they developed the intesnsity in-

terferometer. They observed for the first time correlations between identical

particles [1]. Their idea was that intensity fluctuations and the resulting cor-

relations reveal information about the coherence and the quantum statistics

of the probed system. This principle has found applications in many fields

of physics such as astronomy, high-energy physics [35], atomic physics [36]

and condensed matter physics [37], [38].

They tested the principle of their experiment in the labrotory with a

simple set up. A schematic representation of the setup is shown in figure 2.6

A half silvered mirror was used to split 435.8 nm line from a mercury

discharge lamp. This light was detected by two photomultipliers. These

photomultipliers generated photocurrents I1 and I2. An AC-coupled ampli-

fier was used to feed these photocurrents. In this way they got the outputs

proportional to fluctuations in the photocurrents, ∆i1 and ∆i2. One of these
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Figure 2.5: Coherence in light and matter; (Left) Sketch of the intensity inter-
ferometer used by Hanbury Brown and Twiss to measure the fluctuations in light
from stars to deduce stellar sizes. (Right) Schematic of the Hanbury Brown and
Twiss measurement of the correlations observed at two points from an extended
optical source such as a star [39].
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Figure 2.6: Schematic representation of the Hanbury Brown-Twiss (HBT) inten-
sity correlation experiment. Q1 was placed on a translation stages, so that the two
detectors could register light separated by a distance d. In this way the spatial
coherence of the source could be investigate. (After R. Hanbury Brown and R. Q.
Twiss [1].
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Figure 2.7: The computer generated time series (in units of the coherence time
τc)for the cyle averaged intensity of Gaussian distributed light, assuming a light
source with a Gaussian spectral profile [40].

was passed throug an electronic time delay generator set to a value τ . At

last, multiplier-integrator was used to connect two signals to multiply them

together and avarage them over a long time. The output signal was proporti-

nal to 〈∆i1(t)∆i2(t + τ)〉, where 〈· · · 〉 indicates the time average, where I1

and I2 were the light intensities incident on the respective detectors , and

∆i1 and ∆i2 were their fluctuations. The reason for this proportionality is

that the photocurrents were proportional to the impinging light intensities.

The intensity fluctuations of a beam of light are related to its coherence.

So, we can deduce the coherence properties of light by measuring the cor-

relations of the intensity fluctuations. In the HBT setup the beam splitter

is adjusted so that the average intensity 〈I(t)〉 impinging on the detector is

identical. Clasically, we can write the time varying light intensity on the

detectors as:

I1(t) = I2(t) ≡ I(t) = 〈I〉+ ∆I(t) , (2.19)

where ∆I(t) is the fluctuation from the mean intensity 〈I〉. With identical

intensities on the detectors the output of the HBT experiment is proportional

to 〈∆i1(t)∆i2(t + τ)〉.
If we suppose that the time delay τ is zero, we have the output:

〈∆I(t)∆I(t + τ)〉τ=0 = 〈∆I(t)2〉 . (2.20)
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Hence there will be a non zero output for τ = 0. On the other hand, if

we make τ >> τc, the intensity fluctuations will be completely uncorrelated

with each other so that ∆I(t)∆I(t+τ) randomly changes sign with time and

averages to zero:

〈∆I(t)∆I(t + τ)〉τ>>τc = 0 . (2.21)

The output therefore falls to zero for values of τ >> τc. Hence by mea-

suring the output function as a function of τ we can determine coherence

time τc directly.

Now we will re-examine the HBT experiments in the quantum picture of

light. In figure 2.8 (a) we can see the experimental arrangement for a HBT

configured with single photon counting detectors. A stream of photons is

incident on a 50 : 50 beam splitter and is divided equally between the two

output ports. The photons coming to the detectors and the resulting output

pulses are fed into an electronic counter/timer. The counter/timer records

the time elapses between the pulses from D1 and D2, while simultaneously

counting the number of pulses at each input. The results of the experiment

can be shown as a histogram as in figure 2.8 (b). The histogram displays the

number of events that are registered at each value of the time τ between the

start and stop pulses.

We discussed g(2)(τ) function classically in terms of intensity correlations

before. Since the number of counts registered on a photon-counting detector

is proportional to the intensity, so we can write the second order correlation

function for classical light again as:

g(2) =
〈n1(t)n2(t + τ)〉
〈n1(t)〉 〈n2(t + τ)〉

, (2.22)

where ni(t) is the number of counts registered on detector i at time t. If

the statistical prperties of the light beam being assumed stationary, the cor-

relation now depends on the time τ (with exception of multimode coherent

light where the degree of second order coherence is constant as in table 2.1).

Thus for multimode chaotic light with a Lorentzian frequency distribution

equation (2.22) gives:

g(2) =
〈n1(0)n2(τ)〉

n̄1n̄2

= e−2γ|τ | + 1 , (2.23)
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Figure 2.8: (a) Sketch of a Hanbury Brown-Twiss (HBT) experiment (with a
photon stream incident on the beam splitter. The pulses from the single-photon
counting detectors D1 and D2 are fed into the start and stop inputs of an electronic
counter/timer both counts the number of pulses from each detectors and also
records the time that elapses between the pulses at the start and stop inputs.) (b)
Typical results of such an experiment. The results are presented as a histogram
showing the number of events recorded within a particular time interval. In this
case the histogram shows the results that would be obtained for a bunched photon
stream.
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where γ is the total radiative damping parameter [34]. The first experiment

[4] to measure photon-number correlations was made with apparatus similar

to that shown in figure 2.8. If the photodetectors are placed at equal linear

distances from the source, the HBT correlation obtained from equation (2.24)

is

g(2) − 1 = e−2γ|t2−t1| , (2.24)

where the times t1 and t2 of the readings are seperated by an amount of

τ . As in classical theory of the analogous intensity correlation experiment

described in previous part, it is necessary to allow for the finite response time

τr of the detectors. The experiment registered as correlations, photons that

arrived at detector 1 within a time interval τr of a photon arrival at detector

2. This is what the histogram from HBT experiment with photon counting

detectors records. The result of a HBT experiment gives direct measure of

the second order correlation function g(2)(τ).

We can see from figure 2.8 that compelety different results are possible

with photons at the input port of the beam splitter than with a classical

electromegnetic wave. We suppose the incoming light consists of a stream

of photons, and this light has long time intervals between succesive photons.

