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1 Introduction

Cryptography is the art of obscuring the content of a message to unauthorized
people, but to make it accessible to trusted parties. This practice has ancient
origins and, in the course of the centuries, it could meet more and more de-
manding requirements determined by the parallel ability of codebreakers to
gain knowledge about those secrets. Nevertheless, particularly in the informa-
tion age in which we live, concerns about security questions have become an
everyday topic. If, on the one hand, the internet is now the ultimate place
to accelerate the flow of relevant information, on the other hand, companies,
government facilities, or even private people must be sure that confidential
data flows cannot be accessible to someone else but the authorized party the
message is addressed to. In order to ensure such a security level over publicly
available networks, some nowadays standardized procedures come into play.

For practical reasons, the most frequently used protocols rely on so called
asymmetric key algorithms (public-key cryptography), where the encryption
key is published, which allows any sender to perform encryption and to safely
send his message, while a private key is kept secret by the receiver, which
enables only him to perform decryption. Although widely used, e.g. in online-
banking transactions or e-commerce, the security of such cryptographic rou-
tines is taken for granted only under some reasonable (but not necessarily
true) assumptions, such, e.g., limited computational power at one’s disposal
or low efficiency of factorizing algorithms.

The only encryption procedure which has been shown to be unbreakable1 is
the one-time pad, a symmetric key algorithm. Unfortunately, some major
drawbacks, key distribution above all, make this process hard to implement
in the framework of classical information theory. Nevertheless, though this
deficiency, it turns out that quantum information theory is able to provide a

1The precise expression is unconditional secure, that is no restriction is made about com-
putational power or scientific progress available. The proof for the one-time pad is due
to Claude Shannon, who published it in the Bell Labs Technical Journal in 1949.
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way-out to this problem. Unlike classical cryptography, which uses mathema-
tical techniques to restrict the amount of eavesdropped information, quantum
cryptography exploits the quantum character of nature to ensure secure com-
munication between two trusted parties. This new issue, known under the
name of Quantum Key Distribution (QKD)2, provides the two parties, Alice
and Bob, with a setup to generate a secret key, which can be used afterwards
in the encryption/decryption process of the secret message (e.g. with one-time
pad). Within this scheme, single key bits are encoded in states of a quantum
mechanical system (e.g. polarization states of a photon), and then distributed
between two or more parties. If an eavesdropper would ever attempt to in-
tercept key bits, he has to carry out a measurement on a quantum mechan-
ical system, unavoidably changing its status, hence introducing errors. This
revolutionary principle of eavesdropping can be detected, is used in analysis
protocols which can assert whether the key exchange was secure, or someone
tried to eavesdrop, in which case the key has to be dismissed.

In this work we present an experimental implementation of such a scheme, in
which raw key bits are encoded in four different polarization states of photons.
Using the first proposed quantum encoding protocol, the BB84, and weak co-
herent pulses from a laser source, we could realize a stable link between trans-
mitter and receiver units over a free-space distance of 500 m. Software-based
procedures for key extraction and privacy amplification lead to the final shared
secure key. This thesis-work is articulated in four main sections: In the first
(Chap. 2), we provide the reader with a wide overview of classical crypto-
graphic methods, how they work and their security issues. The second (Chap.
3) illustrates the main concepts of QKD and the underlying physics involved in
them. The third section (Chap. 4) deals with the description of our test-setup
located in downtown Munich, with particular attention paid to transmitter/re-
ceiver units and source spectral selection. The last part describes the applied
procedures for thermal management, which aims to stabilize the spectral char-
acteristics of the source.

2Sometimes the expression Quantum Key Growing is used, emphasizing the fact that an
initial shared secret key is needed for the process to work.
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2 Classical Cryptography

2.1 General Remarks

Before computer age, the term cryptography (from the Greek κρυπτ óς “hid-
den” and γραϕή “to write”), referred solely to the process of changing the con-
tent of a message in order to make it unreadable without special knowledge.
Since then, the meaning assumed a wider dimension, and nowadays can be
summarized with the words of a famous cryptologist, Ron Rivest, who stated:
“Cryptography is about communication in the presence of adversaries” [Riv90].
Moreover, the art of gaining unauthorized information, is called cryptanalysis
(loosely speaking codebreaking), and together with cryptography constitutes
the field of studies of cryptology.
In the technical literature, a fundamental distinction between “classical” and
“modern” cryptography is made. The former refers to the age where cryp-
tographic procedures were still accomplished with paper and pen; the latter
refers to almost the same tasks but carried out with the help of computers.
Nevertheless, throughout this work, the meaning of the adjective “classical”
is extended to include also the modern cryptography as a subset, to better
outline the difference relative to cryptographic tasks accomplished with the
help of quantum based devices.

2.2 Glossary

For the general discussion we need some fundamental definitions beforehand.

Plaintext: The message, cleartext or bit string, one wishes to obscure.

Cipher: The algorithm by which the plaintext is made unintelligible to unau-
thorized parties.

Ciphertext: The output of an encrypting algorithm.

Key: Additional piece of information which is needed for performing encryp-
tion and decryption.
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Figure 2.1: Alice wishes to send a message to Bob without revealing its content
either to accidental or bad intentioned eavesdroppers. To do this, she first encrypts
the message, then sends it out to Bob over a possibly unsafe communication channel;
after Bob has received it, he applies the deciphering algorithm to finally get the
original information again.

Encryption: The process of obscuring the information contained in the plain-
text through application of a cipher.

Decryption: The process of recovering the original message from the cipher-
text. It is the inverse of encryption.

Stream Cipher: Encrypting algorithm that acts on the smallest unit of the
message (e.g. a letter in traditional “analog” cryptography, or a bit in computer
based applications).

Block Cipher: Unlike a stream cipher, the algorithm manipulates block of
characters or bits of the plaintext.

The general scheme we have in mind is depicted in Fig. 2.1.

2.3 Kerckhoffs’ Principle and Encryption Keys

Historically, in the field of cryptography, we can distinguish between two differ-
ent approaches. The first is condensed in the principle “security by obscurity”,
that is the difficulty for an eavesdropper to gain information relies on his ig-
norance about the cipher which generated the ciphertext. This principle is
widely used in computer related applications, where secrecy (of design, imple-
mentation, etc.) is used to gain security.
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2.4 Symmetric and Asymmetric Ciphers

The problem of the “security by obscurity” approach is the actual difficulty to
ensure secrecy of all sensible parts of the encrypting system for arbitrary long
time. Moreover, as soon as the details of a cryptographic implementation are
disclosed, all past, present and future pieces of encrypted informations become
accessible at once. These major objections are more precisely referred to as
Kerckhoffs’ law, stated by the Flemish linguist and cryptographer Auguste
Kerckhoffs in 1883 [Ker83]. After this principle, a good cryptographic system
should remain secure even if it falls in adversary’s hands, or, in Shannon’s
other formulation: “the enemy knows the system”. Within this second inter-
pretation, the aim is making the output of the cipher as strongly as possible
dependent from another piece of information, the key, which must be kept
secret.
In every cryptographic design relying to the latter method, decrypting the
ciphertext with the wrong key will produce a useless random sequence.

2.4 Symmetric and Asymmetric Ciphers

Following [Sch96], we can further divide key-based algorithms into two sub-
sets: symmetric and asymmetric ones. Ciphers belonging to the first class
use trivially related keys for the encryption/decryption process. Though in
most algorithms of this kind the encryption and decryption key are simply
identical, this doesn’t need to be true in general; the important point is that
the encryption key can be easily calculated from the decryption key and vice
versa. The successful implementation of symmetric-key algorithms (also called
secret-key algorithms), requires that sender and receiver agree on a key before
the communication takes place. Moreover, since the security of the process
rests in the key, this has to be safely distributed between the two parties.
Actually, this last requirement constitutes a serious deficiency in the security
of classical symmetric-key procedures.
Ciphers belonging to the second class use a key-pair: one for encryption and
one for decryption. The encryption key is mathematically related to the de-
cryption key by a so called one-way function: given the decryption key, it
is easy to deduct the corresponding encryption key, while it results computa-
tionally difficult to go the other way around.
The advantage of the latter scheme is exploited in public-key algorithms, such
as RSA (see Section 2.8.2), where the encryption key doesn’t need to be secret,
so that everyone can encrypt his message, while it can be read only by those
who possess the corresponding private decryption key.

7
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2.5 Transposition Ciphers

Because of their character based nature, this type of ciphers are among the old-
est ones. The algorithm is fairly straightforward: given a plaintext, it shuffles
its characters assigning to every letter a new position on an imaginary indexed
table. Mathematically, the encrypting process can be seen as a bijective dis-
crete function which maps a character position into a new one (permutation);
decryption takes place with the inverse mapping.
A quite smart device to practically implement such an operation was invented
in ancient Greece and widely used for military communications by the Spar-
tans. It is called Scytale (Greek σκυτάλη “stick”) and consists of a wooden
cylinder, around which is wound a strip of paper. On the wrapped paper is
now possible to write the message in the usual way, but, after unwinding, a
random sequence of characters appears instead. To decrypt the message one
needs to have a stick of the same diameter, which clearly plays the role of the
(symmetric) key.

2.6 Substitution Ciphers

This class of algorithms replaces a unit of plaintext with another unit of text
following a defined pattern; the substitution unit can be thereby a single char-
acter or an entire block of them. They are generally divided into four sub-
classes:

Monoalphabetic Substitution

Each character in the plaintext is replaced by another one in the ciphertext.
Here are two examples.

Caesar Cipher: This is the simplest monoalphabetic substitution cipher, in
which every character is substituted by the character three places on its right in
the alphabet. So, for example, an “a” is replaced by “d”, a “b” by “e” and so on.
It is named after Julius Caesar who applied it to secretely communicate with
his generals. The key is simply the integer by which the alphabet is shifted.
A modern application can be found in the ROT131 (“Rotate by 13 places”)
system. This particular cipher is its own inverse, also called an involution, i.e.

1ROT13 originated in the net.joke newsgroup in the early 1980’s to temporarily obscure
the content of jokes which might be considered offensive, or the solution to simple puzzles.
On UNIX-like machines the shell command ”tr A-Za-z N-ZA-Mn-za-m” implements a
ROT13 encryption/decryption.

8
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2.6 Substitution Ciphers

applying it twice gives the original message back. Substitution ciphers can
be regarded as weak encryption: since a given plaintext character is always
substituted by the corresponding cipher character, the statistical distribution
of the letters in the ciphertext is unchanged and a frequency analysis2 would
successfully yield the plaintext. An example of the Caesar cipher (key=3) is
given in Fig. 2.2.

Figure 2.2: Example of Caesar cipher, where the cipher alphabet is shifted by three
places with respect to the plaintext alphabet.

Mixed Alphabet Cipher: It relies on a more complicated way to create
the cipher alphabet. Usually one writes down a keyword, omitting letters that
appear twice, followed by the remaining characters and maps one alphabet into
the other. Refer to Fig. 2.3 to see how it works with the keyword “breakfast” .

Figure 2.3: Mixed alphabet cipher at work. Notice how repeated letters in the
keyword are discarded.

2In cryptanalysis, the study of the statistical distribution of characters or groups of char-
acters in the ciphertext.
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Polyalphabetic Substitution

This is in principle the same as the monoalphabetic case, only that two or
more cipher alphabets are available for encryption. This kind of cipher has
a rich history: first described by Leon Battista Alberti in 1463 in the form
of discs, it became then usual practice to write it in a tableau to facilitate
encryption/decryption. In particular, the so called Vigenère cipher deserves a
closer look. First published in 1585 by the French diplomat Blaise de Vigenère,
it was considered unbreakable until 1863, so that it earned the name of “le
chiffre indéchiffrable”. Referring to figure 2.5, the first row of the Vigenère’s
table (or square) is filled with the normal alphabet, the second row, called
“cipher alphabet a” , with the alphabet self shifted by one place, and so on
until the tableau is complete. A keyword defines the mapping between two
alphabets in the following way: every character in the key specifies with which
particular alphabet a letter in the plaintext must be encrypted. If the key is
shorter than the message, it has to be repeated. Referring to the table, with
“cateye” as key, encryption works like this:

Figure 2.4: Example of Vigenère cipher. Encryption is performed with the help of
a special look-up table, the Vigenère square.

Homophonic Substitution

In this kind of substitution a single plaintext character maps to more than
one symbol in the cipher alphabet. We can imagine a simple numerical sub-
stitution scheme where the letter “a” is mapped either to the numbers “24”,
“7” or “83”, while more artistical variants can use fancy sets of symbols for
encryption.
A suggestive version is the nomenclator3, a hybrid mixture between a code-

book4 and large homophonic substitution tables. At the beginning only names

3A king’s subordinate whose task was to announce the visiting dignitaries.
4A set of coded words (codewords) and their usual meanings, like a dictionary.

10 169,215 mm

u n d e r  t h e  b r i d g eplaintext

c a t e y  e c a  t e y e c akey

x o x j q  y k f  v w h i j fciphertext

132,078 mm
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Figure 2.5: The so called Vigenère table to enable faster encryption/decryption.
Every character in the key specifies with which particular alphabet a letter in the
plaintext must be encrypted.

of prominent people were encoded, hence the cipher name, then the size ex-
tended to cover common words and places. Historically, this kind of cipher
was employed in the Babington Plot in 1586, that aimed at murdering Queen
Elisabeth I of England, and replacing her on the throne with the Catholic
Mary Queen of Scotland. Encrypted correspondence between Mary and Lord
Babbington was regularly intercepted and analyzed by Elisabeth I’s Secretary
of State Sir Francis Walsingham, who broke the code within a few months,
with the help of his cipher school in London. All conspirators, including Queen
Mary, were tried and sentenced to death.

Polygraphic Substitution

In such ciphers, blocks of letters (typically two, giving rise to digraphic ciphers)
are substituted as a whole, instead of single characters. A famous digraphic
method is the Playfair cipher, invented in 1854 by Charles Wheatstone and
widely used by British forces during the Second Boer War and World War I
and by Australians in WWII. His strength is based on the robustness against
frequency analysis.
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Figure 2.6: Walsingham’s postscript to Mary’s letter to Babington, encrypted
using the nomenclator cipher. It asks Babington to reveal her the names of the
conspirators using the (already broken) cipher.

Rotor Machines

In the early 1920’s many electro-mechanical devices were invented to perform
cryptographic tasks, thereby increasing cipher efficiency and its complexity.
The basic mechanism all based on, was the rotor, a wired wheel with 26 dif-
ferent positions, each of them representing one specific alphabet permutation.
The number of rotors varied from three to five on more complicated machines,
while output pins of one rotor are wired to the input pins of the next, thus
implementing a multiple Vigenère cipher. A famous example is the ingenious
German encrypting machine called ENIGMA, invented by Arthur Scherbius
and Arvid Gerhard Damm, later patented by Scherbius in the United States
(“Ciphering Machine” U.S. Patent 1,657,411, 24 Jan 1928).
Commercially available from the early 20’s, it was then adopted by the Ger-
man Navy in 1926, by the Army in 1928 and used throughout all World War II
among German forces. Though some cryptographic weaknesses, Allied could
break the cipher and gain precious intelligence (codenamed ULTRA), only
thanks to some accidental factors, like errors by operators, procedural flaws
or captured machines and codebooks.
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2.7 One-time Pad

Figure 2.7: A picture of the Enigma encrypting/decrypting machine. This partic-
ular military model worked with three rotors.

2.7 One-time Pad

To understand how this special stream cipher works, suppose Alice wishes to
send the message “under the bridge” to Bob. To do this, she first maps the
alphabet to integer numbers from 0 to 25, as illustrated below.

a −→ 0
b −→ 1
c −→ 2

...
z −→ 25

In this symmetric cipher, Alice and Bob must already share a random key,
which has to be as long as the message. Every letter of the ciphertext is the
result of a modular addition with a letter of the key. In our case the sum is
carried out mod26, meaning that the remainder of the division by 26 is taken.
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Figure 2.8: One time pad encryption procedure. The algorithm works with mod-
ular addition mod 26. Moreover, the encryption key must be chosen randomly, as
long as the message and used only once.

Figure 2.9: One time pad decryption procedure. The algorithm works with mod-
ular subtraction mod 26.

The encryption procedure is illustrated in Fig. 2.8. To decrypt the message
Bob has now to carry out a modular subtraction with the same key. As
expected, he gets the original message back (see Fig. 2.9).