These photons impinge one by one and randomly to the detectors D1 or D2

with equal probability. So we can say that there is 50% probability that

D1 can detect a photon and trigger the timer to start recording. When

this photon generates the start pulse, we can be sure that there is a zero

probability of obtaining a stop pulse from D2, because second photon arrives

after some time interval. Hence at τ = 0 the timer will record no evets. Now

let us consider the next photon that impinges on the beam splitter. This

photon will also go to detector D2 with 50% probability. If it really goes to

D2, it will stop the timer and record an event. If it goes to D1 then nothing

happens and we have to wait again until the next photon arrives to get a

chance of having a stop pulse. The process takes place until a stop pulse

is achieved. This might happen with the first or second or any subsequent

photon, but never at τ = 0. Therefore we have a situation where we expect

no events at τ = 0, but some events for larger values of τ , which clearly

contravenes the classical result given in equation (2.16) and (2.17). We can

clearly see that experiments in quantum context can give results that are not

possible in the classical theory of light.
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The observation of the non-classical result with g(2)(0) = 0 arose from the

fact that the photon stream consisted of individual photons with definite, non

zero time intervals between them. Now let us consider a different case where

the photons arrive in bunches. Half of the photons are splited towards D1

and the other half towards D2. These two subdivided bunches strike the

detectors at the same time and there will be a high probability that both

detectors register simultaneously. Therefore, there will be a large number

of events near τ = 0. As τ increases the probability of getting a stop pulse

after a start pulse has been registered decreases, and so the number of events

recorded drops. As a result we have a situation with many events near τ = 0

and fewer at later times, which is fully compatible with the classical results

in equation (2.16) and (2.17).

Sometimes the photon picture concurs with the classical results and some-

times it does not. The key point is the time intervals between the photons

in the light beam; that is, whether the photon come in bunches or whether

they are regularly spread out. This leads us to the concepts of bunched and

antibunched light.

2.3.1 Experimental demonstration

The observation of antibunching is a clear proof of the quantum nature of

light. The first succesful demonstration of photon antibunching was using [6]

the light emitted by sodium atoms. The basic principle of an antibunching

experiment is to isolate an individual quantum emitter (i.e. an individual

atom, molecule, quantum dot, or colour center). This was done by focusing

a laser onto the fluorescent species to excite them, and then waiting for

the photon to be emitted through spontaneous decay. Once a photon has

been emitted, the quantum emitter must be excited again to be able to

emit another photon. It will take a time dependent on excitation rate and

the radiative lifetime of the transition, τR, before the next photon can be

emitted. This causes time gaps between the photons, and as a result we have

antibunched light.

To understand better we can refer to figure 2.9. This figure is a schematic

representation of the photon emission sequence from a single atom.

Suppose that the atom is excited at time t = 0, as shown by dashed line.

Acording to emission probability of the transition, the average time to emit a

photon is equal to τR. Once a photon has been emitted, the atom can be re-
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Figure 2.9: Schematic representation of the photon emission scquence from a
single atom excited by an intense laser. The dashed lines indicate the times at
which the atom is promote to the excited state, while the arrows indicate the
photon emission events. τR is the radiative lifetime of the excited state.

excited by the laser, which will only require a short time, which is determined

by the excitation laser. The atom can then emit another photon after a time,

characterized by τR, and at that point the excitation emission cycle can start

again. Since the spontaneos emission is a probabilistic process, the emission

time is not the same for each cycle, which means that the stream of photons

will not be exactly regular. However, it is clear that the probability for the

emission of two photons with a time separation << τR is very small. So

we will have very few events where both the start and stop detectors of the

HBT interferometer in figure 2.8 fire simultaneously, and so we shall have

g(2)(0) ≈ 0.

We can ask a question why we do not observe the same antibunching

effects from a conventional light source such as a discharge lamp. We can

only observe antibunching effects if we look at the light from a single atom.

The photon-number correlation measurements for a coherent and for

chaotic light of Gaussian frequency distribution are shown in figure 2.10.

For a values of τ >> τc the correlation time of the light, the correlation

function factorizes and g(2)(τ) → 1. The increased value of g(2)(τ) for τ < τc

for chaotic light over coherent light (g(2)(0)chaotic = 2g(2)(0)coherent) is due to

the increased intensity fluctuations in the chaotic light field. There is a high

probability that the photon which triggers the counter occurs during the high

intensity fluctuation and hence a high probability that a second photon will

be detected arbitrarily soon. This effect known as photon bunching was first

detected by Hanbury-Brown and Twiss.
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Figure 2.10: Correlations between pairs of photon counts for coherent and chaotic
light.

Moreover, antibunching has also been observed from many other types of

light emitters, including a number of solid-state sources, such as:

• Fluorescent dye molecules doped in a glass or crystal,

• Semiconductor quantum dots,

• Colour centers in diamond.
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Chapter 3

Diamond

Semiconductor materials with band gaps ranging from the visible to the ul-

traviolet, referred to as wide band-gap semiconductors, have been extensively

studied for potential applications in high-temperature electronics as well as

for UV-visible emissive devices. Recent advances in the growth of diamond

films at various temperatures and pressures have expanded the potential

of diamond for use in optical and high-temperature electronic applications.

An understanding of the optical and electronic properties of defects in dia-

mond films is critical for the accurate evaluation of potential applications for

diamond-based devices because of the significant effects of small point defect

concentrations on the optical and electronic properties of these films.

In this chapter the most important material properties of diamond and

aspects of growth and doping are briefly summarized. Diamond is transpar-

ent from wavelengths of 220 nm, and above in accordance with the 5.5 eV

indirect bandgap.

3.1 Structure of diamond

The crystal structure of diamond is equivalent to a Face Centered Cubic

(FCC) lattice, with a basis of two identical carbon atoms: one at (0, 0, 0)

and the other at
(

1
4
, 1

4
, 1

4

)
, where the coordinates are given as fractions along

the cube sides. This is the same as two interpenetrating FCC lattices, offset

from one another along a body diagonal by one-quarter of its length. The

conventional unit cell is cubic, with a side length a0 approximately equal

to 0.3567 nm at room temperature. From this we can derive a few other
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quantities.

The C-C bond length d is equal to 1
4

of the cubic body diagonal, so that

d =
√

3a0 ≈ 0.154 nm. The conventional cell contains the equivalent of

8 whole C atoms. The atomic density is therefore 8
a3
0
≈ 8

(3.567×10−10m)3
≈

1.76 × 1029atoms/m3. Each atom can be thought of as a sphere with a

radius of 1
8

of the cubic body diagonal. The packing-fraction is therefore

8× 4
3
× π × (

√
3a0/8)

a3
0

, which simplifies to ≈ 0.34 [41].

3.2 Classification of Diamond

Diamonds can be mainly classified into four types, which are type Ia, IIa, Ib,

and IIb. These types differ in their impurities therefore their optical ptoper-

ties. Diamonds consist of carbon, and are extremely pure, but in almost all

diamonds there are tiny proportions of other elements, interspersed within

the carbon as part of their crystal structure. These impurities are not what

are known but they are really single atoms or small clusters.

Type I

Type I diamonds contain nitrogen. Approximately 98% of all diamonds

are this type. We can investigate type I diamond in two groups:

Type Ia

If the nitrogen atoms are clustered together within the carbon lattice,

then the diamond is said to be a Type Ia-diamond. Ia diamond contains

nitrogen up to 3000 ppm. Because these diamonds absorb blue light, they

can have a pale yellow or brown color. 98% of natural diamonds are Type

Ia.

Type Ib

Ib diamond contains up to 800ppm nitrogen. High Pressure High Tem-

perature (HPHT) or Chemical Vapour Deposition (CVD) diamonds can be

counted in this class. These diamonds absorb green light as well as blue light,

and have a darker color than type Ia diamonds. Depending on the precise
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Type Prevalence Feature

Ia 98% clustered nitrogen atoms

Ib 0.1% scattered nitrogen atoms

IIa 1-2% highly pure carbon

IIb 0.1% boron atoms

Table 3.1: Summary of Diamond Classification.

concentration and spread of the nitrogen atoms, these diamonds can appear

deep yellow , orange, brown or greenish. Less than 0.1% of diamonds belong

to Type Ib.

Type II

Type II are diamonds that contain no, or very few, nitrogen atoms.

Type IIa

These diamonds can be considered as the purest of the pure - they contain

no, or negligible amounts of impurities (less then a few ppm nitrogen) and

are usually colorless. Unless, that is, the carbon tetrahedrons that make up

the diamond were twisted and bent out of shape while the diamond rose to

the surface of the earth. An imperfect carbon lattice will make the diamond

absorb some light, which will give it a yellow, brown or even pink or red

color. 1-2% of diamonds belong to Type IIa.

Type IIb

These diamonds contain no nitrogen - but they do contain boron, which

absorbs red, orange and yellow light. These diamonds therefore usually ap-

pear to be blue, although they can also be grey or nearly colorless. All

naturally blue diamonds belong to Type IIb, which makes up 0.1% of all

diamonds. It has a p-type conductivity, with an activation energy of 0.37

eV. The hole mobility measured at room temperature is 1500 cm2/V sec.

High Pressure, High Temperature, HPHT
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Under high temperature and high pressure conditions graphite transforms

to dimaond and the graphite which is transformed to diamond does not

convert back to graphite during the cooling period. Diamond synthesis is

based on this idea.

There are two main press designs used to supply the pressure and tem-

perature necessary to produce synthetic diamond. These basic designs are

the belt press and the cubic press.

To use the belt press, wherein upper and lower anvils supply the pressure

load and heating current to a cylindrical volume. This internal pressure is

confined radially by a belt of pre-stressed steel bands. A variation of the belt

press uses hydraulic pressure to confine the internal pressure, rather than

steel belts.

The second type of press design is the cubic press. A cubic press has six

anvils which provide pressure simultaneously onto all faces of a cube-shaped

volume. A cubic press is typically smaller than a belt press and can achieve

the pressure and temperature necessary to create synthetic diamond faster.

However, cubic presses cannot be easily scaled up to larger volumes.

Experiments with synthetic and natural diamonds treated at high tem-

peratures (1700− 2800◦C) and high pressures (6-8 GPa; HTHP) have shown

that, with time, lattice defects can be altered or repaired.

3.3 Defects in Diamond

Defects in the crystal lattice of diamond are common; they may be the result

of extrinsic substitutional impurities, or intrinsic (interstitial and structural)

anomalies. All diamonds possess crystal lattice defects of some sort; the

defects themselves may be either anthropogenic or natural, epigenetic or

syngenetic. The material properties of diamond are affected by these defects

and determine to which type a diamond is assigned; the most dramatic effects

are on a diamond’s color and semiconductivity, as explained by the band

theory.

The defects can be detected by different types of spectroscopy, including

Electron-Spin-Resonance(ESR), photoluminescence in ultraviolet light, and

absorption of infrared light. The resulting absorption spectrum can then be

analyzed, identified, and used to separate natural from synthetic or enhanced

diamonds.
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Figure 3.1: From: F.P. Bundy, Pressure vs. Temperature Phase and Reaction
diagram for elemental Carbon, 1979; J. Geophys. Res. 85 (B12) (1980) 6930.
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Since the energy of the ground and excited states of a colour center must

lie inside the band gap, diamond offers a big playground for different colour

centers because of it’s large band gap. More than 500 colour centers are

documented [42].

Vacancies

All diamond contain typical intrinsic or self-defects: vacancies, disloca-

tions, and interstitial atoms. A vacancy is an empty position in a lattice.

Vacancies may be affected or created by radiation damage high energy sub-

atomic particles knock carbon atoms out of the lattice. The vacancies inter-

act with interstitial atoms and act as color centers by absorbing visible light,

thus producing green or blue colors in Type I, and brown colors in Type IIa

diamond. Vacancies can be detected by ultraviolet fluorescence, as well as by

a characteristic absorption line at 741.2 nm, termed the GR 1 (General Ra-

diation) line. This line disappears if the diamond is annealed above 400◦C,

after which a number of additional lines (e.g. 575, 595, 503 [H3 center], 497,

1935 [H1c center], and 2924 [H1b center] nm) are formed1. Defects in natural

diamond are produced by color treatments. In our case, we have detected

Silicon-Vacancies(SiV) central wavelength at 738nm absorption line.

The annealing process also allows carbon atoms neighboring a vacancy

to jump into a vacant place and leave an empty position in the diamond

lattice; by this process a vacancy can migrate through the diamond, and

can form compound defects with other vacancies, interstitial atoms (forming

Frenkel pairs [41] ), or nitrogenous defects (N-V centers). The newly-formed

compound defects are optically active, the precise color dependent on the

annealing time and type of pre-existing defects present. Vacancies can also

be created or modified by HTHP treatment.