The first algorithm of this type was realized in 1917 by Gilbert Vernam (of
AT&T), and is called after him Vernam Cipher, later patented (U.S. Patent
1,310,719).
In this first implementation each character of the message was electrically
combined with a character on a long punched strip of paper. Shortly thereafter,
Captain Joseph Mauborgne recognized that, if the characters on the paper
tape key were random, it should be much more difficult to break the cipher.
In fact, the Vernam-Mauborgne cipher, commonly known as the one-time
pad, takes up a special place in the field of cryptography since the late 40’s,
when Claude Shannon published a paper [Sha48], in which he proved its perfect
secrecy (his terminology). In his formulation this property is equivalent to
say that the information about the plaintext contained in the ciphertext is
zero, thus meaning that all plaintexts are equally probable. This can
be understood with the help of an example. Assume one has to encrypt the
message APPLEPIE with the random key JTHSZCRE; the ciphertext is the
sequence JIWDDRZI. Decrypting with the right key leads of course to the
original message, but if we try to decrypt with the key IXCZZTVQ, this gives
us the plaintext BLUEEYES. Analogously, with the key EOLSRDLV we get
the plaintext FULLMOON. Since the key has been chosen randomly, all keys
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are equally probable, which in turns means that all possible plaintexts are
same likely. Hence the cryptanalyst has no chance to get the right plaintext
out of the ciphertext, no matter how much computational power he has.
Despite this unique feature, the requirements for the one-time pad are very
hard to achieve in practice. These requirements all regard the key:

1. It has to be random.

2. It must be of the same length as the message.

3. It can be used only once (hence “one-time”).

4. It has to be safely conveyed from one party to the other and kept
secret by both.

Problems with One-time Pad

Some major drawbacks make a real-world implementation of the one-time pad
difficult.
If one wishes to send a very large amount of data, he/she should also have
a random key of the same length at his/her disposal. The second problem
is that computer built-in random number generators (RNG) are not able to
produce “real” random numbers, so a computer based algorithm that claims
to implement a one-time pad encryption, actually provides “only” a Vernam
cipher.5 Moreover, and this turns out to be the hardest problem, being a
symmetric cipher, there must be some secure way to transport the key from
Alice to Bob and to safely store it. Unfortunately, it can be shown that in the
“classical” world such means does not exist, i.e. classical key distribution
is not secure. We will see in the next section that quantum cryptography
provides a new approach to solve the problem.

2.8 Modern Cryptography

For this section, we mainly refer to the excellent book on classical cryptogra-
phy by B. Schneier [Sch96]. Until now, we were dealing with character-based
cryptography, while computer-based algorithms can only manipulate streams
of binary information. It is simple to guess how these two concepts meet:
think for example of the ASCII code, which maps 95 printable characters into
the binary numbers between 32 and 126; so from now on, we can think of a
bit pattern as being equivalent to letters or numbers.

5Nevertheless, true RNG based on quantum mechanics exist.
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In the early 70’s the research in the field of cryptography was mostly confined
in some top secret military projects promoted by governments involved in the
Cold War; as a consequence, almost no research papers about this topic were
published. Small companies were developing cryptographic products and sell-
ing them, mostly to overseas governments, but nobody could independently
certify whether those systems were really secure, not to mention compatibility
matters.
In 1974 the National Bureau of Standards (NBS), now National Institute for
Standards and Technology (NIST), issued a public call for proposals regarding
the introduction of a standard cryptographic algorithm. A promising candi-
date was identified in a follow-up version of an algorithm developed at IBM
some years earlier, called Lucifer. It was the first step towards a standard-
ization of computer-based cryptography, that ended up in 1977 with the pub-
lication of the Data Encryption Standard (DES), the undisputed symmetric
encryption algorithm over twenty years.

2.8.1 Symmetric Key Algorithms: DES and AES

DES is a symmetric block cipher, manipulating data in 64-bit long pieces. It
has a 56-bit long key, usually expressed as a 64-bit number, thereby ignoring
the least significant bit of every byte, used as parity check. The plaintext
is first subdivided into 64-bit long blocks. Every block undergoes an initial
permutation (IP ), then is broken into a left (L0) and a right (R0) half, each
32-bit long. At this point the first iteration of the function F 6, in which the
key is involved, is applied to R0. The output of the F function is now XORed
with L0 and the result becomes the new right half, while R0 becomes the new
left half. The application of F , the XORing operation and the final swapping
constitute a so called round. DES algorithm performs a total of 16 rounds. If
Bi is the output of the i-th round, Li and Ri its left and right half respectively,
then a round looks like:

Li = Ri−1

Ri = Li−1 ⊕ F (Ri−1,Ki) ,

where Ki is a piece of information obtained by compressing and permuting the
original key. At the end the two blocks are brought together and the inverse of
the initial permutation (IP−1) completes the algorithm. A schematic diagram
of how DES works is depicted in Fig. 2.10.

6From Horst Feistel, one of the developers of Lucifer
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Figure 2.10: Schematical diagram of the DES encrypting algorithm. It performs
a total of 16 round, every round consisting of the application of the function F , the
XOR operation and the swapping procedure.
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Figure 2.11: The F function of the encrypting DES algorithm. Refer to the text
for implementation details.

The Feistel Function

The core of DES resides in the implementation of the F function. Referring
to figure 2.11, it works like this:

Step 1: The Compression Permutation
For each of the 16 rounds, a different 48-bit subkey has to be generated.
First, the key is split up into two 28-bit halves, which then undergo a circular
permutation by either one or two bits, depending on the round number. At
this point 48 out of 56 bits are randomly selected, building up the subkey Ki

for the i-th round.

Step 2: The E-box Permutation
This process expands the right side Ri to 48-bit length by cloning some of the
bits. Now, the expanded right hand side (E(Ri)) is as long as the subkey.

Step 3: E(Ri)⊕ Ki

In this step the modified right half is XORed with the i-th subkey.

Step 4: The S-box Substitution
The 48-bit long result from the previous step gets divided into 8 subblocks
each 6-bit long. Each sub-block passes through a corresponding S-box, and
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to figure 2.11, it works like this:
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for the i-th round.
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This process expands the right side Ri to 48-bit length by cloning some of the
bits. Now, the expanded right hand side (E(Ri)) is as long as the subkey.

Step 3: E(Ri)⊕ Ki

In this step the modified right half is XORed with the i-th subkey.

Step 4: The S-box Substitution
The 48-bit long result from the previous step gets divided into 8 subblocks
each 6-bit long. Each sub-block passes through a corresponding S-box, and

18



21

2.8 Modern Cryptography

Figure 2.12: Look-up table for S-box substitution. There are 8 S-boxes like this for
every round of DES encryption. Notice that raws and columns are indexed beginning
from 0.

gets substituted with a 4-bit number, so that the overall output is shrank to
32-bit again. To illustrate how a S-box works consider the following example:
assume the entry of the sixth S-box is the 6-bit sequence 110011. The first
and last bit form the number 3 (11 in binary), the middle 9 (1001 in binary);
according to the lookup table in Fig. 2.12, the number at place (3,9) provides
the output for the 6-th sub-block, which is 1011 (11 in decimal notation).

Step 5: The P-box Permutation
The 32-bit output from the S-box step undergoes a permutation, according to
a P-box, which maps every bit position into a new one.

DES decryption process works reversing the whole procedure, i.e. it begins
from the bottom of Fig. 2.10 and moves upwards. All encryption mappings
are replaced by their inverses.

On December 30, 1993 DES was confirmed by the National Security Agency
(NSA) as government encryption standard for unclassified information in the
United States for the third time. Seven years later, DES was publicly broken
in a little bit more than 22 hours (see section 2.8). Nevertheless, DES was
reconfirmed in October 1999 for the fourth time, recommending the use of
Triple-DES, made up of three successive DES encryptions with three different
keys (total key length 168 bits), where the output of a simple DES run is used
as input for the next one. Still, security could not be ensured any further, so
that on November, 26 2001, after a five year selection process, the Advanced
Encryption Standard (AES) was published. AES, also known as Rijndael7
algorithm, is a block cipher as well, working on 128-bit long data chunks, with
a key size of 128, 192 or even 256 bits. In June 2003 NSA announced that
AES could be used for encrypting classified information with the following
recommendation: 128, 192 or 256 bit key-length for “secret” information, 192
or 256 bit for “top secret” information.

7Portmanteau from the names of its inventors, the Belgian Joan Daemen and Vincent
Rijmen.
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2.8.2 Asymmetric Algorithms

In 19758, Whitfield Diffie and Martin Hellman, and independently Robert
Merkle [Mer78]9 have been playing a leading role in a revolution in the field
of cryptography [DH76]. They presented the idea of public-key cryptography
in which two different keys, one for encryption and one for decryption, are
involved. The encryption key is made public, so that anyone can encrypt
his message, while the decryption (private) key has to be kept secret. The
scheme is based on a trapdoor one-way function. This is a special one-
way function, f(x), which can be easily inverted as soon as one knows a secret
(trap-door) y. Assume now that Alice wishes to share a secret with Bob; what
they have to do is:

1. They agree on a public-key cryptosystem.

2. Bob sends Alice his public key.

3. Alice encrypts her message using Bob’s public key.

4. Bob decrypts Alice’s message using his private key.

Notice how this scheme completely overcomes the problem of the key exchange:
no prior agreement on a secret key between Alice and Bob is needed. On the
other hand, the security relies on the assumption that an eavesdropper has
not enough computational power to deduce the private key from the public
key within a reasonable period of time.

RSA

The most widely used and well understood public-key cryptosystem is the
one proposed by Ron Rivest, Adi Shamir and Leonard Adleman in 1977 at
MIT, named after the three inventors’ initial letters, RSA. Patented by MIT
in 1983, (U.S. Patent 4,405,829, expired in September 2000), RSA relies on
the computational difficulty of factoring large integers. For an eavesdropper,
recovering the plaintext from partial knowledge of ciphertext and public key,
is equivalent to being able to factor the product of two prime numbers. Pro-
ducing the two keys involves prime numbers and modular arithmetic and
can be summarized in the following steps:

1. Choose two random large prime numbers p and q of approximately the
same size.

8In 1997 it was disclosed that the basic ideas of public-key cryptography were actually
invented in the late 60’s by researchers at GCHQ, a British intelligence agency.

9Because of a sluggish publication process, Merkle’s papers on the subject were published
only two years later, when the Diffie-Hellman algorithm was already widely known.
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2. Compute the product n = pq

3. Choose randomly an encryption key e such that e and q are relatively
prime.

4. Use the extended Euclidean algorithm (see Appendix A) to compute
the decryption key:

ed ≡ 1mod (p− 1)(q − 1) or equivalently

d = e−1 mod (p− 1)(q − 1) .

The public key is the pair (e, n), while d is the private key. The original primes
p and q are no longer needed.

To encrypt a message m, one first splits it into smaller pieces which size is
not larger than n. Let mi be such a piece; then the corresponding encrypted
text ci is obtained according to the formula:

ci = mi
e mod n

Decryption works similarly. To get back the original partial message mi,
just compute:

mi = cid mod n .

Notice that reversing the role of public/private key, i.e. performing encryption
with d and decryption with e, works as well.

Public key cryptosystems such as RSA, find a useful additional application in
so called digital signature processes, originally proposed also by Diffie and
Hellman. Imagine Alice wants to sign a digital message and send it to Bob.
The protocol is fairly simple:

1. Alice encrypts the message with her private key, “signing” the document.

2. She sends the signed message to Bob.

3. Bob decrypts the message with Alice’s public-key.

With this procedure, what one is guaranteed of, is: the authenticity of the
message (provided step 3 works); that the signature is unforgeable (the only
one who is in possess of the private key is Alice, so she actually did sign); that
the message has not been altered (if so, decryption would fail).

Other Public-Key Algorithms

Knapsack: This was the first algorithm for public-key encryption, developed
by Ralph Merkle and Martin Hellman. It is named after the knapsack prob-
lem: given a pile of items with different weights, which items should be put
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into the knapsack so that the knapsack weighs a certain amount? Formally,
given the values W1,W2 . . . ,Wn and a sum S, find b1, b2 . . . , bn such that
S = b1W1 + b2W2 . . .+ bnWn, thereby being the values of bi either 1 (item is
in the knapsack) or 0 (item is not in the knapsack). How is this correlated to
encryption? A bitwise plaintext (a sequence of 1’s and 0’s), corresponding to
b values, combines with a knapsack to give a sum (ciphertext).

Figure 2.13: The knapsack encryption algorithm. The plaintext is a sequence of
b values (see text), the public key is the hard knapsack. Its solution constitutes the
plaintext.

Actually there are two kinds of knapsack problems, one solvable in linear time
(”easy“ problem) and one which time complexity is exponentially increasing
(”hard“ problem, see section 2.8.1). The easy knapsack can be readily modified
to create the hard knapsack (but one cannot go the other way around), pro-
ducing the private/public “key” pair: the public key is the the hard knapsack,
the private key the easy problem. If one doesn’t know the private key, he has
to solve the hard problem.

ElGamal: This scheme can be used for both encryption and digital signatures.
The basic idea is the computational difficulty of calculating discrete logarithms
modulo a number. Generating a key pair works like this: choose a prime p,
two random numbers g and x, with x, g < p, then compute y = gxmodp. The
public key is y, g and p, the private key is x.

Elliptic Curves: This field has been extensively studied for many years. In
1985 Neal Koblitz and V.S. Miller proposed independently to use them for
public-key encryption. They produced no new algorithm, just implemented
existing ones with elliptic curves over a finite field. It can be shown that they
have all nice properties of finite fields but they offer more robustness with
respect to cryptanalysis.
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2.8.3 Hybrid Cryptosystems

In real-world implementations public-key algorithms are rarely used to encrypt
and send messages, unless they are very short. This is the consequence of two
facts:

• Public-key algorithms are about 1000 times slower than symmetric al-
gorithms.

• Public-key cryptosystems are weak against chosen-plaintext attacks. If
the cryptanalyst has the ciphertext C and knows that the plaintext P
stems from a set with n possible plaintexts, he has to carry out at most
n encryptions (he can do it, the encryption key is public), until he gets
C = E(P )10.

To overcome such handicaps public-key cryptography is actually used to se-
curely distribute session keys, which are then used to encrypt confidential
traffic. This kind of protocol is called a hybrid cryptosystem. Here is how
it works:

1. Bob sends Alice his public key.

2. Alice encrypts a randomly generated session key K with Bob’s public
key EB(K) and sends it to Bob.

3. Bob recovers K using his private key, i.e. he performs DB(EB(K)) = K

4. They encrypt their messages with the same session key.

An example of such a scheme is used in the remote login UNIX utility SSH-x
(Secure Shell version x). Version 2 uses RSA for client/server authentication
procedure and initial key exchange, while the AES algorithm, with 128-bit key
length, encrypts the data-flow.

2.9 Security

In this section, we try to answer the question how safe is the cryptography
relying on classical information theory. Beforehand we need some notions of
computational complexity theory, which allow us to define what the terms
easy/hard mean from the algorithmic point of view.

10For example if P represents a sum under 1000000 ¤, then n = 106 and the attack would
work.
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2.9.1 Computational Complexity

In complexity theory, the computational complexity of an algorithm is de-
termined by two parameters: T (for time complexity) and S (for space
complexity, i.e. memory requirements). Both variables are expressed as a
function of n, the size of the input. Usually, only the order of magnitude of
the (time or space) complexity function is given; this corresponds to the term
in the function which grows the fastest as n becomes large 11.
Algorithms classification is made according to their time or space complexity.
A constant algorithm has a complexity function independent of n, i.e. O(1).
An algorithm is linear if its complexity grows as O(n). If the complexity
function is of order O(nm), where m is a constant greater than 1, then the al-
gorithm is classified as polynomial (or P-time problem). Algorithms which
complexity is of order O(af(n)), where a is a constant greater than 1 and f(n)
is a polynomial function of n, belong to the exponential class. A special
subset of the latter are superpolynomial algorithms, whose complexity behave
like O(cf(n)), where c is a constant and f(n) is more than a constant but less
than linear. Given these complexity classes, we can define a problem to be
tractable (or easy) if the algorithm for solving it is of polynomial complexity.
A problem will be intractable (or hard), if the solving procedure belongs to a
complexity class which is more than polynomial. Obviously, a cryptographer
would aim at designing his system in such a way, that the best algorithm at
eavesdropper’s disposal is of exponential type. Unfortunately, the best state-
ment that can be made, in the light of state of the art complexity theory, is
that all known cracking algorithms are of superpolynomial time complexity.
Furthermore, there is no guarantee that no polynomial-time algorithms could
ever be discovered in the future.

2.9.2 Successful Attacks

As computational power increases, tasks which seemed inconceivable only some
years ago, become a mere question of a few hours calculation. So, while Ron
Rivest estimated the time it would take to factor a 125-digit number in at least
40×1015 years (one million time the age of the universe), seventeen years later,
in 1994, a network of 1600 computers accomplished this in 8 months.
And things got even worse. In February 1999, 185 machines factored a 465-bit
RSA number in 9 weeks, followed by the successful task of factoring a 512-bit
number, achieved by 292 machines six months later. Furthermore an optoelec-
tronic parallel factoring device called TWINKLE, proposed by Shamir in 1999

11This choice ensures that the complexity estimation is system-independent, because it ne-
glects terms of lower order which may result depending on the particular implementation.
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and estimated to be three orders of magnitude faster than a conventional PC,
could break 512- or 768-bit keys even more easily. Today recommended key
lengths vary from 2048 to 4096 bits. Regardind symmetric algorithms, things
don’t look much better. In 1997 RSA Data Security Inc., issued the first chal-
lenge to test DES strength. A team (the DESCHALL project) led by Rocke
Verser, Matt Curtin, and Justin Dolske, got the plaintext after brute force
attack on the whole keyspace of 256 possible keys, after 96 days. In 1998
a group called Electronic Frontier Foundation (EEF), built a 250.000$ DES-
cracker in which more than 50000 CPU’s were linked together, finding the key
after 41 days. In the challenge in January 1999 the two previous winners joined
their efforts to find the key after 22 hours and 15 minutes, with an enormous
key testing rate of 245 billion keys per second. Not only brute force attacks
are an efficient aid for codebreakers. So called side-channel attacks exploit
the analysis of parameters related to the implementation of the algorithm,
such as elapsed time to carry out some particular operations, machine power
consumption, or even heat radiation and electromagnetic emanation, to gain
enough knowledge to crack the system. As of 2006, the only successful attacks
against AES were side-channel attacks based on CPU’s cache-timing analysis
[OST05]. Furthermore, the outstanding research field of quantum computers
promises a dramatic reduction of algorithm complexity, making Gilles Bras-
sard’s words “If a quantum computer is ever build, much of the conventional
cryptography will fall apart”, much more than a pessimistic forecast.
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11This choice ensures that the complexity estimation is system-independent, because it ne-
glects terms of lower order which may result depending on the particular implementation.
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and estimated to be three orders of magnitude faster than a conventional PC,
could break 512- or 768-bit keys even more easily. Today recommended key
lengths vary from 2048 to 4096 bits. Regardind symmetric algorithms, things
don’t look much better. In 1997 RSA Data Security Inc., issued the first chal-
lenge to test DES strength. A team (the DESCHALL project) led by Rocke
Verser, Matt Curtin, and Justin Dolske, got the plaintext after brute force
attack on the whole keyspace of 256 possible keys, after 96 days. In 1998
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[OST05]. Furthermore, the outstanding research field of quantum computers
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3 Quantum Cryptography

3.1 Introduction

As seen at the end of the previous chapter, many real-world threats no longer
ensure the security of current cryptosystems against codebreakers’ attacks who
have at their disposal enough computational power (and enough money). The
idea to exploit quantum mechanical principles for cryptographic tasks dates
back to the early seventies and can be found in the works of Stephen Wiesner,
later at Columbia University, Charles H. Bennett of IBM and Gilles Brassard
at University of Montréal.
Their papers laid a milestone of a forthcoming revolution in the field of
security-based applications, which for the first time directly involves quan-
tum mechanics as fundamental aid.