3.4 Colour centers

Fourier transform spectroscopy (FTIR) and Raman spectroscopy are used

to analyze the visible and infrared absorption of suspect diamonds to detect

characteristic absorption lines, such as those indicative of exposure to high

temperatures.

1http : //www.gemlab.net/research14.htm
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Properties of Si-V centers

Si-V centers are not found in natural diamond. In 1981 a sharp line at

the energy of 1.68 eV in the spectrum of silicon ion implanted diamond was

observed by CL-spectroscopy (cathodoluminescence). The quadratic depen-

dence of this CL-line intensity on the ion dose has lead to a hypothesis that

a kind of Si2 colour center is produced by the ion implantation [43]. But

during ion implantation other kinds of defects are also produced amongst

which neutral vacancy has a similar wavelength ZPL. This results in ambi-

guity. Only in 1995 the ZPL of this center has been resolved to 12 different

lines at low temperatures which are grouped in 3 sub groups with each 4

lines [44]. The relative abundance of the 3 natural isotopes of Si in nature

can be deduced from the different strengths of optical absorption of the 3

groups (28Si,29 Si,30 Si). From this it can be proven that a 738 nm ZPL is

generated from silicon atoms. The fact that, diamonds with Si impurities

show these fluorescence lines only after that they are bombarded to elec-

trons and heated to over 600◦C, hints towards vacancies taking part in these

centers.

From the four different lines with in a subgroup of lines an energy scheme

is proposed as given in in figure 3.2. However the real configuration of this

center so far unclear. Polarized luminescence measurement have shown that

the centers has a 〈110〉 symmetry axes [45]. Theoretical calculations predict

a model with a single Si atom and a neighboring vacancy site [46].

Therefore it is energetically unfavorable for the Si atom to occupy the

carbon atom lattice position and hence it lays at an interstitial lattice posi-

tion. It follows that, in this configuration Si atom lays in the center of a kind

of double vacancy position as shown in figure 3.2 schematically. This model

is able to explain the doublet structure of the ground and the excited states

and also delivers a theoretical value of the transition energy which lays close

to the experimentally observed energy value. In addition the model predicts

high stability and a 3 nanosecond lifetime of the excited state which is ex-

perimentally confirmed as well. CL- measurements at high temperatures has

shown that the Si-V centers remain stable up to 1350◦C [48]. The lifetime

measurement of fluorescence of the center in CVD- diamond shows a lifetime

of 1 to 4 ns at different temperatures and diamond qualities [49].

So that this model is taken to be true on ground for these findings and
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Figure 3.2: Theoretical model of energy scheme of SiV center [47].

will be used for description of Si-V centers in this work. For application as

single photon source the fluorescence spectrum and the radiative transition

rate are of interest. Since the splitting of the ground and excited states are

very small these fine structures can not be observed at room temperature.

In the theoretical configuration Si atom has no direct binding with the di-

amond lattice. Therefore the center couples only weakly to the diamond

phonons. This results in a fluorescence spectrum at room temperature with

a sharp ZPL with a width of 10 nm width and a very weak vibrionic side

band. Opposingly, most of the other types of colour centers do have a wide

band fluorescence spectrum. The 4ns lifetime of the excited state is also un-

usually short which enables high repetation rate in a single photon source.

The known data of the other colour centers show longer lifetimes, for exam-

ple, N-V centers have a lifetime of 13 ns. The relatively narrow fluorescence

spectrum at room temperature and the short lifetime makes the Si-V center

a very good candidate as a single photon source.

Raman-Scattering
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Raman scattering is the inelastic scattering of a photon which creates

or annihilates an optical phonon. When light is scattered from an atom or

molecule, most photons are elastically scattered which is known as Rayleigh

scattering. The scattered photons have the same energy and, therefore, the

same wavelength as the incident photons. However, a small fraction of light

,approximately 1 in 107 photons, is scattered at optical frequencies different

from, and usually lower than, the frequency of the incident photons. In a

gas, Raman scattering can occur with a change in vibrational, rotational or

electronic energy of a molecule. The Raman effect was first reported by C.

V. Raman and K. S. Krishnan, and independently by Grigory Landsberg and

Leonid Mandelstam in 1928.

The interaction of light with matter in a linear regime allows the absorp-

tion or simultaneous emission of light with an energy precisely matching the

difference in energy levels of the interacting electrons. The Raman effect is

a nonlinear (third order) effect.

The Raman effect corresponds, in perturbation theory, to the absorp-

tion and subsequent emission of a photon via an intermediate electron state,

having a virtual energy level. When there is no energy exchange between

the incident photons and the molecules no Raman effect occurs. Energy

exchanges occur between the incident photons and the molecules. The en-

ergy differences are equal to the differences of the vibrational and rotational

energy-levels of the molecule. In crystals only specific phonons are allowed

(solutions of the wave equations which do not cancel themselves) by the pe-

riodic structure, so Raman scattering can only appear at certain frequencies.

For amorphous materials like glasses, more phonons are allowed and thereby

the discrete spectral lines become broad. If molecule absorbs energy Stokes

scattering takes place. The resulting photon of lower energy generates a

Stokes line on the red side of the incident spectrum. If molecule loses energy

we can talk about anti-Stokes scattering where Incident photons are shifted

to the blue side of the spectrum, thus generating an anti-Stokes line.

Raman Effect can take place for any frequency of the incident light. In

contradistinction with the fluorescence effect, the Raman Effect is therefore

not a resonant effect. The Raman spectrum in monocrystalline diamond

consists of a first order peak at 1332.5 cm−1 and second-order (two-phonon)

spectrum around 2500 cm−1. Two broad bands at about 1550 and 1350 cm−1

are attributed to the amorphous sp2 phase. A broad peak at 1100 cm−1 is

ascribed to the amorphous sp3 carbon phase. It can be excited exclusively
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Figure 3.3: The different possibilities of visual light scattering: Rayleigh scatter-
ing (no Raman effect), Stokes scattering (molecule absorbs energy) and anti-Stokes
scattering (molecule loses energy)

by UV light (> 4 eV) and is typically not observed in common Raman [50]

(figure 3.4). Graphite shows a single peak at 1581 cm−1.