Recall that the sticking point in the one-time pad scheme is that there is
no classical way in which two parties can safely exchange the key. Quantum
cryptography offers a new approach to overcome the key distribution prob-
lem. For this reason, Quantum Cryptography is more precisely referred to as
Quantum Key Distribution/Growing (QKD/G).

Unlike computational secure cryptography, theoretical analysis of quantum
cryptographic implementations sets aside the question about computational
power at one’s disposal or even knowledge of more efficient algorithms. This is
the prerequisite for unconditional security. Quantum cryptography based
communication makes use of the outstanding concept that eavesdropping
can be detected. Hence a trusted party is now in the position to establish
whether the information exchange occurred under safe conditions or not.

The joining of state-of-the-art optical technologies and analysis software pro-
vides with a variety of schemes for the implementation of new secure commu-
nication protocols based on quantum cryptography.
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3.2 Quantum Mechanical Background

where overall phase shifts have been neglected. An useful representation of
such a pure qubit state makes use of the so called Bloch sphere (Fig. 3.2).
This is a unit sphere; the qubit vector is represented by the cartesian coordi-
nates (cosφ sin θ, sinφ sin θ, cos θ), which build the Bloch vector.
Summarizing, we can state that the crucial property of a pure qubit is that,
unlike a classical bit, its state can be any superposition of |0 and |1.

Practical Realization of Qubit States

Generally speaking, any two-level quantum mechanical system can be consi-
dered as a qubit. This allows us to treat all these systems equivalently, so the
same formalism applies for an electron in a two-level atom as well as for the
spin of a particle, or the polarization of a photon. Measurements in a two-level
system can be represented by the three Pauli matrices, σx, σy, σz. Their cor-
responding eigenvectors build three different bases represented on the Bloch
sphere (Fig. 3.2). If |↑ and |↓ are the two eigenstates of the σz operator,
corresponding to the eigenvalues ±1, then the mapping

|↑ −→ |0
|↓ −→ |1

points up the equivalency between any two level system and a qubit state.
In the relevant case that the qubit is represented by a polarized photon,
the eigenstates of σz with eigenvalues ±1 are denoted with |H (for horizontal
polarization) and |V  (for vertical polarization), respectively. Further, eigen-
vectors of σy are denoted |+ (rotated by +45◦ with respect to |H) and |−
(rotated by −45◦ with respect to |H). Finally, those of σx, are denoted |R
(rightwise circularly polarized) and |L (leftwise circularly polarized). The
transformation rules from one basis to the other are listed below:

 
|H = (|+ − |−) /

√
2

|V  = (|++ |−) /
√
2

 
|+ = (|V + |H) /

√
2

|− = (|V  − |H) /
√
2

{|R, |L}


|R = (|V + i|H) /

√
2

|L = (|V  − i|H) /
√
2
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Figure 3.1: Alice can secretely communicate with Bob using an additional trusted
quantum channel and a classical channel. The key-exchange procedure occurs
through the quantum channel. Once the quantum transmission is over, they check
whether the key is secure and, if so, they can use it to encrypt confidential data
through the classical channel.

Provided Alice and Bob previously share a short secret key, which serves as
initial authentication against man in the middle attack1, QKG protocols
yield unlimited secret-key growing. Expanding the classical key distribution
scheme with a further communication channel, the typical scenario we are
dealing with is depicted in Fig. 3.1.

3.2 Quantum Mechanical Background

3.2.1 Qubits

The fundamental unit, classical information theory works with, is the bit (bi-
nary digit); as is generally known, the bit can have two values, either 1 or 0.
We can implement a bit like a switch: it can be either on ≡ 1 or off ≡ 1, each
corresponding to two different physical states (e.g. voltage or current levels).
In quantum information theory, the corresponding unit is the qubit2 (quan-
tum bit), an arbitrary superposition of two orthogonal basis vectors of a two
dimensional complex Hilbert space.

|ψ = α|0+ β|1 α, β ∈ C (3.1)

With the usual normalization constraint |α|2 + |β|2 = 1, such that equation
3.1 can be turned into:

|ψ = cos
θ

2
|0+ eiφ sin

θ

2
|1 , (3.2)

1An eavesdropping strategy in which Eve pretends to be Bob for Alice and vice versa.
2In the case of a three dimensional Hilbert space, the pure state is called qutrit, in the

d-dimensional case, qudit.

28

Alice Bob

QC
Transmitter 

Unit

QC
Receiver

Unit

Classical Channel

Quantum Channel

3.2 Quantum Mechanical Background

where overall phase shifts have been neglected. An useful representation of
such a pure qubit state makes use of the so called Bloch sphere (Fig. 3.2).
This is a unit sphere; the qubit vector is represented by the cartesian coordi-
nates (cosφ sin θ, sinφ sin θ, cos θ), which build the Bloch vector.
Summarizing, we can state that the crucial property of a pure qubit is that,
unlike a classical bit, its state can be any superposition of |0 and |1.

Practical Realization of Qubit States

Generally speaking, any two-level quantum mechanical system can be consi-
dered as a qubit. This allows us to treat all these systems equivalently, so the
same formalism applies for an electron in a two-level atom as well as for the
spin of a particle, or the polarization of a photon. Measurements in a two-level
system can be represented by the three Pauli matrices, σx, σy, σz. Their cor-
responding eigenvectors build three different bases represented on the Bloch
sphere (Fig. 3.2). If |↑ and |↓ are the two eigenstates of the σz operator,
corresponding to the eigenvalues ±1, then the mapping

|↑ −→ |0
|↓ −→ |1

points up the equivalency between any two level system and a qubit state.
In the relevant case that the qubit is represented by a polarized photon,
the eigenstates of σz with eigenvalues ±1 are denoted with |H (for horizontal
polarization) and |V  (for vertical polarization), respectively. Further, eigen-
vectors of σy are denoted |+ (rotated by +45◦ with respect to |H) and |−
(rotated by −45◦ with respect to |H). Finally, those of σx, are denoted |R
(rightwise circularly polarized) and |L (leftwise circularly polarized). The
transformation rules from one basis to the other are listed below:

 
|H = (|+ − |−) /

√
2

|V  = (|++ |−) /
√
2

 
|+ = (|V + |H) /

√
2

|− = (|V  − |H) /
√
2

{|R, |L}


|R = (|V + i|H) /

√
2

|L = (|V  − i|H) /
√
2

29

3 Quantum Cryptography

Figure 3.1: Alice can secretely communicate with Bob using an additional trusted
quantum channel and a classical channel. The key-exchange procedure occurs
through the quantum channel. Once the quantum transmission is over, they check
whether the key is secure and, if so, they can use it to encrypt confidential data
through the classical channel.

Provided Alice and Bob previously share a short secret key, which serves as
initial authentication against man in the middle attack1, QKG protocols
yield unlimited secret-key growing. Expanding the classical key distribution
scheme with a further communication channel, the typical scenario we are
dealing with is depicted in Fig. 3.1.
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where overall phase shifts have been neglected. An useful representation of
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Figure 3.1: Alice can secretely communicate with Bob using an additional trusted
quantum channel and a classical channel. The key-exchange procedure occurs
through the quantum channel. Once the quantum transmission is over, they check
whether the key is secure and, if so, they can use it to encrypt confidential data
through the classical channel.

Provided Alice and Bob previously share a short secret key, which serves as
initial authentication against man in the middle attack1, QKG protocols
yield unlimited secret-key growing. Expanding the classical key distribution
scheme with a further communication channel, the typical scenario we are
dealing with is depicted in Fig. 3.1.

3.2 Quantum Mechanical Background

3.2.1 Qubits

The fundamental unit, classical information theory works with, is the bit (bi-
nary digit); as is generally known, the bit can have two values, either 1 or 0.
We can implement a bit like a switch: it can be either on ≡ 1 or off ≡ 1, each
corresponding to two different physical states (e.g. voltage or current levels).
In quantum information theory, the corresponding unit is the qubit2 (quan-
tum bit), an arbitrary superposition of two orthogonal basis vectors of a two
dimensional complex Hilbert space.

|ψ = α|0+ β|1 α, β ∈ C (3.1)

With the usual normalization constraint |α|2 + |β|2 = 1, such that equation
3.1 can be turned into:

|ψ = cos
θ

2
|0+ eiφ sin

θ

2
|1 , (3.2)

1An eavesdropping strategy in which Eve pretends to be Bob for Alice and vice versa.
2In the case of a three dimensional Hilbert space, the pure state is called qutrit, in the

d-dimensional case, qudit.
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Figure 3.2: Bloch (left) and Poincaré (right) sphere. Any general pure qubit state
can be represented by a point on the surface of the Bloch sphere. If the qubit is the
polarization state of a photon, then the Poincaré sphere is used. On both spheres, the
two equatorial conjugated bases and the polar computational basis can be identified.

The pair {|H, |V } is called computational basis, while {|+, |−} and
{|R, |L} are the two conjugated bases3. In the special case of the polarized
photon, the sphere to represent the qubit is essentially the same as the Bloch
sphere and is called the Poincaré sphere (Figure 3.2)

3.2.2 No-go Theorems

This is a series of no-knowledge principles which directly descend from the
probabilistic nature of quantum mechanics. This unavoidable intrinsic igno-
rance builds the basis for eavesdropping detection schemes implemented in
every quantum cryptographic protocol.

Non-Distinguishability of Non-Orthogonal States

Two quantum mechanical states, |ψ and |φ, are said to be non-orthogonal if
their inner product is not zero; in Dirac’s notation:

ψ|φ = 0 . (3.3)

3In a N dimensional Hilbert Space two bases are said to be conjugated if the projection of
every basis vector of one basis onto the other equals 1√

N
.
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Moreover, in quantum mechanics any measurement can be represented by a
Hermitian operator, the possible outcomes of the measurement corresponding
to its eigenvalues. The special feature of non-orthogonal states can be ex-
pressed by the following

Theorem 1. There exists no measurement which can deterministically dis-
tinguish between two non-orthogonal states.

Proof. The proof is indirect: assume |ψ and |φ are non-orthogonal and let
M be any measurement (Hermitian operator) such that:

M |ψ = mψ|ψ (3.4)
M |φ = mφ|φ (3.5)

with mψ = mφ, i.e. the states |ψ and |φ can be unambiguously distinguished
through the measurement M . At this point let’s compute the following:

φ|M |ψ = φ| (M |ψ) = mψφ|ψ (i)
φ|M |ψ = (φ|M) |ψ = mφφ|ψ (ii)

where, in the second equality of Eq. (ii), we used the fact that M† =M and
that all eigenvalues are real. Let’s calculate:

(i)− (ii) : 0 = (mψ −mφ)ψ|φ .

But this result in a contradiction, since, having assumed mψ − mφ = 0, we
must have

ψ|φ = 0 .

E

If we look at the strucure of our basis vectors in the polarization space, we can
immediately argue that there is no measurement which can deterministically
distinct a photon in the state |H from one in the state |+ or |−.

No-Cloning Theorem

To overcome the previous limitation, a possible ploy one could think of, could
be to make a perfect copy of the system under measurement. This would
give the possibility of performing a measurement in both polarization bases,
thus leading to a deterministic outcome in almost one case. (Un)fortunately,
again a fundamental theorem limits the amount of information which can
be gained about non-orthogonal quantum states. It was stated in 1982 by
Wootters, Zurek [WZ82] and Dieks [Die82] and, despite its simplicity, it builds
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Figure 3.2: Bloch (left) and Poincaré (right) sphere. Any general pure qubit state
can be represented by a point on the surface of the Bloch sphere. If the qubit is the
polarization state of a photon, then the Poincaré sphere is used. On both spheres, the
two equatorial conjugated bases and the polar computational basis can be identified.

The pair {|H, |V } is called computational basis, while {|+, |−} and
{|R, |L} are the two conjugated bases3. In the special case of the polarized
photon, the sphere to represent the qubit is essentially the same as the Bloch
sphere and is called the Poincaré sphere (Figure 3.2)

3.2.2 No-go Theorems

This is a series of no-knowledge principles which directly descend from the
probabilistic nature of quantum mechanics. This unavoidable intrinsic igno-
rance builds the basis for eavesdropping detection schemes implemented in
every quantum cryptographic protocol.

Non-Distinguishability of Non-Orthogonal States

Two quantum mechanical states, |ψ and |φ, are said to be non-orthogonal if
their inner product is not zero; in Dirac’s notation:

ψ|φ = 0 . (3.3)

3In a N dimensional Hilbert Space two bases are said to be conjugated if the projection of
every basis vector of one basis onto the other equals 1√

N
.
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the pillar for quantum cryptography to work, as it prevents any eavesdropper
from getting a duplicate of potential key bits. It reads as follows:

Theorem 2. It is not possible to create a perfect copy of an unknown quantum
mechanical state.

Proof. Suppose there exists a quantum copying machine consisting of two
parts: a data slot and a target slot. The data slot contains the unknown but
pure quantum state to be copied, |ψ, while the target slot is initially in some
pure state |s. Thus, the machine initial state is:

|ψ ⊗ |s . (3.9)

To get a copy of |ψ in the target slot, we let a unitary operator act on the
initial state, i.e.:

|ψ ⊗ |s U−→ U(|ψ ⊗ |s) = |ψ ⊗ |ψ . (3.10)

Suppose this procedure works for two non-orthogonal states |ψ and |φ,
i.e.:

U(|ψ ⊗ |s) = |ψ ⊗ |ψ (3.11)
U(|φ ⊗ |s) = |φ ⊗ |φ (3.12)

Computing the inner product of the two expressions yields:

ψ|s|U†U
1

|φ = ψ|ψ|φ|φ

ψ|φ = (ψ|φ)2 .

So either |ψ = |φ or ψ|φ = 0. E

Thus, a quantum cloning machine can only copy states which are orthogonal to
each other, hence there is no general cloning device for quantum states. This
holds in particular for the polarisation states defined in the previous section:
since H|± = 1/2 = 0 any attempt to clone any of the states |±, |H, |V 
won’t work perfectly.

Though the impossibility of getting a perfect copy of the system, some special
devices, called quantum cloning machines (QCM), have been investigated,
particularly in [GM97], [BEM97] and in the excellent review article [SIAG05].
This kind of setups can perform an approximate cloning procedure, both for
finite and infinite dimensional Hilbert spaces. As universal cloning process,
Gisin and Massar consider a state-independent QCM, in which the input state
is an unknown pure qubit on the Poincaré sphere |ψ = cos θ

2 | ↑+e
iφ sin θ

2 | ↓.
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3.3 Quantum Entanglement and Bell’s Theorem

The figure of merit, or fidelity, for the process is the overlap between any of
the copies and the input state, and can be expressed as:

F =


ψ|ρout|ψdΩ . (3.13)

where ρout(θ, φ) is the reduced density matrix of one of the copies and


dΩ =
=

 2π

0
dφ

 π

0
dθ sin θ/4π. In the case that N identical qubit states are taken

as input, and we wish to get M > N identical copies as output states, they
found a closed form for F :

FN,M =
M(N + 1) +N
M(N + 2)

. (3.14)

This gives an upper bound to how “good” our cloning trial can be. For the
relevant case of an eavesdropping attack, where Eve is attempting to create
two copies (M = 2), from one unknown qubit state (N = 1), the fidelity
assumes the value of 5/6.

3.3 Quantum Entanglement and Bell’s Theorem

Entanglement is perhaps the most astonishing feature arising in the quan-
tum world. A wide class of QKD protocols exploits entanglement of quantum
mechanical systems to achieve secure communication [BBM92], [Eke91]. For-
mally, two or more quantum states are said to be entangled, if the global
state cannot be expressed as a tensor product or a statistical mixture of ten-
sor products of any quantum states of the individual systems.
This definition is responsible for one of the most exciting discussions on the
foundations of quantum mechanics, initiated in 1935 by a famous research
paper by Einstein, Podolsky and Rosen [EPR35]. In that article, they formu-
lated a Gedanken Experiment, known as the EPR paradox, which was later
adapted by Bohm [Boh51] to better fit into an experimental setup. In that
modified version (referred to as EPRB paradox), two entangled particles (e.g.
electrons), eA and eB , are emitted from a source4. The particles eA and eB
are then sent to Alice and Bob respectively, who perform a spin measurement
along the z axis5 on their particle.

4After that, a source that produces entangled particles is called an EPR source.
5The choice of the measurement direction is arbitrary. Any other choice doesn’t affect

results.
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of the other observer’s detector. In a LHV theory randomness of outcome A
and B is due to the statistical distribution of the unknown set of parameters
λ (prerequisite for reality), which can be common for both particles. Bell’s in-
equality, in the form derived by Clauser, Horne, Shimony and Holt [CHSH69],
also referred to as CHSH inequality, reads as follows:

|C(n1,n2) + C(n1
,n2) + C(n1,n2

)− C(n1
,n2

)| ≤ 2 , (3.16)

where C(n1,n2) is the correlation function defined by:

C(n1,n2) = A(n1)B(n2) , (3.17)

The CHSH inequality has to be fullfilled by any theory based on LHV. For
LHV theories, the RHS of Eq. 3.17 is given by:

A(n1)B(n2) =

A(n1, λ)B(n2, λ)dρλ , (LHV)

while, for quantum mechanics:

C(n1,n2) = ψ|(n1 · σ)(n2 · σ)|ψ , (QM)

where σ = (σx, σy, σz), is the vector of Pauli matrices. If we assume we analyze
the state |Ψ− given by Eq. 3.15 and if we adjust the setup in such a way that
the angle between n1 and n2, n1 and n2

, n1 and n2 is 45◦ and that between
n1
 and n2

 is 135◦, we finally get the quantum mechanical prediction:

|C(n1,n2) + C(n1
,n2) + C(n1,n2

)− C(n1
,n2

)| = 2
√
2 > 2 . (3.18)

Thus, quantum mechanics contradicts the postulates of LHV theory.

3.4 Quantum Protocols

3.4.1 Four-State Protocol: BB84

The BB84 was the first key distribution protocol based on quantum crypto-
graphy. It is called after the two inventors Charles Bennett and Gilles Bras-
sard, who proposed it at an IEEE conference in 1984 [BB84].
Its easy comprehension and simple practical realization, make the BB84 up
to now the most attractive quantum cryptographic protocol for experimen-
tal purposes. The protocol implementation uses polarization states of single
photons to encode information. In particular, polarization from the previously
analyzed non orthogonal states, {|H, |V } and {|+, |−}, are chosen. The
table on the next page illustrates the bit encoding scheme. A classical two-
bit pattern defines the mapping to the polarization. The first bit represents
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Before any measurement is performed, the global wave function for the system
eA + eB is described by the following superposition state:

|Ψ− = 1√
2
(|↑A |↓B − |↓A |↑B ) , (3.15)

where subscript A and B refer to the particle measured by Alice and Bob
respectively and |↑ , |↓ are eigenstates of the Pauli matrix σz. According
to quantum mechanics, after Alice has performed her spin measurement, the
wave function collapsed either on |↑A |↓B or on |↓A |↑B state. Hence, in
the case she obtained the measurement result spin up, Bob will measure spin
down particle with 100% probability, while if she measured spin down, Bob’s
result will be spin up.

This conclusion is quite amazing: it seems that a measurement on one side
could instantaneously6 determine the result of a measurement far away in
space.
These implications and the Copenhagen interpretation of these results were
unacceptable for Einstein, Podolsky and Rosen. To express his position, Ein-
stein liked to say that the moon is “out there” even if no one is observing
it. In order to preserve the local realistic description of the physical world7,
Einstein Podolsky and Rosen concluded that quantum mechanics cannot be a
complete theory. In other words, there must be some more general theory for
the description of objects in the real world, to which quantum mechanics acts
only as a statistical approximation. Hence, the complete theory must contain
some local hidden parameters, corresponding to the elements of physical
reality. Such a theory is called a local hidden variable (LHV) theory.

In 1964 John S. Bell [Bel64] showed that no local realistic hidden variable
theory can reproduce all predictions of quantum mechanics. Therefore he de-
rived a mathematical formulation in the form of inequalities (known as Bell’s
inequalities), which must be satisfied by any local realistic theory, but are
violated by quantum mechanics under certain conditions.
To illustrate Bell’s idea, consider the two measurement outcomes A(n1) and
B(n2) of Alice and Bob, which according to quantum mechanics can take the
values +1 (spin up) and −1 (spin down) for the state in Eq. 3.15.
The unit vectors n1 and n2 denote the direction of the spin measurement for
the variable A and B respectively. Moreover, according to locality, the value
of A depends only on n1 and that of B only on n2 and not on the orientation

6Though, measurement on an entangled state does not violate the causality principle,
because Alice’ information about her result can still not be conveyed faster than light.
Moreover the result of a single particle measurement is always with equal probability up
or down.

7Einstein could not accept the idea that God plays dice with the world

34



37

3.4 Quantum Protocols
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)− C(n1
,n2

)| ≤ 2 , (3.16)
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
A(n1, λ)B(n2, λ)dρλ , (LHV)
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 and n2

 is 135◦, we finally get the quantum mechanical prediction:

|C(n1,n2) + C(n1
,n2) + C(n1,n2

)− C(n1
,n2

)| = 2
√
2 > 2 . (3.18)

Thus, quantum mechanics contradicts the postulates of LHV theory.

3.4 Quantum Protocols

3.4.1 Four-State Protocol: BB84

The BB84 was the first key distribution protocol based on quantum crypto-
graphy. It is called after the two inventors Charles Bennett and Gilles Bras-
sard, who proposed it at an IEEE conference in 1984 [BB84].
Its easy comprehension and simple practical realization, make the BB84 up
to now the most attractive quantum cryptographic protocol for experimen-
tal purposes. The protocol implementation uses polarization states of single
photons to encode information. In particular, polarization from the previously
analyzed non orthogonal states, {|H, |V } and {|+, |−}, are chosen. The
table on the next page illustrates the bit encoding scheme. A classical two-
bit pattern defines the mapping to the polarization. The first bit represents
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Figure 3.3: BB84 polarization-encoding scheme. Classical two-bit patterns define
basis and polarisation of the outcoming photons.

the basis, the second bit the polarization in the corresponding basis; so, for
instance, to the bit pattern 01 will correspond a |H polarized photon. The
key distribution between Alice and Bob consists of the following steps:

Step 1: Alice and Bob agree on an encoding scheme such as the one described
in Table 3.3.

Step 2: Alice generates two random independent strings of classical bits with
the same length. Each bit of the first string is used for the basis mapping,
while the corresponding bit of the second string is used for the polarization
choice. According to the resulting bit pattern, Alice prepares the correspon-
ding photon and sends it out to Bob through the quantum channel. For
instance, assume the m-th bit from the basis string is 1, the m-th from the
polarization string is 0, then Alice has to send out a |+ polarized photon,
(resulting pattern = 10). The procedure is repeated for every bit-string pair.

Step 3: Everytime Bob expects to receive a photon, he selects a measure-
ment basis randomly and independent of Alice’ choice, either {|H, |V } or
{|+, |−}. Bob measures the polarization of the received photon in the cho-
sen basis.

Step 4: Due to a lossy channel and imperfect detectors, Bob won’t be able to
receive every photon Alice sent out. Thus, he has to communicate her which
ones he has detected. Alice discards all entries corresponding to the missing
detection events.

Step 5: Alice and Bob communicate each other through the classical chan-
nel, which basis they used for sending and receiving. Whenever they used
the same basis, Bob’s measurement was deterministic, and they must share
the same bit. In the case where the bases did not coincide, the result of the
polarization measurement is completely randomized and they have to discard
the corresponding entry. This step is called the sifting procedure.

Step 6: Ideally, after the sifting procedure, Alice and Bob share a common
sequence of randomly generated bits, which constitutes their symmetric en-
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Figure 3.4: The picture illustrates the schematical setup for an intercept-resend
attack.

cryption key. At this point they have to check if an eavesdropper was present.
To do this, they randomly select a piece of sifted key and calculate the frac-
tion of different bits, yielding the quantum bit error rate (QBER) for this
transmission.

Step 7: If the calculated QBER is higher than a given limit (more precise
numerical values will be given later), they have to discard the key and repeat
the transmission. If the QBER is below that limit, they estimate the maxi-
mum amount of possibly eavesdropped information and proceed with the error
correction and privacy amplification routines (see Section 3.5), to end up with
a common secure key string Ks.

Security: Intercept-Resend and Cloning Attack

The strength of any quantum protocol is actually based on the possibility of
detecting whether someone tried to listen in the quantum channel. For this
purpose, the QBER plays a fundamental role. To illustrate how the eaves-
dropping detection works, imagine Eve is in possess of a quantum transceiver
device, which can perform a polarization measurement and successively send
a photon in the measured state further to Bob, as Alice does.
Such a scheme is known as intercept-resend attack, for obvious reasons.
As previously stated, Eve as well as Bob, cannot deterministically distinguish
between non-orthogonal states, hence the only strategy Eve can apply is to
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cryption key. At this point they have to check whether an eavesdropper was
present. To do this, they randomly select a piece of sifted key and calculate
the fraction of different bits, yielding the quantum bit error rate (QBER)
for this transmission.

Step 7: If the calculated QBER is higher than a given limit (more precise
numerical values will be given later), they have to discard the key and repeat
the transmission. If the QBER is below that limit, they estimate the maxi-
mum amount of possibly eavesdropped information and proceed with the error
correction and privacy amplification routines (see Section 3.5), to end up with
a common secure key string Ks.

Security: Intercept-Resend and Cloning Attack

The strength of any quantum protocol is actually based on the possibility of
detecting whether someone tried to listen in the quantum channel. For this
purpose, the QBER plays a fundamental role. To illustrate how the eaves-
dropping detection works, imagine Eve is in possess of a quantum transceiver
device, which can perform a polarization measurement and successively send
a photon in the measured state further to Bob, as Alice does.
Such a scheme is known as intercept-resend attack, for obvious reasons.
As previously stated, Eve as well as Bob, cannot deterministically distinguish
between non-orthogonal states, hence the only strategy Eve can apply is to
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measure every incoming photon choosing the basis randomly. But, according
to the postulate that measuring disturbs the state, we can argue that there
must be some detectable consequence for what Eve is doing. Indeed, this
results in an increasing of the QBER parameter. To understand more quan-
titatively how the QBER is affected by this attack, assume Alice sends out a
polarized photon, which is intercepted and measured by Eve, who forwards it
to Bob.

Figure 3.5: The effect of a intercept-resend eavesdropping attack.

With the help of table 3.5 let us analyse the possible scenarios which can arise.
In the first row a |H polarized photon is sent out, first measured by Eve, then
resent and finally measured by Bob in the “wrong” basis. So, independently
of what Eve measures (denoted by “?”), the photon will be discarded anyway
in the sifting procedure, so no contribution to the QBER is produced. More
interesting cases occur if Bob measures in the same basis as Alice sends. In the
second row, Eve chooses the “right” basis too, so she gets a deterministic result.
After sending out the same state, Bob’s and Alice’ results will coincide, hence
the QBER is still not affected and Eve can gain full information. In the third
and fourth case, Eve’s and Alice’ choice don’t coincide: Eve’s measurement
swaps the polarization to either |+ or |−, hence completely randomizing
Bob’s result. The QBER can be estimated if we consider that with 50%
probability Eve chooses the wrong basis, and in those cases, Bob’s result won’t
match with 50% probability as well. This analysis leads to the conclusion that
an intercept-resend attack causes a QBER of 25% in the sifted key. If
we consider that in a typical experimental environment the QBER is about a
few percent, we conclude that this attack would be easily detected.

Another class of eavesdropping strategies exploits the cloning procedure and is
thereafter called a quantum cloning attack. Though, as discussed before,
quantum cloning cannot be performed with arbitrary precision, an optimal
cloning machine is able to reach a fidelity of about 83.3%.

38

H|

H|

H|

H|

?       ?

H|

+|

-|

?

H|

H|

V|

Alice Eve Bob Effect

discarded

hidden

hidden

eavesdropper detected



41

3.4 Quantum Protocols

The scheme works as follows: Eve is in possess of an universal quantum cloning
machine (UQCM), which attempts to make two identical copies of every pho-
ton coming from Alice. She then stores one copy in a quantum memory (a
rather ideal device used to store qubits) and forwards the other to Bob. When
the bases are publicly announced, she retrieves the stored qubits and performs
the measurement in the correct basis. The error rate introduced by this pro-
cedure will be QBER= (1−F) ∗ 100 ≈ 16,7%. Though much lower than in
the previous case, the introduced error is still easily detectable.

3.4.2 Two-State Protocol: B92

This protocol, proposed by Bennett in 1992 [Ben92], can be considered as a
simplified version of the BB84. Unlike the latter, it makes use of only two
non-orthogonal states, which are already sufficient to implement secure QKD.
Following [NC02], suppose Alice has a random string of classical bits, and let
bA be the m-th bit. Depending on its value she sends one of the following
states to Bob:

|ψm =





|H , if bA = 1

|+ = |H+ |V √
2

, if bA = 0
(3.19)

According to a random classical bit bB , Bob performs a measurement either
in the ⊕ basis (if bB =0), or in the ⊗ basis (if bB =1). Whenever he detects
a |V  polarized photon, he knows Alice has sent a bit value 0 (if not so, he
would have no chance to detect |V  , since the two states are orthogonal).
Analogously if he detects a |− he can safely conclude that he measured a bit
value 1. In the two remaining cases, called erasures, he cannot assert with
certainty which bit value he received, so he discards those measurements. In
the sifting procedure, Bob announces the position of photons he could identify
with certainty, and the bit value he obtained (but not the basis he measured
with). After that, Alice and Bob conduct a public discussion, keeping only
those pairs bA, bB , for which Bob obtained the bit 1 (note that when bA = bB ,
then Bob gets always 0). Only in those cases where bB = 1− bA will Bob get
a bit value 1, and that occurs with 50% probability. Finally, the key is bA for
Alice and 1 − bB for Bob. Analogously to the BB84 protocol, eavesdropping
detection occurs with the analysis of the QBER in a randomly chosen fraction
of the sifted key.
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Security: Unambiguous State Discrimination Attack

This is a special case of an intercept-resend attack, and applies whenever
the signal states sent by Alice are linear independent. Eve can perform an
unambiguous state discrimination (USD) measurement on the signal
states, thereby distinguishing between cases where she got a deterministic
result or a random one.
She can then apply the following strategy: in those cases where she knows the
state with certainty, she forwards it to Bob, while, in all other cases, she sends
no signal at all, mimicking a lossy channel.

The previously discussed B92, is an example for a protocol which can be
affected from such an attack. Under a given threshold, which depends on the
state non-orthogonality, no secure key transmission is possible. This threshold
is defined as the transmissivity where the probability of success of an USD
measurement equals Bob’s detection probability on the lossy channel. For the
threshold of the transmissivity we find the expression ([TKI03]):

ηth = 1− |φ0|φ1| (3.20)

where, |φ0 and |φ1 are the two non-orthogonal states. In our example, plug-
ging in the states defined in 3.13, we get ηth = 1− 1/

√
2 ≈ 0.293, or a channel

attenuation of about 5 dB.

3.4.3 QKD with Weak Coherent Pulses

Although the unconditional security of many QKD protocols, (including BB84),
has been proven in various papers (see e.g. [May96], [SP00]), this is not a
guarantee for QKD in practice, due to imperfect real-world implementations.
All protocols considered up to now, postulate the existence of an ideal device
which can produce single photons on demand. Unfortunately, in the real world
such a device still doesn’t exist, so that experimenters strive to approximate
such a behavior. A widespread practical solution, is the use of weak coherent
pulses from a laser source. The outcoming radiation is described by a single
mode coherent state with Poissonian photon number distribution:

p(n) =
µn

n!
e−µ , (3.21)

where µ is the mean photon number. In Fig. 3.6 we plotted the Poisson
distribution for µ = 0.1, a typical value used in experiments (see section 4.1
for the origin of that value).
The probability of zero photons in a pulse is p(0) ≈ 0.905, the one photon
probability p(1) ≈ 0.090, and the multi-photon probability pmulti ≈ 0.005, so
that with a high probability most pulses carry no signal state. The reason for
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Figure 3.6: The photon number probability distribution for a source with µ=0.1
photons/pulse.

such a low mean photon number resides in the corresponding low probability
for multiphoton pulses pmulti compared to p(1). A too high fraction pmulti

p(1)

represents a potential source for an eavesdropping attack described in the
following section.

Photon Number Splitting Attack

A very strong class of eavesdropping strategies is known as photon num-
ber splitting (PNS) attack, first described by Dušek [DHH99], Lütkenhaus
[Lüt00], and Brassard [BLMS00]. It is not based on a security flaw in the pro-
tocol self, but rather on its physical implementation. Imagine Eve is listening
in the quantum channel and waiting for signal states. She could apply the
following strategy (see Fig. 3.7):

• For every incoming signal she performs a quantum non demolition (QND)8
measurement on the number of photons contained in the signal.