The spectra are normally composed of a narrow ZPL ( zero phonon line)

and vibronic sidebands .The ZPL stems from a direct electronic transition

whose line width originates from only local strain of the lattice. If an ab-

sorption or an emission does simultaneously excite a phonon in a lattice

vibrational mode the signals of absorption or emission will be detected at

shorter or longer wavelengths. The name vibronic means a phonon-electron

transition. The structure of the sidebands is unique for each colour center so

that they can be used in identification of colour centers.
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Figure 3.4: Room-temperature Raman spectra from IIa diamond





Chapter 4

Experimental Setup

4.1 Introduction

In this section, the preparation of samples and the optical setup will be de-

scribed. The color centers in diamond are detected by a confocal microscope.

The fluorescence which comes from the center is sent to a home-made spec-

trometer via a fiber coupler to measure the spectrum or it is sent to a HBT

setup to measure the anti-bunching property of light.
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Figure 4.1: Schematic diagram of the SetUp.
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4.2 Sample Preparation

We bought the IIa diamond samples, which are colour free, from Druker

International1. These diamonds are synthetic grown diamonds and cut by a

laser into cubes with 0.5mm side length. Two parallel surfaces are polished

to form windows where the laser light can go through the sample.

Colour centers in the diamonds samples are produced by ion implantation

at the Tandem Laboratories at Bochum University2. First, silicon is ionized

and afterwards the ions are accelerated under 4MeV and implanted to the

samples. Some of the samples are processed in inert gas atmosphere under

1300◦C. Multiply ionized ions are used, thus high energies have been reached.

The SiV centers are 2µm below the surface where they form as monolayer.

After ion implantation the sample is heated, in a vacuum chamber. There

is a ceramic inside the chamber which is surrounded by a tantal coil, with

0.5mm thicknesses. A current is applied to the coil to reach 1000◦C. The

coils are isolated by a PVC inlet from the wall of the chamber. By third inlet

the temperature measurement can be done with a thermo couple, which

is inserted into the ceramic cylinder. The current can be applied maximum

8mA. The role of the ceramic cylinder is to isolate the tantal coil from thermo

couple to block the electrical conduction.

Two Aluminum foils, which avoid the heat-dissipation, surround the tan-

tal coil. The inside walls of the vacuum chamber is also covered with an

Aluminum foil to reflect the heat radiation back. The pressure in the vac-

uum chamber can be measured by pressure gauge. The inside pressure is

kept under 10−2 mbar.

In the heating process up to 1300◦C, some of the implanted silicon ions

can combine with a vacancy to a SiV center. The graphite which growth on

the sample surface, is removed by a solution which includes K2Gr2O7 solved

in 70% H2SO4. We put the diamond samples into this solution and heat it

up to 180◦C for 2 minutes.

1http://www.fbg.nl/
2III. Experimental physics Institute Micro Beam Group
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4.3 Optical Setup

4.3.1 Confocal Microscope

A confocal microscope creates sharp images of a specimen that would other-

wise appear blurred when viewed with a conventional microscope. This clear

image is achieved by excluding most of the light from the specimen that is

not from the microscope’s focal plane. The image has less haze and better

contrast than that of a conventional microscope.

Martin Minsky is the scientist who invented the first Confocal microscope

in 1955. It performs a point-by-point image construction by focusing a point

of light sequentially across a specimen and then collecting some of the re-

turning rays. By illuminating a single point at a time he avoided most of the

unwanted scattered light that obscures an image when the entire specimen is

illuminated at the same time. Additionally, the light returning from the spec-

imen would pass through a second pinhole aperture that would reject rays

that were not directly from the focal point. The remaining desirable light

rays would then be collected by a photomultiplier and the image gradually

reconstructed using a long persistence screen. Minsky scanned the specimen

by moving the stage rather than the light rays to build the image .This was

to avoid the challenge of trying to maintain sensitive alignment of moving

optics. He used a 60 Hz solenoid to move the platform vertically and a

lower-frequency solenoid to move it horizontally, Minsky managed to obtain

a frame rate of approximately one image every 10 sec.

The modern confocal microscopes still uses the same techniques as Min-

syk did like the pinhole aperatures and point-by-point illumination of the

specimen. With the growing technology improvements in speed and image

quality is reached.

In our set up, a free running laser diode which produces 50 mW optical

power at a wavelength of 685nm is used to excite the SiV centers in the

sample. The laser light is coupled into a single mode fiber to achieve a

Gaussian TEM00 mode. Before coupling the laser into a fiber two amorphic

prism pairs3 are used to shape the laser profile.

After the fiber two lenses are used to adjust the beam diameter to the

microscope objective. A filter supresses unwanted wavelengths emitted by

the laser diode. A dichroic mirror reflects the excitation light. The excitation

3For detailed information see http://www.thorlabs.com/
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light continues the path to the objective and is focused on the sample. The

NA of the microscope objective is 0.85. With this objective we can get a

spot size of 250nm. The sample is mounted on a piezostage to move it in

the x, y plane and the piezostage can be moved in z direction with the help

of a stepper motor. The excitation of the colour centers and collection of

the flourescence light is done by the same objective. The fluorescence light is

collected by the same objective and seperated from the excitation light by the

dicroic mirror. It is coupled into single mode fiber and guided to detectors.

This single mode fiber is used for special filtering instead of a pinhole which

can be seen in standard confocal microscopes. The single mode fiber guides

the flourescence light to a HBT setup or spectrometer.

The overall resolution of the microscope in x, y is 0.5µm and in z direction

2.5µm which is enough to detect single colour centers in diamond. We have

used a diamond Solid Immersion Lens (SIL) to get a smaller spot size to have

a better resolution. In conclusion, the collection efficiency can be improved

by SIL.

4.4 Solid Immersion Lens-SIL

A solid immersion lens is a powerful device to study the optical properties of

microstructures due to its high spatial resolution beyond diffraction limit [51],

as well as high efficiency of light collection [52]. The enhancement in the

resolution is obtained by forming a diffraction limited focused light spot

directly at the flat SIL-Sample interface. This way the size of spot scales like
λ
n
. There are two configurations of solid immersion lens, one is hemispherical-

SIL(h-SIL) which improves the spatial resolution by a factor of n, where n is

the refractive index of the material. This SIL is universal for any wavelength.