8The name comes from the fact that Eve actually performs a measurement in the photon
number Hilbert space, hence no disturbance of polarization state is made.
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ber splitting (PNS) attack, first described by Dušek [DHH99], Lütkenhaus
[Lüt00], and Brassard [BLMS00]. It is not based on a security flaw in the pro-
tocol self, but rather on its physical implementation. Imagine Eve is listening
in the quantum channel and waiting for signal states. She could apply the
following strategy (see Fig. 3.7):

• For every incoming signal she performs a quantum non demolition (QND)8
measurement on the number of photons contained in the signal.

8The name comes from the fact that Eve actually performs a measurement in the photon
number Hilbert space, hence no disturbance of polarization state is made.
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Figure 3.7: The picture illustrates the powerful strategy behind a PNS attack. For
every intercepted pulse, Eve performs a QND measurement in the photon number
Hilbert space. Depending on the outcome N of her measurement, either she blocks
the pulse , or (if N > 1) she stores a photon in a quantum memory (if N = 1) and
forwards the rest to Bob. Then she waits until the bases are announced and retrieves
the stored photons to measure them deterministically.

• Depending on the result of the QND measurement she does the following:

– if the photon number is n = 0 she doesn’t perform any action
– if the photon number is n = 1 she blocks the photon
– if the photon number is n > 1 she stores one of the photons in a

quantum memory and forwards the remaining one(s) to Bob

• She waits until the bases are publicly announced, then retrieves the
stored photons and she measures them in the correct basis.

Actually, such an attack results in a very powerful mean, since Eve can ide-
ally share the whole information with Alice and Bob, without being detected.
Indeed, a PNS attack will cause an overall attenuation of the quantum chan-
nel transmission rate, but no increasing in the QBER. Therefore, to prevent
such an eavesdropping risk, particular attention must be paid to the quantum
channel transmissivity and to the mean photon number9.

9In [BLMS00] an upper bound for the transmissivity, which could allow Eve to gain full
information over the key, is given by: η <

`
1− eµ − µe−µ

´
/µ.
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´
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Decoy State Protocol

A way to efficiently counteract a PNS attack has been proposed in recent
years by Hwang, [Hwa03], Wang, [Wan04a] and [Wan04b], Lo, [LMC05], and
Ma [Ma04] and is called decoy state protocol. In this section we focus our
attention on the main results of Hwang’s proposal [Hwa03].
The basic idea is to use three different mean photon sources or classes: one,
denoted Sµ for signal states with mean photon number µ, one, denoted Sµ

for the so called decoy state with mean photon number µ > µ and one as
vacuum state source S0, with µ0 = 0. Signal and decoy source differ from each
other only in their µ parameters, i.e. they have the same characteristics, such
as wavelength, timing information, etc.. According to a randomly generated
pattern of classical bits, Alice sends out photons alternating from all three
sources to Bob. The three states |µ, |µ and |µ0 are non-orthogonal, since,
e.g.:

µ|µ2 = exp(−|µ− µ|2) = 0 if µ = µ . (3.22)

Hence Eve is not able to deterministic distinguish between these states. When-
ever a PNS attack takes place, this unavoidably influences the photon statistics
(she cannot establish to which mean photon number class the photon stems
from). In the public discussion Alice announces for every transmitted photon
the basis she used and its mean photon number class. If the quantum channel
transmission and detector efficiencies are known, it is easy for Bob to calcu-
late the expected values for µ, µ and µ0. If the three mean photon numbers
show different attenuations, then we can conclude that Alice and Bob have
been victim of a PNS attack and should discard the key. To make some more
quantitative assertions, define the gain Qn for a state containing n photons as
the quantity:

Qn = Yn
µn

n!
e−µ = YnPn(µ) (3.23)

where Pn(µ) is the Poissonian distribution with mean photon number µ, and
Yn is the yield of an n-photon signal (conditional probability that Bob detects
an event, provided Alice sent out a n-photon signal). The total gain of the
source is the sum over all possible photon numbers n:

Qµ =

n

Qµ =

n

YnPn(µ) . (3.24)
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Figure 3.7: The picture illustrates the powerful strategy behind a PNS attack. For
every intercepted pulse, Eve performs a QND measurement in the photon number
Hilbert space. Depending on the outcome N of her measurement, either she blocks
the pulse , or (if N > 1) she stores a photon in a quantum memory (if N = 1) and
forwards the rest to Bob. Then she waits until the bases are announced and retrieves
the stored photons to measure them deterministically.

• Depending on the result of the QND measurement she does the following:

– if the photon number is n = 0 she doesn’t perform any action
– if the photon number is n = 1 she blocks the photon
– if the photon number is n > 1 she stores one of the photons in a

quantum memory and forwards the remaining one(s) to Bob

• She waits until the bases are publicly announced, then retrieves the
stored photons and she measures them in the correct basis.

Actually, such an attack results in a very powerful mean, since Eve can ide-
ally share the whole information with Alice and Bob, without being detected.
Indeed, a PNS attack will cause an overall attenuation of the quantum chan-
nel transmission rate, but no increasing in the QBER. Therefore, to prevent
such an eavesdropping risk, particular attention must be paid to the quantum
channel transmissivity and to the mean photon number9.

9In [BLMS00] an upper bound for the transmissivity, which could allow Eve to gain full
information over the key, is given by: η <

`
1− eµ − µe−µ

´
/µ.
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For the two signal sources Sµ and Sµ , we get:

Qµ = Y0e
−µ + Y1µe

−µ +
∞

n=2

YnPn(µ) (3.25)

= Y0e
−µ + Y1µe

−µ + cYm (3.26)

Qµ = Y0e
−µ

+ Y1µ
e−µ

+
∞

n=2

YnPn(µ) (3.27)

= Y0e
−µ

+ Y1µ
e−µ

− µ
2e−µ

µ2e−µ
cYm + dYd (3.28)

where Y0, in the absence of eavesdropping, is simply given by the measured
background detection event rate of the system. Qµ, and Qµ are directly
measured, and c and d are given by:

µe−µQµc = 1− e−µ − µeµ > 0 (3.29)

d = 1− e−µ − µ
2e−µ

µ2e−µ
c ≥ 0 . (3.30)

Our task is now to find a parameter for security check which can be easily
estimated by Alice and Bob. This quantity, denoted ∆, is the fraction of
multiphoton events originating from the source Sµ to the total counts Qµ, i.e.:

∆ =
cYm

Qm
. (3.31)

Hence the task is reduced to formulating Ym as a function of parameters
{Y0, Qµ, Qµ}. Note that in equation 3.28 Y1 and Yd are unknown, but never
negative, so we can write down a first estimation for cYm:

cYm ≤ µ2e−µ

µ2e−µ


Qµ − e−µ

Y0 − µe−µ
Y1


. (3.32)

From this, it is now easy to get Hwang’s main result presented in [Hwa03]:

cYm ≤ µ2e−µ

µ2e−µ


Qµ − e−µ

Y0


≤ µ2e−µ

µ2e−µQµ . (3.33)
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Figure 3.8: Diagram from [LMC05]. Simulation of kgr vs. distance with and
without decoy state protocol, plotted using real parameters from GYS experiment
[GYS04]. With decoy the maximal distance is extended to over 140 km, while with
prior art method the achievable distance was about 30 km.

Combining 3.24 with 3.22, we get:

∆ ≤ µ2e−µQµ

µ2e−µQµ

(3.34)

which can also be found in Hwang’s paper. In the case there is no Eve’s attack
Alice and Bob will asymptotically find:

Qµ
Qµ

=
1− e−ηµ

1− e−ηµ
=
µ

µ
(3.35)

where η is the channel transmission. Therefore they are able to verify ∆ ≤

≤ µe−µ

µe−µ . This gives the needed parameter for security check against PNS

attacks. We try now to illustrate one of the main advantages in using a decoy
state protocol. As reported in [GLLP02], later addressed as GLLP, as long as
the channel transmission η is not dramatically low, the extraction of a secure
shared key between Alice and Bob is still possible.
GLLP scheme assumes that Fred is collaborating with Eve, “tagging” some
photons at Alice’ side to facilitate Eve’s measurement in the right basis. If
∆ = pM/pD is the fraction of tagged to detected photons, then we can derive
an expression for the key generation rate, which is defined as the length of the
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secure key10 to the total number of signals sent by Alice :

kgr ≈ 1
2
νpD ≈

1
2
νηµ ≈ νη2∆ (3.36)

where ν is the source repetition rate, and the 1
2 factor comes from the random

choice of the basis in the BB84 protocol. The interesting thing to note is the
O(η2) dependence of the kgr, that is for very lossy channel or large distances,
a secure key exchange becomes impossible (see figure 3.8).
Nevertheless a decoy state protocol can restore the unconditional security over
larger distances. The fact that security check bases on multiphoton pulses,
allows the choice of higher values for µ and µ, typically varying from 0.1 to
0.3. Moreover, both sources can be used simultaneously as signal and decoy
state. The enhancement of the range where a kgr is still achievable is clear
from the diagram shown in Fig. 3.8.

3.4.4 Entanglement-Based QKD: Original and Simplified
Ekert Protocols

In 1991 A. Ekert proposed a QKD protocol based on quantum entangle-
ment11[Eke91]. A way to produce polarization entangled photons, which find
applications in such protocols, is based on the non-linear properties of some
crystals like e.g. β-BaB2O4 (β-barium-borate or BBO), KNbO3, LiNbO3,
etc.. In this process, called spontaneous parametric down conversion (SPDC),
some photons of a pump beam are down-converted into two photons under
conservation of energy and momentum. The two photons emerge along two
orthogonally polarized emission cones (see Fig. 3.9). Collecting only photons
from the two intersection regions provides a maximally entangled polarization
state:

|Ψ− = 1√
2
(|V S |HI − |HS |V I) . (3.37)

Alice and Bob each receive a particle from this entangled pair. Afterward,
they measure their particle in one out of three different bases. Suppose, for

10The secure key is the result of a distillation procedure, applied to the sifted key, to enhance
security (see section 3.5). The higher the µ, the more the sifted key has to be shrunk
down, because of multi-photon contributions.

11The particular nature of the entangled particles is not relevant for the general discussion,
so it doesn’t matter whether they share two spin 1/2 particles or two polarization en-
tangled photons. However, in all practical QKD realizations, photons are used, because
they are easy to transport over large distances.
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Figure 3.9: Spontaneous parametric down conversion (SPDC) exploits the non-
linear properties of some crystals to produce polarization-entangled photon pairs.

instance, they choose the measurement directions lying on the plane perpen-
dicular to the particle trajectory, at angles with respect to the vertical of 0◦
45◦ and 90◦ at Alice’ side and 45◦ 90◦ and 135◦ at Bob’s side (see Fig. 3.10).
They perform measurements on their entangled particles using random and
independent basis settings.
At the end of the transmission they conduct a public discussion telling each
other which base settings were used for each pair. Whenever they used the
same basis, their results are perfectly correlated and these cases constitute the
shared key, while, in all other cases the outcomes are random . It is easily ver-
ified that their measurement settings will coincide with probability 2/9. The

Figure 3.10: Schematical setup for an entangled state protocol. The source pro-
duces entangled particles which are analyzed by Alice and Bob randomly choosing
one out of three possible measurement directions.

protocol provides of course also a security check. This is performed using the
outcomes of the uncorrelated pairs. An eavesdropper attempting to correlate
his probe with one of the EPR particles, will unavoidably corrupt the quality
of entanglement, resulting in a lower violation of the CHSH inequality.
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3.5 Error Correction and Privacy Amplification

Step 2: They compute the parity bit of each block, and publicly compare the
results. Two cases can arise:

• if the parities of the block coincide, they go on with the next block.

• if the parities differ, Bob knows there must be an odd number of errors
in that block. To find one of these errors he applies the routine BINARY
to this block. It performs a recursive binary search, first dividing the
block into two equal sub-blocks, then comparing their parities with the
same sub-blocks of Alice to determine in which of the two the error lies.
The search proceeds now with this sub-block, and so on until the wrong
bit is isolated and corrected by Bob.

Notice that if the flipped bit was present in a block of the previous round
(which had an even number of errors), then Bob knows there must be
one more error in that block. Again BINARY makes sure that this error
is located and corrected.

Step 3: Alice and Bob apply a permutation to their bit string and start the
next round with an increased block length, usually twice that of the previous
step.

Within a few cycles, Alice and Bob share the same key. Notice that the
parity bits which are sent through the public classical channel constitute leaked
information. This can be eavesdropped as well and must be taken into account
when performing privacy amplification.

3.5.2 Privacy Amplification

After the error correction, Alice and Bob share the same bit string, and Eve
is supposed to have gained all leaked information. The goal of privacy am-
plification is to reduce Eve’s knowledge to a negligible quantity by creating a
shorter, truly secret key. Following Lütkenhaus [Lüt00], we assume that the
final key length ηf is given by the formula:

ηf = 1− ηsif (1− τ1)− ηS , (3.39)

where ηsif is the sifted key length τ1 is the shrinking factor, and ηS is a
security parameter. The latter becomes negligible for long enough keys, so it
is dropped from the discussion. The requirement that Eve’s knowledge about
the key is arbitrary small, can be made rigorous by two assumptions:

1. all keys of length ηf should have equal probability p. If x is any given
key, this means: p(x) = 2−ηf .

2. the difference between a priori and a posteriori probability for any key
x should vanish.
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A year later, Bennett, Brassard and Mermin [BBM92] proposed a simplified
version, without making direct use of Bell’s theorem. Alice and Bob have to
choose randomly only from two possible orientations, which build a conjugated
basis pair. Unlike in BB84, Alice doesn’t need to prepare particles in a given
polarization or spin orientation state, but she only limits herself to measuring
her half of the EPR pair. Eavesdropping check is carried out calculating the
QBER in the sifted key as well.

3.5 Error Correction and Privacy Amplification

Every QKD protocol which deserves this name, must provide a procedure to
identify and successively correct accidental errors in the shared key. After the
sifted key is extracted, Alice and Bob should ideally share the same sequence
of bits. This won’t be the case in real world implementations, where noisy
quantum links or detectors, or even an eavesdropper, will generate a fraction
of wrong bits in the sifted key.
Moreover, if we assume that the QBER is due exclusively to the presence
of an eavesdropper, we should consider some procedures to reduce the leaked
information towards zero, otherwise no secure key distribution can be esta-
blished.

3.5.1 Error Correction

According to a theorem stated by Shannon [Sha48], it is not possible to perform
error correction without disclosing some information. The ratio between the
minimum number of bits NShan

corr needed to correct a sifted key of length ηsif
in the limit ηsif →∞ is given by:

NShan
corr

ηsif
= −e log2 e− (1− e) log2(1− e) , (3.38)

where e is the observed error rate in the sifted key. Unfortunately, the limit in
3.38 is only a theoretical lower bound to the amount of key information needed
to perform error correction. How large this leakage is, actually depends on the
adopted particular procedure. The error correction algorithm proposed by
Brassard and Salvail, called CASCADE [BS93], is very close to this limit. We
briefly outline how it works. The starting point is a sifted key bit-string of
given length at both Alice’ and Bob’s side, with an expected fraction of wrong
bits (≈ QBER). The error correction is now performed in a few cycles, where
each round runs as follows:

Step 1: Alice and Bob partition their respective string into blocks of fixed
length.
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Figure 3.11: Plot of the fraction of disclosed bits vs. QBER, as resulting from the
implementation of the CASCADE algorithm. Picture adapted from [BS93].

This results in an upper bound for the shrinking factor:

τ1 ≤


log2(1 + 4e− 4e2) for e ≤ 1/2
1 for e ≥ 1/2

(3.40)

where e is the previously measured QBER. Once τ1 has been estimated, Alice
and Bob can actually proceed with the privacy amplification. Suppose the
final key must be m bit long to be considered secure. According to [BBCM95]
they choose one from a set of public universal12 hash functions13, which
is then exchanged over the public channel. They then apply this function to
the sifted key, which is thus shrunk down to the required length m. At this
point, Alice and Bob end up with a secret symmetric key which can be now
safely used for encrypting confidential information. How the whole procedure
is implemented in practice can be made clear by means of an example. Assume

12A class G of functions A → B is universal if for any distinct x1 and x2 in A, the probability
that g(x1) = g(x2) is at most 1/|B| when g is randomly chosen from G according to a
uniform distribution.

13A one-way hash function is a shrinking algorithm which “mixes” and “chops” input bits to
give a random looking output called the hash value or message digest (MD). An ideal
hash function is collision-free, meaning that for any two different inputs their hash values
are never the same.
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3.5 Error Correction and Privacy Amplification

the sifted key has the length n. First, this is converted into a column vector
vsif which is then multiplied by a m × n Toeplitz14 matrix and added to a
constant random vector of length m. The result is a secure key Ks of length
m:

Ks =MToe · vsif + yrand

14A Toeplitz matrix is a matrix which entries are of the form aij = ai−j , i.e. all entries
along negative sloping diagonals are equal. It can be shown that the inversion of a
Toeplitz matrix takes only O(n2) operations, where n is the size of the matrix.
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4 The Munich Experiment

So far, the theoretical background for potentially unconditional secure QKD
schemes with their respective protocols has been illustrated. In this chapter,
we’ ll be basically dealing with the practical realization of such a cryptographic
system. Since the first experimental realization of a QKD scheme, by Ben-
nett et al. in 1989 [BB89] and [BBB+92], more and more groups worldwide
dedicated their attention to this challenging topic. In some cases the research
effort culminated in the production of commercially available cryptographic
devices based on quantum optics (see e.g. http://www.idquantique.com or
http://www.magiqtech.com).
In the very first QKD experiment of 1989, Bennett and Brassard could suc-
cessfully test their protocol. They used the light coming from a pulsed green
LED (light emitting diode), which was subsequently attenuated by an interfer-
ence filter and its polarization adjusted by a polarizer. The bit encoding took
place by the polarization rotation using Pockels cells placed in the beam. The
free-space quantum channel amounted to 32 cm; at receiver’s side a further
Pockels cell performed the choice of the basis, and after that, the two outputs
of a Wollaston prism were monitored by a pair of photomultipliers. Since then,
larger transmission distances were achieved and, by the time of this work, an
experiment involving H. Weinfurter’s and A. Zeilinger’s groups is aiming at
performing a free-space QKD over the largest distance of about 140 km.