The other one is super-spherical-SIL (s-SIL) in Weierstrass optics that further

improves spatial resolution and collection angle by another factor n [53],

but is designed only for one wavelength. We have used a IIIa diamond h-

SIL in our experiment which has a 0.45mm radius to improve the collection

efficiency by increasing the solid angle.
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Figure 4.2: Schematic diagram of the home-made spectrometer.

4.5 Spectrometer

Colour centers can be identified by their spectra. The fluorescence collected

by the microscope is analyzed with a home made spectrometer. Based on

the measured spectrum we can find out if the fluorescence comes from a color

center or not. The spectral resolution limit of a grating spectrometer is given

by:

∆λ =
λ

mN
, (4.1)

where m is the diffraction order and N is the period number ( rule
mm

). Assume

that we have a detector which has width b behind a lens with focal length f.

The wavelength that the detector will detect depend on b
f
.

∆λ =
d cos(θ)∆θ

m
=

bd cos(θ)

mf
. (4.2)

We are using a 1800 rule
cm

grating. Our light illuminates a 2500 rule-area.

We can get 0.3 nm spectral resolution overall at 700 nm wavelength. This

grating is used in first order. The light collected is focused with a lens which

has a 750 mm focal length and passed through an exit slit. We use a lens

which has 30 mm focal length to focus the light to an APD.
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Figure 4.3: Hanbury-Brown-Twiss configuration for measuring the photon statis-
tics.

4.6 Hanbury-Brown and Twiss Setup-HBT

To ensure that we really detect flourescence from a single colour centers (and

therefore can conclude that we have a single photon source) we measure the

autocorrelation function.

In HBT setup two single photon detectors are placed behind a 50:50

beam splitter. One of the detectors is the ”STOP” and the other is the

”START” detector. The time difference between two signals is measured

electronically and the histogram of the time differences is made. The START

signal is passed through a 60 ns delay path. g(2)(τ) function can be measured

for negative time difference. For cw excitation equation (2.14), g(2)(τ) for
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τ >> τc takes the value 1. In our measurement τc is only some nanoseconds,

so we do not want to measure values bigger than 120ns. To do this an

artificial STOP signal is made. The measurement efficiency can be improved

in this way, because of the low count rate.

Because the APD also fluoresce an interference filter is put in front of the

detectors to get rid of the optical cross talk. The interference filter is also

used to select only defined wavelengths. The single photon detectors that we

use are silicon APDs with an detection efficiency for single photons of 50%. In

these diodes the incoming single photon causes an electron avalanche. During

this avalanche and the following slove build up of the over bias voltage the

detectors do not response to other photons. This time is called dead-time.

High intensities of bigger than 106 counts/sec cause saturation on APD.
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Experimental Results

5.1 Introduction

The SiliconVacancy (SiV) defect center in diamond has been observed and

studied in detail spectroscopically as an individual quantum object using sin-

gle molecule spectroscopy (SMS) [54]. Therefore, single SiV centers can be

used as single photon sources exciting individual SiV centers and counting

emitted fluorescence photons with an appropriate photon detector. One can

measure the average fluorescence intensity and the second order fluorescence

intensity correlation function; this work is mainly about to study the en-

hancement of fluorescence collection efficiency from Single Silicon Vacancy

centers by putting a diamond Solid Immersion Lens (SIL) onto IIa diamond

samples. By using SIL, we showed that the single photon count rates can

be improved by a factor of eight in the case of good contact with SIL and

sample surface. In a confocal microscope setup individual SiV centers are

excited and the fluorescence photons are counted with an appropriate single

photon detector.

This chapter presents the results of the experiments and compares the

results to the theory developed in Chapter 2 and 3. Three-level system

which is used to explain energy levels will be metioned. The data in this

chapter present a novel way of observing a single photon within a diamond.
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5.2 3-level system

To investigate dynamical processes of photoluminescence, we can model the

single color center response within the framework of a three-level system.1

A schematic level representation of the colour centers is shown in figure 5.1,

with the three main electronic states involved in absorption, fluorescence,

and intersystem crossing.

The ground state of the SiV center is a singlet state. The first excited

singlet state is the one reached after absorption of a photon. But there is

another excited state at lower energy (because of exchange interaction) than

the first excited singlet which is the triplet state T. Transitions between

singlet and triplet states are called Inter System Crossing (ISC).

Figure 5.1: Schematic energy scheme Jablonski Diagram showing the ground
(G), excited singlet (S), and triplet (T) states, and the various transition rates
between the states [56].

However, the triplet state plays a central role in the photodynamics of the

colour center. The emission of light occurs via transitions between the singlet

excited state and the ground state. There is also a triplet state that the

1The evolution of the system can be described by optical Bloch equations for a three-
level system. In general, such a system can only be solved numerically [55]. However, due
to the high dephasing of the optical transition at room temperature (≈ 400 GHz), the
optical Bloch equations can be reduced to rate equations and solved analytically.
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system enters and leaves nonradiatively. In the emission spectrum, the bright

intervals(fluorescence) correspond to the evolution of the system between the

ground and excited singlet states. If the system undergoes a transition to

the metastable state, it will not fluoresce and a dark interval will occur with

a length equal to the lifetime of the metastable state.

These dynamics can be described by the following set of rate equations

for populations p1, p2, p3 of the three levels

d

dt

p1

p2

p3

 = −

 r12 −r21 −r31

−r12 r23 + r21 0

0 −r23 r31

 p1

p2

p3

 (5.1)

where rnm (with n,m = 1,2, 3) denotes the transition rate from level (n) to

level (m). We can assume that transition rates r23 and r31 to and from the

metastable level, respectively, are small compared to the rate of decay r21

from excited to ground level.

In order to determine the maximum emission rate and to derive the flu-

orescence quantum efficiency, the fluorescence saturation curve had been

recorded which is shown in figure 5.2. In the low laser power regime, the

fluorescence intensity is linearly increasing with laser power. For high laser

powers, the influence of the metastable level increases, and the fluorescence

intensity saturates. The saturation data have been fitted using

F (P ) = F0
P

Psat + P
+ αP , (5.2)

which can be derived for an ideal two-level systems [54] and the correspond-

ing laser power for saturation is defined and F0 is the fluorescence intensity

corresponding to infinite laser power. αP comes from the backround fluores-

cence.

5.3 Spectrum of a single SiV center

There are more than 100 luminescent defects in diamond [57]. Many of

them have been characterized by optical spectroscopy. The Silicon Vacancy

colour centre has been studied which is among them. The bright fluorescence

emitted by the defect with a zero phonon of line (ZPL) at 738 nm is due to
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Figure 5.2: The fluorescence intensity saturation curve; symbols represent the
experimental data and the red line a fit to data, according to equation (5.2) in the
text.
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Figure 5.3: The narrow peak at 738 nm is the ZPL of the SiV centre The Raman
scattering peak is at 760 nm.

an optical transition. The fluorescence emission spectrum obtained from a

single defect centre is shown in figure 5.3.

The spectrum shows one pronounced zero-phonon line with only very

weak vibronic sidebands at room temperature, and a very short photolumi-

nescence lifetime of 1− 4 ns [46].

5.4 Finding single centers

To find single SiV centers in a sample, we first raster scan the sample 20µm×
20µm without SIL to investigate the positions of the centers. Afterwards we

did 2µm×2µm scans with type IIa diamond sample without Solid Immersion

Lens in figure 5.4 to identify well-isolated photoluminescent emitters using

a 685nm diode laser for continious wave (cw) excitation. A maximal optical

power of 50 mW is focused on the sample by a high Numerical Aperture
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(NA = 0.85) microscope objective. The sample is mounted on a piezostage

to move it in the x, y plane and the piezostage can be moved in z direction

with the help of a stepper motor. The fluorescence is measured behind an

interference filter with a central transmission wavelength at 740 nm and a

bandwidth of 10 nm. The bright spot corresponding to SiV center appear

clearly on the scan. All the centers that are measured without lens show the

same properties.

Figure 5.5 shows a scan of the sample with SIL. The bright spots cor-

responding to SiV center appear clearly on the scan with higher count rate

however we did not see this effect in all SiV centers. They show different

brightness.

Figures 5.6 and 5.7 show the luminescence intensity profile in transversal

direction for the emitter in figures 5.4 and 5.5, respectively.

5.5 Analysis of Fluorescence of Single Defect

Intensity autocorrelation measurements of the fluorescence light have been

performed to demonstrate the sub-poissonian statistics of the light emitted

by the centre. Using a start-stop scheme the coincidence rate between the two

detectors of a Hanbury-Brown and Twiss interferometer has been measured.

Obtained the data are equivalent to the second order intensity autocorrela-

tion function for short time scales. The normalized autocorrelation function

was obtained from a photon coincidence rate histogram [33]. Antibunching

evidence of single center emission appears as a dip in the recorded delay

function around τ = 60 ns (electronic delay of 60 ns).

Data for a SiV center with SIL are presented in figure 5.10.2 The cor-

relation function plot for single SiV center in this figure provides plausible

evidence of single photon, since the correlation function intensity drops to

background for 60 ns time delay between detection at the two APDs. The re-

maining difference from zero at zero delay time results from the background,

mostly related to the Raman scattering from the diamond lattice. In addition

to antibunching, the autocorrelation function also shows photon bunching.

It is clear to see from the figure 5.10 that g(2)(τ) reaches values greater

than unity. This effect is due to the presence of a third state in which

2Due to the low count rate of SiV centers without SIL the autocorrelation measurements
could not be observed.
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Figure 5.4: Fluorescence intensity raster scan (2µm × 2µm) of a IIa diamond
sample performed about 2µm below the diamond surface showing luminescence
from an isolated color center. The size of a pixel is 100 nm. The integration time
per pixel is 1000 ms. One APD output in the HBT setup gives maximum counting
rate 600 counts/sec.
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Figure 5.5: This fluorescence scan (2µm × 2µm) of a IIa diamond sample per-
formed with the same parameters as in figure 5.4 with SIL and we observed high
intensity compared to figure by a factor of 6.
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Figure 5.6: Line scan without SIL for figure 5.4 with 0.6µm FWHM. The data
is shown together with a gaussian fit, which is used to evaluate the signal and
background levels. The line scan in figure shows that the signal (S) to background
(B) ratio is S/B = 4.
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Figure 5.7: Line scan with SIL for figure 5.5 with 0.5µm FWHM. It can be
seen that the spot size becomes smaller compared to the case without SIL which
explains the better resolution. The data is shown together with a gaussian fit,
which is used to evaluate the signal and background levels. The signal (S) to
background (B) ratio is S/B = 15.3 which is improved by using SIL.
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Figure 5.8: Scheme of the experimental measurements with images of single
colour centers with SIL. Confocal fluorescence image (40µm×40µm) of SIV centers
embedded in diamond with continuous-wave excitation at 685 nm.
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Figure 5.9: The histogram peak intensities for the SiV centers with and without
SIL in 40µm×40µm region of diamond sample. The number of SiV centers without
SIL are indicated by the red bar. All the centers show the same count rate. The
number of SiV centers with SIL are indicated by the gray bars. The SiV centers
show different count rates with SIL.



5.5 Analysis of Fluorescence of Single Defect 63

20 40 60 80 100 120
time delay HnsL

0.5

1

1.5

2

g2
t

Figure 5.10: The fluorescence intensity autocorrelation function; the experimen-
tal data are shown in circle-shaped symbols, while the red line is the theoretical
curve, calculated according to the procedure described in the text. The autocor-
relation function shows a good contrast and presents a pronounced dip close to
τ = 60ns. Photon antibunching correlation measurements are carried out using
the setup shown in figure 4.1.
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the system can be shelved [58]. Blinking is a common phenomenon of the

single-photon nature of the source. Several mechanisms are suggested to

explain the blinking behavior: for instance, shelving (triplet blinking) to the

long-living state, and fluctuations in the photo-physical parameters of the

molecule and its local environment. Fluorescence has been observed in the

saturation regime for hours without any photobleaching.

5.6 Experimental Difficulties

After the experiment was completely built and aligned precisely, we still had

difficulties consistently measuring the signal. The main problem that we

dealt with is the air gap between the sample and the SIL.

Aberrations and Allowances of hemisphere SILs

Solid immersion lens (SIL) have been used in various application in re-

cent years. The basic principle of SIL is the same as that of oil-immersion

microscopy and hence is well known. All solid state oil-free operation en-

ables such advantages as no contamination of specimen and is very useful in

vacuum and at low temperatures. A diamond SIL is used because it has the

same refractive index as our diamond samples.