Our test setup is located in downtown Munich and performs a point-to-point
QKD over a line-of-sight distance of about 0.5 km. Transmitter and receiver
units are located on rooftops of two university buildings, a public internet
connection serves as the classical communication channel, while the quantum
channel is free-space. We implement the four states BB84 protocol with faint
laser pulses from four laser diodes, randomly switching among polarization
states with a repetition rate of 10 MHz. At the receiver’s side, after a passive
random basis choice (see Sec. 4.3), polarization analysis of single photons
occurs by means of a half-wave plate, two polarizing beam splitters and four
silicon-based avalanche photo diodes (APD).
A software based synchronization procedure labels the photons at both sides to
allow the successive sifting procedure. Embedded error correction and privacy
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amplification algorithms complete the setup. In the following the various parts
of the apparatus and their interaction will be described in detail.

4.1 Sender Unit: Alice

This unit is responsible for the generation of photons in four different polariza-
tion states. To achieve this, four laser diodes with a maximal optical output
power of 5 mW are aligned on a circular mounting head, each rotated by an
angle of 45◦ with respect to each other. Because of their fabrication character-
istics, this kind of semiconductor devices emits highly linearly polarized light
(better than 1:1000) parallel to the edge which delimits the p- and n-doped
surfaces. In this way, without resorting to any polarization optics, the above
arrangement ensures that diodes enclosing an angle of 90◦ (e.g. {|H and |V 
in Fig. 4.1), can define the {|H, |V } basis, while the other diode pair builds
the conjugated {|+, |−} basis.

Figure 4.1: Left: schematical picture of the laser diode circular arrangement.
Right: picture of the sender unit with driving electronics placed behind.

The four diodes shine from the side to a conical mirror screwed inside the
head, on which a gold layer has been evaporated to enhance reflectivity. The
outgoing beam is now parallel to the optical axis. In order to collect as many
photons as possible, a small lens with focal length f=2.75 mm is placed in front
of the mirror. The next stage is the spatial filter, a pair of pinholes with
100 µm diameter at a distance of 9.2 mm from each other. Its main purpose
is to prevent an eavesdropper from gathering information by observing the
spatial dependence of the outgoing photons. Since the four output beams
from the conical mirror have small spatial overlap, measuring the k vector of
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4.1 Sender Unit: Alice

a photon would immediately determine from which diode it has been emitted,
thus disclosing its polarization. At the output of the second pinhole the spatial
modes of the four laser diodes completely overlap, so that indistinguishability
is ensured.
The relative distances of mirror, lens and spatial filter are adjusted in such a
way, that the waists of the four diodes lie in the middle of the two pinholes.
It can be shown that this is a requirement for maximum transmission.

The critical point in this setup is the mean photon number µ, which has to be
the same for all four polarizations. The choice of a suitable value for µ results
from taking into account several aspects. If, on the one hand, transmission
losses and detector noise would suggest to push up the mean photon number,
on the other hand the probability of multi-photon pulses must be kept as low
as possible, because of the security threat (see Sec. 3.4.3). Following [Lüt00],
an upper bound for µ can be derived from the constraint that the key shrinking
does not become too restrictive. This happens for µ  ηT , where ηT is the
channel transmittance. The optimal value is that which maximizes the secure
key generation rate for given conditions. In the case of real attenuated sources,
this optimum is given from the following expression:

µopt ≈ ηBηT , (4.1)

where ηB is the detector efficiency, and the estimation holds under the as-
sumption ηBηT  1, which is indeed the case for any realistic setup. In our
experiment the mean photon number is chosen to be µ = 0.1 photons/puls.
To achieve this, the count rate of every diode is independently adjusted with
the help of a calibrated silicon APD module to adjust the desired µ. With a
measured detector efficiency at 850 nm of ηB = 0.4, and a pulse rate of 10
MHz, we expect about 400×103 counts/s from each polarization direction. To
refine the adjustment, the spatial filter is mounted on a small x-y translation
stage, which allows parallel displacement with respect to the diodes mounting
head.

Driving Electronics

Recalling the BB84 protocol, we need two random strings as input for Alice.
The first one determines the basis she uses, and the second the polarization
she is sending out. After creating the strings1, a software translates them

1For experimental tasks, computer generated pseudo-random strings are enough, but keep
in mind that, in order not to compromise the high level of security which can be reached
with quantum cryptography, truly random number generators should be used.
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Figure 4.2: The optical pulse captured with a 7 GHz broadband photodiode. The
small after-pulse, due to reflections in the driving electronics, accounts for a total
pulse width of 375 ± 25 ps.

into a readable format for an input/output card on Alice’ computer, which
successively transfers them to a FIFO (first in first out) buffer memory. The
FIFO constitutes the input for the last driving stage, located behind the diodes
mounting head. This last stage takes five inputs: one clock signal at 10 MHz
frequency and four TTL signals, each corresponding to one of the four laser
diodes. Each TTL signal is combined with the clock signal by means of a AND
gate (to ensure that diodes actually fire with fixed repetition rate). Thus a
TTL high together with a clock pulse raises the voltage of the corresponding
diode by a fixed amount (0.5 V) above the offset voltage. The offset volt-
age has been adjusted so that it lies under the laser diodes threshold voltage,
which is about 1.5 V at 25 ◦C. The duration of the electrical pulse can also
be varied with an adjustable capacitor at the input of the AND gate. For a
detailed description of the circuit, refer to Weier [Wei03].
The graph 4.2 shows the time resolved optical pulse of the free laser diode
(without spatial filter) measured with the help of a 7 GHz broadband photo-
diode. From the data and the sensitivity curve of the photodiode, the total
amount of emitted photons per pulse can be inferred. Comparing it with the
desired rate of 0.1 photons/pulse, leads to an overall attenuation of roughly
65 dB at the output of the spatial filter. Due to reflections inside the driving
electronics, we can recognize a small after-pulse, which affects the total pulse
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4.1 Sender Unit: Alice

length and shape2. The optical pulse width (FWHM) is approximately 375 ps
± 20 ps, taking into account the weak after-pulse.

4.1.1 Laser Diode Electrical Characterization

Figure 4.3: The current-voltage (left) and optical power-current (right) charac-
teristic curves of a source sample diode taken at room temperature. the threshold
current has been estimated in Ithr = 6.48 mA, corresponding to a threshold voltage
of Vthr = 1.55 V.

The dependence of the laser diode current on the voltage and the dependence
of the optical power on the current have been measured at room temperature
(25 ◦C), using the setup described in [Reg05]. The resulting curves are shown
in Fig. 4.3. From the fit, the threshold current can be inferred, resulting in
Ithr = 6.48 mA; the corresponding threshold voltage is: Vthr = 1.55 V. The
investigation of the dynamical behavior of the diodes plays a fundamental role
for the dimensioning of the driving electronics. The dynamical resistance is
defined by:

ρD =
dU
dI
. (4.2)

Fixing the operating point, gives an estimation for the impedance. For in-
stance, ρD = 10.2 Ω is found at a voltage of 1.60 V, which is the correct
operation point for obtaining the desired 0.1 photons/pulse. This becomes an

2Though, this fact doesn’t constitute a security threat due to the large attenuation of the
pulses.
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operation point for obtaining the desired 0.1 photons/pulse. This becomes an

2Though, this fact doesn’t constitute a security threat due to the large attenuation of the
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important issue when considering the problem of impedance matching. Ide-
ally, the output impedance of one stage at a given frequency, should match
the input impedance of the following one at the same frequency. If this is not
the case, electromagnetic waves running through the circuit path can undergo
reflections. The general problem is quite complicated, even in theory, involv-
ing circuit design optimization, component characterization, etc. and its full
description would be beyond the scope of this work, so I refer to technical
literature about this topic. Another relevant question is the behavior of the
laser source under different conditions of the environment. For instance, we
expect that the electrical characteristic of the laser diodes strongly depends
on the temperature at which they are operated. This has been measured and
documented [Reg05] and we can here summarize some results: for lower tem-
peratures, the threshold current reduces, while the current-voltage character-
istic becomes steeper for higher temperatures. This behavior can be explained
if we consider the dependence of density of free charge carriers (electrons and
holes) with the temperature. While the total carrier number increases with
increasing temperature, the probability for radiative electron-hole recombina-
tion contributing to laser power decreases.

4.1.2 Laser Diode Spectral Characterization

The investigation of optical characteristics of the four laser diodes is very
important in order to prevent side-channel attacks relying on slightly different
spectral properties. The strategy could be to measure the wavelength of the
intercepted photons, and attempt to assign different polarizations to different
wavelengths. Hence, particular care must be taken of the spectral distribution
of the diodes. Ideally undistinguishability of the sources is guaranteed if all
four spectra perfectly overlap, in pulsed mode. With real devices, this can
only be achieved with some approximation. Figure 4.4 shows the spectral
distribution of the four laser diodes in the Alice module in pulsed operation.
Fitting a Lorentz function to these data sets (see Fig. 4.5), leads to the
characteristics summarized in the table below:

Diode Peak Wavelength (nm) FWHM (nm)

Diode 21 847.66 2.52
Diode 22 847.61 3.15
Diode 13 847.06 3.56
Diode 11 847.70 2.71

Table 4.1: The spectral characteristics of the four laser diodes used in the experi-
ment.
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laser source under different conditions of the environment. For instance, we
expect that the electrical characteristic of the laser diodes strongly depends
on the temperature at which they are operated. This has been measured and
documented [Reg05] and we can here summarize some results: for lower tem-
peratures, the threshold current reduces, while the current-voltage character-
istic becomes steeper for higher temperatures. This behavior can be explained
if we consider the dependence of density of free charge carriers (electrons and
holes) with the temperature. While the total carrier number increases with
increasing temperature, the probability for radiative electron-hole recombina-
tion contributing to laser power decreases.

4.1.2 Laser Diode Spectral Characterization

The investigation of optical characteristics of the four laser diodes is very
important in order to prevent side-channel attacks relying on slightly different
spectral properties. The strategy could be to measure the wavelength of the
intercepted photons, and attempt to assign different polarizations to different
wavelengths. Hence, particular care must be taken of the spectral distribution
of the diodes. Ideally undistinguishability of the sources is guaranteed if all
four spectra perfectly overlap, in pulsed mode. With real devices, this can
only be achieved with some approximation. Figure 4.4 shows the spectral
distribution of the four laser diodes in the Alice module in pulsed operation.
Fitting a Lorentz function to these data sets (see Fig. 4.5), leads to the
characteristics summarized in the table below:

Diode Peak Wavelength (nm) FWHM (nm)

Diode 21 847.66 2.52
Diode 22 847.61 3.15
Diode 13 847.06 3.56
Diode 11 847.70 2.71

Table 4.1: The spectral characteristics of the four laser diodes used in the experi-
ment.
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4.1 Sender Unit: Alice

Figure 4.4: Spectral distribution of the four laser diodes operated in pulsed mode
measured with a grating spectrometer.

Figure 4.5: The spectral distributions of the figure above have been fitted with
four normalized Lorentz curves.
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measured with a grating spectrometer.

Figure 4.5: The spectral distributions of the figure above have been fitted with
four normalized Lorentz curves.
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All wavelengths lie within 0.6 nm apart from each other, while we suppose
that the measured widths are mainly due to mode hopping.

4.1.3 Information Gain from Spectral Measurements

In the following, we try to estimate the amount of information which can be
gained by measuring the wavelength of an intercepted photon. What we are
given is the spectral distribution of the i-th source, si(λ). This has to be
normalized, i.e.:  +∞

−∞
si(λ)dλ = 1 . (4.3)

The Lorentz curve which fulfills Eq. 4.3 is given by:

si(λ) =
1
π

Γi/2
(λ− λi)2 + (Γi/2)2

, (4.4)

where λi and Γi are the peak wavelength and the width of the i-th source
spectrum, respectively. Furthermore let ppr(i) be the a priori probability that
the detected photon has been emitted by source i (this should be simply the
constant factor 1/4). Armed with this, we can calculate the probability that
the wavelength λ is observed. This is given by:

p(λ) =
4

i=1

p(λ|i) · ppr(i) =
4

i=1

si(λ) · ppr(i) , (4.5)

where p(λ|i) is the probability of measuring λ, provided that the i-th source
sent out a photon. Furthermore, by Bayes’ theorem we must have:

p(i|λ) =
p(λ|i) · p(i)
p(λ)

or (4.6)

p(i|λ) · p(λ) = p(λ|i) · p(i) , (4.7)

so that we can write p(i|λ) as:

p(i|λ) = p(λ|i) · ppr(i)4
j=1 sj(λ) · ppr(j)

=
si(λ) · ppr(i)
j sj(λ) · ppr(j)

, (4.8)

where we used Eq. 4.6 and 4.7 to derive the RHS of the second equality.
We can now estimate the amount of information contained in a measurement
of the wavelength λ. According to information theory, this is given by the
Shannon’s entropy function calculated at the value λ, i.e.:

Hλ = −
4

i=1

p(i|λ) · log2 [p(i|λ)] . (4.9)
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4.1 Sender Unit: Alice

Figure 4.6: Graph which illustrates the information gain of a spectral measurement.
Plotted after Eq. 4.10

Ideally, in the case of perfect overlapping spectra, Hλ = 2 bit. The information
gain, provided the wavelength λ has been measured, is then given by:

I(λ) = 2−Hλ . (4.10)

The resulting function for our realistic source is plotted in Fig. 4.6. To know
the total information gain, we have to average Eq. 4.10 over all possible
wavelengths. Assuming an a priori probability ppr(i) = 1/4 for i = 1 . . . 4, this
is given by:

Itotgain = 2−
4

i=1



λ

Hλ · p(λ|i) · ppr(i)dλ (4.11)

= 2− 1
4

4
i=1



λ

Hλ · si(λ)dλ = 0.0152 . (4.12)

The result presented in 4.6 can be better understood by means of an example.
Assume we want to transmit the bit sequence resulting from tossing a coin one
million times (1 for head and 0 for tail). If the coin is fair (head and tail occur
with the same probability), we will need exactly one million bits to send the
whole sequence. In this case the coin toss is said to have 1 bit information.
Imagine now the coin is biased in such a way that head occurs with 1/100
probability and tail with 99/100 probability, then it can be shown that there
exists an optimal coding which allows to send the entire sequence with only
23273 bits. So it seems that in the biased case the coin has a lower amount of
information, namely 23273/1000000=0.0233 bit. The same concept apply to
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Figure 4.7: Diagram of atmospheric transmission from the earth surface in space af-
ter the LOWTRAN-Code (Los Alamos National Laboratory, USA). Picture adapted
from [GRTZ02]

our source. The less biased is the system, the more information is needed to
transmit the sequence, hence the more information is carried by every single
photon.

4.2 Quantum Channel

The quantum channel of our QKD experiment is free-space, i.e. photons prop-
agate through air. This is made possible because of the very low absorption
coefficient of the atmosphere in the near infrared window between 740 and
820 nm and between 830 and 860 nm (see Fig. 4.7). Fortunately, there ex-
ist also efficient detectors for this wavelength region. Moreover, atmospheric
birefringence and dispersion are negligible at these wavelengths. The only re-
quirement is a free line-of-sight between transmitter and receiver unit.
One major drawback in free-space setups resides in the undesirable depen-
dance of the transmission on weather conditions. While, with clear air, the
attenuation for 860 nm can be lower than 0.2 dB/km, this rises to 2-10 dB/km
in case of moderate rain, until 20 dB/km under heavy rain up to 100 dB/km
in clouds.
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4.2 Quantum Channel

Figure 4.8: Scheme of the optical arrangement for sender and receiver unit. L1−5:
lenses, P1−3: 100 µm Pinholes.

Another relevant question is the limited operational capacity by daylight which
is discussed in the next chapter; here let us simply mention that, due to
straylight from the sun, the detector background rate becomes so high, that
the signal cannot be distinguished from background radiation anymore. Our
free-space quantum link has a length of 500 m. To enhance transmission
efficiency, two telescopes at sender and receiver sides make sure to collect as
many photons as possible. Furthermore, the optical arrangement shown in
Figure 4.2 is necessary. The telescopes at both sides share the same front lens
(L2 and L3) with a focal length f = 310 mm and open aperture a=75 mm,
while the remaining optics is chosen to match the different requirements for
sender and receiver.
On Alice’ side, the spatial filter formed by the two pinholes P1 and P2 defines
the initial beam parameters, which result in a beam waist w0 = 50 µm located
in the middle between the pinholes. The following lens (C150, f=2 mm) is
used to increase the small beam divergence, adapting it to the aperture of
the telescope lens L2. After L2, the beam propagates in free-space with a
calculated new waist w0 = 1.55 mm located in the middle between the two
telescopes. On the receiver side the beam is collected by a second telescope
consisting of the three lenses L3, L4, L5 and a pinhole P3 (diameter 100 µm),
to reduce background light contributions. The position of the pinhole is chosen
to be in the focal plane of the system formed by L3 and L4, hence maximizing
transmission. Finally the lens L5 images the P3 onto Bob’s detectors.
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Figure 4.8: Scheme of the optical arrangement for sender and receiver unit. L1−5:
lenses, P1−3: 100 µm Pinholes.