Cleaning operations are performed before all measurements. In our pro-

cesses we performed 3-solvent cleaning, in which the solvents are distilled

water, acetone (CH3COCH3), and isopropanol (p.a.) ((CH3)2CHOH). The

solvents are extremely pure and filtered in submicrons. Organic solvents are

effective in removing oils, greases, waxes and organic materials. After each

cleaning step samples are dried up by the nitrogen. After cleaning steps the

SIL is put onto the sample in a clean room.

When one prepares and uses a SIL in practice, deviation from the ideal

design degrades microscopic images. Thus, it is important to know aberra-

tions of an imperfect SIL and its allowances. On the basis of point-spread

function, three point should be considered [53]. There are aspheric error, a

thickness error, and air gap. They are shown in figure 5.11 for PL microscopy

without the para-axial approximation while using SIL.

In a perfect hemisphere SIL, there is no aberration for light focused into

the sphere center, since all light rays incident normally to the hemisphere

surface converge at the center.
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Figure 5.11: The schematic [59] of the typical errors in a hemisphere SIL: aspheric
error b, a thickness error d, and an air gap h.

Since a hemisphere SIL is typically fabricated by grinding a ball lens

with refractive index n and radius a into hemisphere, the first possible error

is the deviation of the lens shape from the perfect sphere. From the quarter

wavelength condition, the allowances for the aspheric error b is given by;

b <
λ

4(n− 1)
, (5.3)

where λ is the wavelength of light in vacuum and n is the refractive index of

SIL. The allowed b is smaller for larger n or for smaller λ. In our case, the

wavelength is 689nm, n is 2.4 so by inserting these values into equation (5.3),

we get b < 114nm. According to the information by the company, element6,

b is smaller then 100nm. We thus do not have to care about the aspheric

error b.

The second possible error is the thickness error of a SIL, where the ex-

cess thickness d from the radius, a, for hemisphere introduces the spherical

aberration at the bottom surface in the SIL. The allowances for the thickness

error d as,

|d| <

√
2aλ

n(n− 1)
, (5.4)

where a is 0.9mm in equation (5.4). In this case we get d < 12.8µm. Ac-

cording to the specification d is smaller than 1µm and thus also below the
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Figure 5.12: AFM picture of flatside of SIL.

above limit.

The third possible error is an air gap, or the distance h between a SIL

and the sample. If the effective numerical apperture, NAeff , is grater than

1 where NAeff = NAobj × nSIL, with NAobj is numerical apperture of the

objective 1/5 of the wavelength can deteriorate the resolution seriously. In

our case, NAeff is 2.04 with the values NAobj = 0.85 and nSIL = 2.4 [60].

To determine how big the air gap between the sample and the SIL is,

surface charectarisation were done for the sample surface and the flat side of

the SIL by using Atomic Force Microscope (AFM) (figures 5.12, 5.13, 5.14

and 5.15).
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Figure 5.13: The height profile along the line shown in figure 5.12.
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Figure 5.14: AFM picture of sample surface.
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Figure 5.15: The height profile along the line shown in figure 5.14.
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In AFM pictures some unknown structures can be seen in both surfaces.

It is apparent that the airgap between the sample and SIL can be about 600

nm which is approximately one wavelength. This data tells us that the air

gap can indeed influence our data.

The collection efficiency of a spectroscopy system is of crucial importance,

especially in cases of low intensity excitation or low signal level. By compar-

ing the luminescence intensities measured with SIL and without SIL, we find

the enhancement of collection efficiency of our system using the SIL is up to

ten times. For the case of an air gap of ≈ 600 nm, enhancement is only 1.5.

The enhancement in collection efficiency is calculated by using the following

formula ktotal = kT × kΩ, where kT and kΩ are enhancement in transmis-

sion collection efficiency and solid angle collection efficieny ,respectively [60].

Since the nSIL is larger than the refractive index of air the SIL has the

property of reducing the reflection losses. The enhancement of the collection

efficiency by this factor, kT can be calculated by using the Fresnel formula,

integrating over the whole solid angle. The SIL can enlarge the collection

angle of the system. The solid angle outside the sample is independent of

whether the SIL is used or not and is directly given by NAobj. However the

solid angle inside the sample increases when the SIL is introduced. This is

due to the smaller reflection of light at the sample surface since the material

on the top of the sample now has a refractive index higher than that of air.

As a result light from a point source can be collected with a larger solid angle

by the objective. The enhancement of collection efficiency due to the larger

collection angle, kΩ is given by the ratio of the solid angles.

Theoretically the calculated total collection efficiency should be ten times

more with lens where the count rate should be 3700 counts/sec. We have

2146 counts/sec in the best case. With air gap the calculated value for the

enhancement in collection efficiency is about 1.5, with a count rate of about

550 counts/sec, which is approximately in agreement with most of our SiV

centers. From figure 5.8, the different count rates for different SiV centers

can be seen. According to surface roughness of the SIL and sample we have

different gap distances in each point. In the point where the higher count

rate occurs, there is still an air gap which is small compared to other areas.
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Conclusions

This thesis was motivated by the idea to set up a single photon detection

scheme in which a single silicon vacancy center in diamond acts as a single

photon source. The production of silicon vacancy centers in diamond is

achieved by ion implantation which allows uniform distribution of silicon

vacancy centers. These centers act as a monolayer 2µm below the diamond

surface. In our experiments, a single silicon vacancy centre acts as a stable

single photon source with narrow emission spectrum at room temperature at

738 nm.

We applied the confocal microscope technique with the help of a solid

immersion lense (SIL) to the microscopic photoluminescence spectroscopy of

individual colour centers. The main benefits are improved resolution and

collection efficiency. We demonstrated that the collection efficiency of the

system with solid immersion lense in the best case is ≈ 6 times better than

that of a conventional confocal microscope with a high numerical aperture

objective.

We have discussed the possible errors which can occure when using solid

immersion lenses: an aspheric error, a thickness error, and an air gap. The

most important factor reducing the collection efficiency in our measurements

is an air gap. According to the size of the air gap collection efficiency varies.

In principle, the collection efficiency could be ten times higher than for the

case without solid immersion lense.

We furthermore report on our room-temperature observation of single

diamond color centers. Both, single-photon emission and metastable-state

shelving are observed from photon time-correlation measurements with a

Hanbury Brown and Twiss (HBT) setup. Due to the influence of nonra-
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diative transitions, the single photon generation rate still needs some im-

provements, possibly by modifying the diamond environment. Together with

high-Q cavities, high rate emission should be feasible, thereby enhancing the

applicability of the silicon vacancy centres.
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