Another relevant question is the limited operational capacity by daylight which
is discussed in the next chapter; here let us simply mention that, due to
straylight from the sun, the detector background rate becomes so high, that
the signal cannot be distinguished from background radiation anymore. Our
free-space quantum link has a length of 500 m. To enhance transmission
efficiency, two telescopes at sender and receiver sides make sure to collect as
many photons as possible. Furthermore, the optical arrangement shown in
Figure 4.8 is necessary. The telescopes at both sides share the same front lens
(L2 and L3) with a focal length f = 310 mm and open aperture a=75 mm,
while the remaining optics is chosen to match the different requirements for
sender and receiver.
On Alice’ side, the spatial filter formed by the two pinholes P1 and P2 defines
the initial beam parameters, which result in a beam waist w0 = 50 µm located
in the middle between the pinholes. The following lens (C150, f=2 mm) is
used to increase the small beam divergence, adapting it to the aperture of
the telescope lens L2. After L2, the beam propagates in free-space with a
calculated new waist w0 = 1.55 mm located in the middle between the two
telescopes. On the receiver side the beam is collected by a second telescope
consisting of the three lenses L3, L4, L5 and a pinhole P3 (diameter 100 µm),
to reduce background light contributions. The position of the pinhole is chosen
to be in the focal plane of the system formed by L3 and L4, hence maximizing
transmission. Finally the lens L5 images the P3 onto Bob’s detectors.
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Automatic Alignment

Once the telescopes of Alice and Bob are aligned, one could think of fixing the
components in that position and leaving the system untouched. Unfortunately,
because of thermal expansion of the buildings and the equipment, a progressive
misalignment between the two telescopes occurs until the transmission drops
to very low values. Therefore, to maximize the transmission rate between
Alice and Bob, an active alignment procedure has been implemented. First of
all, two stepper motors driving micrometer screws control the two tilt angles
of each telescope, one with respect to the horizontal plane and the other with
respect to the vertical. The signal for the correct alignment is directly obtained
from the single photon count rate of Bob’s detectors.

The idea behind the tracking procedure is to initially keep the sender unit
fixed and to move the receiver’s telescope around the gaussian intensity profile
I(x, y) of the incoming photon mode. Assume the peak intensity is at point
(0, 0) and Bob’s telescope current position is (x0, y0), then expansion of the
intensity around (x0, y0) is given by:

I(x, y) = I(x0, y0) +
∂I

∂x


x0,y0

(x− x0) +
∂I

∂y


x0,y0

(y − y0)

+O
�
(x− x0)2, (y − y0)2


(4.13)

To scan the intensity profile, Bob’s telescope moves along a circle of radius
r centered at x0, y0, with angular frequency ωc, so that the position at time
t is given by: (x(t), y(t)) = (x0 + r cos(ωct), y0 + r sin(ωct)). Plugging these
values in Eq. 4.13, yields the following expression for the time dependent
intensity profile:

I(x, y; t) = I(x0, y0) +
∂I

∂x


x0,y0

r cos(ωct) +
∂I

∂y


x0,y0

r sin(ωct) (4.14)

In the above equation and in the following discussion, terms of order higher
than one will be neglected. In order to know the direction in which the tele-
scope should be moved, the first partial derivatives with respect to x and
y need to be estimated. This cannot be done directly, but can be achieved
with some mathematical manipulations. If we multiply I(x, y; t) by a factor
cos(ωct) we get:

I(x, y; t) = I(x0, y0) cos(ωct)

+
∂I

∂x


x0,y0

r

2
(1 + cos(2ωct)) +

∂I

∂y


x0,y0

r

2
sin(2ωct)(4.15)

The constant term is proportional to the first derivative of I with respect to
x. A similar consideration applies for the y direction, this time by multiplying
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Figure 4.9: Schematical diagram of the tracking algorithm for the automatic align-
ment. The procedure runs without user interaction over several hours.

I(x, y; t) with sin(ωct). Thus, both constant terms can be isolated from the
time varying contributions through a digital low pass filter (integrator) and
analyzed separately. Similarly to the lock-in amplification technique, the signal
modulation has to be applied at the source of the signal too. Hence, the same
has to be done with Alice’ telescope with another angular frequency, which has
to be chosen not to be an integer multiple of ωc, nor too close to it, otherwise
it could not be filtered by the integrator in Bob’s lock procedure. The tracking
algorithm can be summarized in the following steps:

1. Set initial values for r and ωc at both sides.

2. According to the actual position, the next step on the circle is calculated
at both sides.

3. Alice an Bob move to the point calculated in step 2.

4. Bob measures the intensity Iact at this new position.

5. Iact is multiplied with sin and cos functions of the two frequencies, and
passed through four filters (two per direction and telescope).

6. If a circle is completed, a new center is calculated adding the filter output
to the old center. If not, this step is skipped.

7. Go to step 2.

A further improvement in the procedure has been added to minimize transmis-
sion losses. These arise from the following situation: when both parties have
found the point of maximum intensity, the telescopes perform circles around
this maximum. If the raddi are big, this would lead to high losses. On the
other hand, bigger radii accelerate the seeking procedure if they are far from
the maximum. Therefore, an additional routine has been implemented. It
consists of the variable choice of the circle radii. The closer to the maximum,
the smaller become the radii and vice versa, thus preventing from big losses if
they are close to the peak, and on the other hand, accelerating the search if
they are far from it.
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Figure 4.10: Optical setup for the polarization analysis. The initial 50/50 BS
provides the passive random choice of the measurement basis.

4.3 Receiver Unit: Bob

This unit is responsible for the detection and polarization analysis of the pho-
tons sent from Alice. As single photon detectors, four passively quenched
silicon APDs, one for each polarization state, are used. The setup for polar-
ization analysis is illustrated in Fig. 4.10, and is based on an original idea
by John Rarity and Paul Tapster [RT]. After passing an initial special inter-
ference filter, the incoming photon undergoes a passive random choice of the
bases, using a 50/50 beam splitter (BS). The BS randomly directs the photon
to a polarization analyzer either in the {|+, |−} or {|H, |V } basis. The
polarization analysis in {|H, |V } basis is performed by sending the photon
onto a polarizing beam splitter (PBS) with an APD at each output port. The
analysis in the {|+, |−} basis is similar but the photon polarization is ini-
tially rotated by 45◦ using a λ/2 polarization plate for 850 nm, tilted by an
angle of 22.5◦. Thus, a click in one of the four photo diodes corresponds to
the detection of a defined polarization state: |H, |V , |+ or |− respectively.

Figure 4.11 illustrates the setup used to adjust the λ/2 retardation plate inside
the receiver unit at the right angle. For this purpose a 5 mW (maximum
optical power) laser diode operated in cw mode at a wavelength of 850 nm
is placed in front of the Bob module. First, a PBS defines the initial beam
polarization, then a λ/2 plate rotates the polarization by an angle which can
be continuously varied by means of a micrometer stepper motor. Finally, a
lens of focal length f =75 mm focuses the beam onto the four detectors. The
stepper motor rotates the retardation plate in 4◦ steps and, at each step, the
single photon count rate of all four detectors is sampled. The resulting curves
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Figure 4.10: Optical setup for the polarization analysis. The initial 50/50 BS
provides the passive random choice of the measurement basis.

4.3 Receiver Unit: Bob

This unit is responsible for the detection and polarization analysis of the pho-
tons sent from Alice. As single photon detectors, four passively quenched
silicon APDs, one for each polarization state, are used. The setup for polar-
ization analysis is illustrated in Fig. 4.10, and is based on an original idea
by John Rarity and Paul Tapster [RT]. After passing an initial special inter-
ference filter, the incoming photon undergoes a passive random choice of the
bases, using a 50/50 beam splitter (BS). The BS randomly directs the photon
to a polarization analyzer either in the {|+, |−} or {|H, |V } basis. The
polarization analysis in {|H, |V } basis is performed by sending the photon
onto a polarizing beam splitter (PBS) with an APD at each output port. The
analysis in the {|+, |−} basis is similar but the photon polarization is ini-
tially rotated by 45◦ using a λ/2 polarization plate for 850 nm, tilted by an
angle of 22.5◦. Thus, a click in one of the four photo diodes corresponds to
the detection of a defined polarization state: |H, |V , |+ or |− respectively.

Figure 4.11 illustrates the setup used to adjust the λ/2 retardation plate inside
the receiver unit at the right angle. For this purpose a 5 mW (maximum
optical power) laser diode operated in cw mode at a wavelength of 850 nm
is placed in front of the Bob module. First, a PBS defines the initial beam
polarization, then a λ/2 plate rotates the polarization by an angle which can
be continuously varied by means of a micrometer stepper motor. Finally, a
lens of focal length f =75 mm focuses the beam onto the four detectors. The
stepper motor rotates the retardation plate in 4◦ steps and, at each step, the
single photon count rate of all four detectors is sampled. The resulting curves
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4.3 Receiver Unit: Bob

Figure 4.11: The setup used to adjust the λ/2 retardation plate at the right angle
of 22.5◦.

are shown in Fig. 4.12. The visibility of detector i is defined by:

Vi =
(Ii

max − Ii
0)− (Ii

min − Ii
0)

(Ii
max − Ii

0) + (Ii
min − Ii

0)
=

Ii
max − Ii

min

(Ii
max − Ii

0) + (Ii
min − Ii

0)
i = 1 . . . 4

(4.16)
where Ii

max, Ii
min and Ii

0 are the maximum, minimum and dark count rates of
the i-th detector. The right orientation of Bob’s λ/2 plate corresponds to the
simultaneous maximum visibility for all four detectors and to a phase shift of
45◦ between |H and |+ and between |V  and |−. The resulting visibilities,
inferred from the data points in Fig. 4.12, are listed below:

Detector Visibility

|H 99.6%
|V  96.8%
|+ 98.5%
|− 97.6%

Table 4.2: The visibilities of the four detectors as inferred from the curves shown
in 4.12.

All four detectors are mounted into two aluminum blocks, each of them cooled
by a Peltier element, ensuring a constant operating temperature of −23 ◦ C.
This is necessary to keep the dark count rate below 400 counts/s per detector.
The Peltier module hot side is thermally coupled with the external aluminum
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where Ii
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0 are the maximum, minimum and dark count rates of
the i-th detector. The right orientation of Bob’s λ/2 plate corresponds to the
simultaneous maximum visibility for all four detectors and to a phase shift of
45◦ between |H and |+ and between |V  and |−. The resulting visibilities,
inferred from the data points in Fig. 4.12, are listed below:

Detector Visibility

|H 99.6%
|V  96.8%
|+ 98.5%
|− 97.6%

Table 4.2: The visibilities of the four detectors as inferred from the curves shown
in 4.12.

All four detectors are mounted into two aluminum blocks, each of them cooled
by a Peltier element, ensuring a constant operating temperature of −23 ◦ C.
This is necessary to keep the dark count rate below 400 counts/s per detector.
The Peltier module hot side is thermally coupled with the external aluminum
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Figure 4.12: Visibility curves for the four detectors. The different peak values
arise from the slightly different detector efficiencies. The experimental data points
are fitted with sinusoidal curves.

case, which acts as a heat sink. The silicon-based APDs are operated in Geiger
mode, therefore a large voltage is applied in the reverse direction. In the ex-
perimental setup this amounts 225 V (15 V above breakdown).
The Bob module provides four NIM (logical 0 is 0 V, logical 1 is -1 V) out-
puts, one for each detector. Whenever an avalanche is triggered, the conse-
quent voltage pulse is compared with a threshold value, distinguishing between
background noise and detection events. If the detection event occurred, the
voltage rises above threshold and the respective channel produces a logical 1.

4.4 Synchronization

For the successful implementation of the BB84 protocol, Alice and Bob have
to “speak” about the same photons. As a consequence, every event sent out
by Alice, as well as any detection event at Bob’s side must be somehow tagged
to allow the sifting procedure to actually compare the same qubit. For this
purpose, a synchronization routine is implemented in the protocol.
First of all, a timestamp card labels every detector click at the receiver side
with their detection time, in units of 1/8 of nanosecond. Notice that a frac-
tion of those events won’t correspond to photons sent from Alice, but rather
from detector dark counts or background photons. If Alice and Bob would
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4.4 Synchronization

dispose of extremely precise oscillators, they could agree on their respective
start times, and let the procedure run without any further concerns. Unfor-
tunately, their hardware clocks are not sufficiently synchronous, leading to
different clock frequencies of sender and receiver. Moreover, Alice and Bob
probably started their clocks at different times, hence the receiver will suf-
fer from a constant shift in the detected photon number. To overcome these
problems, a synchronization algorithm was developed (see [Wei03] for imple-
mentation details). The basic idea exploits the approximate knowledge of the
local repetition frequency ωsend = 2π · 10 MHz used to send out photons. As
it will be shown here, we do not have to know this repetition frequency with
extremely high precision. First, Bob has to identify the local frequency of the
detected photons. This is done by performing a discrete FFT of the detected
signal, given by3:

h(tj) =


i

δti,tj
, (4.17)

where ti denotes the timestamp of the i-th detection event (integer in unit of
0.125 ns). At the time tj , where a click has been recorded, the function has
the value 1, otherwise it is 0. Since background events and dark counts are
uniformly distributed over the whole frequency spectrum, the resulting FFT
will show a sharp peak corresponding to the local frequency of the detection
events ωdet.
The next task is to calculate the time-dependent phase shift between Alice and
Bob due to the frequency difference of their local oscillators/clocks . This is
accomplished noting that this phase difference is a linear function of time. A
linear regression algorithm applied to the line φ(t) = 2πωdetti + φ0, yields the
value for the initial phase shift φ0, while the slope can be used to estimate the
frequency with higher precision. Once frequency and phase shift are known, we
are able to distinguish between “good” and “bad” events. Good clicks are those
which fall within a narrow time window around an anticipated click according
to the sender frequency, and the rest are bad events. This procedure allows
Bob to assign each of the detected photons a well defined number.

However, there is still an unknown global offset relative to Alice’ number, due
to different starting times. To obtain this global offset Alice divides the stream
of outgoing photons into frames of fixed length. The beginning of each frame
contains a header, which is known to Bob, consisting of the frame start (FSI
= frame start identifier, see fig. 4.13) and of the frame number (FNI = frame
number identifier). The FSI consists of a pseudo-random bit pattern, repeated

3Actually, since the frequency is already roughly known, it is sufficient to consider a fre-
quency interval around ωsend/2π. This is done by mixing down the spectrum of h(tj)
with a frequency not too far from 10 MHz and then calculating the FFT of the resulting
function.
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Figure 4.13: Example of the implemented frame partition. Each frame is splitted
into three sub-blocks. The first contains a pseudo-random sequence which is used
to identify the frame start. The second embodies the information relative to the
absloute frame number and the rest is a sequence of potential key-bits.

in every frame, encoded with the presence (1) or absence of photons (0). To
enhance Bob’s detection probability, whenever a 1 has to be sent, all four
diodes are switched on simultaneously. Once the key-bit string is divided into
blocks of the frame length, it is easy to efficiently identify the FSI with the
help of a FFT.
The last step is to assign an absolute number to every frame. This piece of
information is embodied in the FNI pattern, again a fixed pseudo-random bit
sequence which gets progressively shifted by one place for every consecutive
frame. This would give the necessary redundancy which prevents from channel
losses, while a FFT helps to efficiently locate the pattern in the received bit
string.

4.5 Conclusion

The interaction of all parts described above provides a real QKD device
between Alice and Bob. Key-exchange tests have been successfully carried
out with this setup in different experimental runs (see [Reg05]), leading to
several gigabytes of secure key material. All runs took place during the night,
since no daylight operation could be implemented yet. The mean photon
number µ was set to 0.1 photons/pulse, but, due to the missing temperature
stabilization, oscillations in the value of µ could not be excluded.

As an example, we refer to the results obtained in one of these tests. Thanks
to the tracking algorithm, a constant raw-bit key rate between 200 and 300
kcounts/s could be held for about 13 hours. All these detection events occurred
within a time window of 10 ns around the expected photon arriving time. A
maximum sifted-key rate of 66 kbit/s has been achieved, with a QBER of
2.8%. Since every detected photon has 50% probability to be analyzed in
the right basis, one would expect a sifted-key rate equal to one half of the
raw-key count rate. The fact that the sifted-key rate results in a lower value,
is the direct consequence of how the sifting procedure works. After that the
good detection events have been identified by the synchronization routine, a
buffer memory is filled with the relevant information relative to those events.
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4.5 Conclusion

In the sifting procedure Bob sends 1kB long blocks from the buffer memory
out to Alice through the 10 Mbit/s public ethernet connection and waits
until these have been processed by Alice and the result sent back to him. As
a consequence of this real-time procedure, only half of the classical channel
bandwith is exploited, leading to the fact that, at high count rates, the buffer
is overwritten before all stored data can be transmitted.

The influence of bad weather conditions has also been tested. In the case of a
heavy snow fall the transmission sank approximately to 20 kcounts/s and the
sifted-key rate stabilized to the half of that value, because the buffer memory
could be processed with the same speed as it was filled by the synchronization
routine.

Concluding, we could provide the needed theoretical and technological back-
ground for the implementation of a potentially unconditional secure point-to-
point cryptographic system based on quantum mechanical principles. After a
rough initial alignment, the setup is able to keep a stable link between sender
and receiver unit for several hours without user interaction. An error correc-
tion and privacy amplification routine further enhance the security level. The
maximum reachable sifted-key rate is about 66 kbit/s, slightly higher than
the ISDN bit rate. Different weather conditions influence the transmission;
however a sifted-key rate of 10 kbit/s could be achieved in very bad weather
conditions. A further improvement regards the temperature stabilization of
the source, which is the topic of the next capter. This has two main advan-
tages. The one is that it enhances the security against PNS attacks, yielding a
constant mean photon number, hence a predictable multi-photon contribution
which can be taken into account in the privacy amplification routine. The
other is that the spectral characteristics of the laser diodes become indepen-
dent of the temperature oscillations in the environment. This could allow the
application of a spectral filtering for ambient light, improving the daylight
operation of the apparatus.
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5 Temperature Stabilization

5.1 The Main Idea

One major drawback that still limits the widespread feasibility of free space
based quantum cryptography networks, is the limited performance, in terms of
key-exchange rate, of such devices by daylight. This is mainly due to “ambient”
photons that don’t belong to the set of qubits sent by Alice. In the previous
section we mentioned two possible ways to reduce the undesired contribution
from background light entering the system. One method exploits the spatial
filtering of the light detected by the receiver unit by means of a pinhole placed
in the optics. The other possibility is to filter by time-dependent procedures.
As discussed at the end of the previous chapter, a time bin around an expected
photon is used for the selection of good clicks. Unfortunately, as soon as stray
light from the sun comes into play, both procedures are too ineffective. A key
exchange is not possible any more, since detector count rates rise above the
saturation limit.
However, to overcome this problem, another possible approach, based on the
spectral filtering, is possible. For this purpose, a narrow band interference
filter has been added to the optics at receiver’s side. To ensure that the
transmission rate is not affected by the new component, the wavelengths of the
source diodes have to be carefully selected to have their central wavelengths not
too far from 850 nm. Another problem arises from the strong dependence of
laser diodes spectral characteristics on their operation temperature. Since the
whole apparatus operates in an open environment, it is subjected to both daily
and seasonal temperature oscillations. Therefore, a temperature controller
circuit, based on a thermoelectric cooling (TEC) device, has been realized and
integrated into a new design for the transmitter mounting.
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Figure 5.1: The gain profile and mode wavelengths are temperature dependent.
When the gain peak is centered on the mode, the laser runs single mode. If the gain
peak happens to be between two modes, the laser mode hops.

5.2 Thermal Management

5.2.1 Spectral Dependency

As stated before, the spectral and electrical characteristics of semiconductor
laser diodes are very sensitive to different environmental conditions. In par-
ticular, for a given current, their lasing wavelength and power output will be
affected by oscillations in the temperature1. As experimental fact, the mode
wavelengths and the gain peak wavelength depend on the laser’s temperature.
The mode wavelength shift is caused by the change in the index of refraction of
the material as well as thermal expansion of the cavity with the temperature.
The gain peak shift is caused by the temperature dependance of the band
gap. Hence, as the laser temperature increases, the gain peak goes through
the modes one at the time. If the gain peak happens to be in the middle
between two modes, the laser mode hops (see Fig. 5.1). This dependancy
has been measured, leading to the curve in figure 5.2, where data points are
fitted with a straight line. The experimental data were taken at four different
case temperatures (Tc) of a 5 mW (max. optical power) laser diode. The laser
operates nominally at a wavelength of 850 nm at 25 ◦C. Tc was stabilized with
a temperature controller, keeping the output power at a constant value of 2
mW. The rate of temperature change inferred from the measurement was 0.23

1As an example consider that a temperature rise of 15 ◦C, causes a fall in optical power
of typically 17%. This dependance will affect for instance the mean photon number of
our source
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nm/K, which means a central wavelength around 845 nm for our laser diode
source.

Figure 5.2: The wavelength characteristics of a semiconductor laser diode plotted
against its case temperature. The temperature-dependent resonator length causes
the laser to jump to the next longitudinal resonating mode as the case temperature
increases.

5.2.2 Preliminary Analysis

The four laser diodes are mounted in a cylindrical aluminum housing. The
metallic cases of the diodes are thermally contacted by means of a heat-
conducting silicon paste, to facilitate the heat flow through the surrounding
housing. The starting point of our analysis consists of fixing the operating
temperature we want the source to work at. Since the aim is to let the appa-
ratus run without user interaction during the whole day, in hot as well as cold
months, our choice should be a good trade-off between cooling and heating
power at our disposal. Temperatures of the environment in summer can be as
high as +40 ◦C, in winter as low as −15 ◦C.
A reasonable choice seemed to be around +15 ◦C, thereby considering a posi-
tive contribution from the laser diodes in a cold environment (they help heat-
ing) and a negative one in a hot environment (additional heat has to be re-
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moved). The first task is a rough estimation of the maximum cooling power
Wmax needed to cool down the mounting. This can be done using the formula:

W  = m · cAl ·
∆T

∆tsteady
, (5.1)

where W  is the mean cooling power (in Watt) needed to change the temper-
ature of the housing from the initial to the final value, ∆T = Ti − Tf (in K),
in the time ∆tsteady (in seconds). Other parameters are m, the mass of the
housing (in grams, including the conical mirror and front lens mounting) and
cAl, aluminum specific heat (in W/gK). Values from the experiment are listed
below:

Mounting Mass 20 g
Al Specific Heat 0.89 W/gK
∆T 25 K
∆t 300 s

Table 5.1: The relevant parameters needed for the temperature stabilization of our
source.

Thereby, a maximal environment temperature of Ti =+40 ◦C, an operating
temperature of Tf =+15 ◦C and a relaxation time of 300 seconds have been
chosen. Plugging these values in Eq. 5.1 we get W  ≈ 1.5 W. This gives a
lower bound for the cooling system we should make use of. A more realistic
approach consists of using the heat equation, which states that the rate of
heat loss in a body is proportional to the difference in temperatures between
the body and its environment. The latter has to be defined yet. Our purpose
is to cool down the aluminum case, at the beginning in thermal equilibrium
with the ambient, by thermal contact with the cold side of a Peltier element at
temperature Tf . Hence our colder environment is the Peltier’s cold side and
the temperature of the body is that of the environment. With these boundary
conditions the heat equation reads:

dT
dt

= −1
τ
(Ti − Tf ) . (5.2)

The solution to 5.2 is an exponential decay of T with time constant τ :

T (t) = (Ti − Tf )e−t/τ + Tf . (5.3)
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It will result useful to calculate the derivative of Eq. 5.3, or alternatively, to
substitute T (t) in Eq. 5.2. We get:

T (t) =
(Tf − Ti)

τ
e−t/τ . (5.4)

After the time τ , the body has reached a temperature T (τ) = (Ti−Tf )/e+Tf ≈
≈ 24.2 ◦C, while after 4 time constants, T (4τ) differs from Tf only by 3%.
This can be made clear if we write the instantaneous form of Eq. 5.1:

W (t) = Q(t) = m · c · T (t) . (5.5)

For t large enough, T (t) → 0 ⇔ Q(t) → 0 which means that in the steady
state, the heat removed equals the heat absorbed from ambient in the unit
time, thus no change in the temperature occurs. If we assume that this hap-
pens approximately after a time t = 4τ , we can get an estimate for τ . To
achieve this, we just set 4τest = ∆tsteady, and get τest = 75 s. With this
knowledge is easy to deduce an useful value for Wmax. From Eq. 5.5, we only
need to maximize the function T (t). To do this, notice that the derivative
of Eq. 5.4 is also a monotone decreasing function, meaning that T (t) has its
maximum at t = 0, leading finally to:

Wmax = m · cAl · T max(t) = m · cAl ·
(Tf − Ti)
τest

≈ 6 W . (5.6)

So far, we neglected possible heating from the operation of the laser diodes.
Since these are low-power devices, we will show that their contribution can
actually be considered very low. The current they draw is in the 10-20 mA
range, while the voltage across them doesn’t exceed a few volts. Hence, as-
suming that the whole electric power is dissipated in warming up the case, the
total amount of transferred heat per unit time is below 0.2 W.

5.2.3 TEC Device

Once the cooling power has been estimated, we proceed now with a detailed
description of the components which are needed for the temperature stabiliza-
tion. Due to the moderate amount of the previously estimated heat flow, we
can design our cooling system in such a way to keep the setup as compact
as possible. For the cooling of small metallic parts, as in the case of our 20
g aluminum mounting head, the best solution is often represented by a ther-
moelectric cooler (TEC) element, a quite handy device which exploits electric
energy to work as a heat pump in cooling mode (heating mode is also pos-
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Figure 5.3: The picture illustrates the operating principle of thermoelectric cooling.
An applied voltage causes electrons in the p-doped material to move from a lower to
a higher potential, filling the energy gap with heat absorption from the upper side.
When moving from the n- to the p-doped material they release energy instead, hence
heating the lower side.

sible). The working principle of these devices is based on the Peltier effect2.
Whenever an electric current is flowing between the terminals connecting two
different matallic materials, a temperature difference arises.
Referring to Fig. 5.3, a solid state Peltier element is an ordered array al-
ternating two types (n- and p-doped) semiconductor material (often Bismuth
Tellurid), electrically connected in series by a metallic junction. On the top
and bottom side, two ceramic plates provide electric insulation and heat trans-
fer at the same time. The origin of the thermal activity resides in the different
energy levels occupied by electrons while flowing from the negative to the posi-
tive terminal. In the heavily p-doped material, electrons are forced to move to
a higher energy level (n-doped zone), thereby extracting the necessary energy
from the top Peltier’s side in the form of heat. The inverse happens at the
bottom of the n-doped element, where heat is set free from electrons flowing to
a lower energy level, hence heating the lower side. The alternating structure
of such p-n couples enhances the overall cooling/heating effect. Inverting the
polarity causes the Peltier to work in heating mode, i.e. the top side becomes
hot, the bottom cold. For particularly demanding applications, more thermo-

2Actually, this is the inverse of the Seebeck effect, where different metals connected at two
different locations, will develop a voltage difference if the junctions are hold at different
temperatures. Application of this principle is the thermocouple thermometer, used for
industrial temperature measurements.
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Figure 5.4: Performance curves for a typical one-stage Peltier element. Red
lines serve to fix the operating point: given the desired amount of heat to be re-
moved, 15 W in the example, ∆T is found to be ∆T = Th − Tc = 45 K at a
current of 2.7 A, corresponding to 12 V across the Peltier (Source: Tellurex Corp.,
http://www.tellurex.com/cthermo.html).

electric stages are stacked on each other giving rise to cascaded devices, but
this is obviously not our case.
The characterization of such a device happens through the specification of var-
ious parameters: Tc (Th), Peltier’s cold (hot) side temperature, ∆Tmax, the
maximum achievable temperature difference between Peltier’s cold and hot
side, Qmax (in Watt), the maximum heat rate that can be removed, Imax, the
input current at ∆Tmax, and Vmax, the applied DC voltage at Imax. Manufac-
turers provide performance curves showing ∆T = Th−Tc as a function of Qab,
the absorbed heat rate at cold side, operating voltages and currents, such as
the one in figure 5.4. Unfortunately, such curves depend on so many param-
eters, such e.g. Peltier’s current and voltage, ambient temperature, heat sink
characteristics, etc., that they provide only a rough approximation of Peltier’s
behavior under different conditions. Notice that the maximum heat that can
be removed, Qmax, is defined for ∆T = 0, which is of course just an idealiza-
tion of real cases. To work properly, a TEC needs a heat sink for dissipating
the large amount of heat accumulated at the hot side. If Ip is the total current
flowing through the Peltier and Rp its resistance, the total heat rate at the
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hot side is given by:
Qd = Qab + I2pRp , (5.7)

where I2pRp is the contribution from Joule heating3. Peltier elements come
in a huge variety of size, shape and performance specifications. Our choice
has been primarily guided by design considerations. In order to modify as
little as possible the already existing setup, we opted for a special-designed,
but commercially available, one-stage Peltier element with a central drill (see
next section for the assembling details). The module is quite compact, being
22.5 mm large, 17.5 mm wide and 3.2 mm thick with a drill diameter of
9.5 mm. The specified Qmax is 19 W, ∆Tmax = 69 K, Imax = 5.8 A at
a voltage Vmax = 5.3 V. Its performance curve is a straight line given by:
∆T = −3.63Q + 69. A CPU cooling block and an attached fan provide the
necessary heat sink. Performance tests have been carried out both in simulated
cold and hot environments, leading to the curve shown in fig. 5.5, in the case
of ambient temperature of about 40 ◦C. To simulate the heating from the
laser diodes, two of them, already damaged, were mounted in the housing and
driven in constant current mode at 0.1 A. The absorbed heat at cold side,
inferred from the exponential fit, was Qab = 6.23 W in good accordance with
our previous estimation. The current drawn by the Peltier was 1 A and, with
Rp=0.91 Ω, lead to Qd ≈ 7.1 W. This means a Peltier’s hot side temperature
of 7.1 · 0.5 = 3.55 K above ambient or about 43.5 ◦C, assuming a heat sink
thermal resistance of 0.5 K/W.

5.2.4 TEC Controller Unit

There are generally two ways to drive a TEC: the open loop and the closed loop
method. The former is basically a passive procedure, in which an operator ad-
justs the amount of current or voltage until the desired temperature is reached.
The latter is an active procedure, in which the temperature is electronically
adjusted by a controller unit. The closed loop continuously compares a set
value with the actual temperature, monitored by means of a sensor placed
inside the mounting, until their difference is regulated to zero. The sensor
device is realized by a temperature dependent resistor, or thermistor4. The
precise dependency of thermistor resistance, Rth, on the temperature is given
by an exponential law:

Rth = R0 · eB(1/T0−1/T ) or, 1/T = 1/T0 +B · ln(Rth/R0) , (5.8)

3Due to the small cross-sectional and surface area of the mounting, both radiative and
convective heat transfer contributions can be neglected.

4More precisely, the used sensor is a negative temperature coefficient (NTC) thermistor,
meaning that the resistance value decreases with increasing temperature
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Figure 5.5: The temperature-time dependence fitted according to Eq. 5.3. The
lower side of the mounting was held at a constant temperature of about 16.5 ◦C,
while ambient temperature was slightly below 40 ◦C.

where R0 in Ω is the resistance at a reference value T0 in K, B is a charac-
teristic thermistor parameter and T is the temperature in K. According to
manufacturer’s specifications these values are:
R0 = 10 KΩ at T0 = 298.15 K and B = 3988 Ω. Referring to Fig. 5.6, we
proceed to the description of the block diagram single stages.

The input stage has two input signals Vact and Vset, both outputs of a voltage
divider, given by:

Vact = VZ ·
Rth

Ract +Ra
(5.9)

Vset = VZ ·
Rset

Rset +Ra
, (5.10)

where VZ = 10 V is the voltage from a Zener-diode stabilized voltage source,
Ra=16 KΩ and Rset is the temperature set value in KΩ.
Both voltages feed successively the inputs of a differential operational amplifier
(Diff OP) with a gain factor Kdiff = 3.5, which ensures a differential output
of about ±10 V in correspondence of a maximum voltage (temperature) differ-
ence at the input of |Vact−Vset|max = 2.9 V. The output of the input stage is
the amplified error, e(t) = setpoint−measurement, which will be a function
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Figure 5.6: Block diagram of the closed-loop temperature controller used to drive
the TEC. Tset is the setvalue, Tact is the measured value; their difference is amplified
and constitutes the input stage for the proportional and integral amplifiers. The
voltage-to-current converter adjusts the output current according to the signal at its
input through a feedback loop.

of time. The next stage is a parallel PI (proportional-integral) regulator. The
control law for this stage is given by:

m(t) = Kd · e(t) +
1
τI

 t

0

e(τ)dτ , (5.11)

where Kd is the adjustable linear gain of the proportional component and τI is
the integral time constant which can be varied through a potentiometer in the
range 0.01 . . . 1 s. The integrator prevents from an offset in the output, the
latter being unavoidable when implementing a proportional only controller.
The output stage is a high power OP voltage-to-current converter which can
supply up to 5 A to the TEC. The circuit feedback loop is designed in such a
way that the amplifier will attempt to adjust its output current according to
the error signal at its input. For this reason, the controller unit can be used
to actively drive a TEC in cold as well as warm environments. For both cases
various tests have been performed, leading to the curve in Fig. 5.7 for the
cooling mode, while in a performance test in heating mode the system could
achieve a set value of +18 ◦C in a environment at −20 ◦C. Finally, a good
trade-off between overshooting and relaxation time of the system has been
achieved with tuning methods.
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5.3 New Design

Figure 5.7: The mounting temperature variation with the time. The curve repre-
sents an overdamped oscillation, as expected from the controller adjusting procedure.
The overshoot was about 4 ◦C below the final temperature.

5.3 New Design

The integration of the new cooling system required a slight modification of
the existing setup. To keep things simple, a collinear design with respect to
the optical axis has been conceived and beforehand simulated with the help
of the CAD 3-D software Autodesk Inventor R (see Fig. 5.9). First, a tapped
hole for a M6 screw has been bored in the conical mirror, in order to hold the
head of a PVC screw. Once tightened, this will support the Peltier element
and the aluminum heat sink and ensure sufficient pressure between the parts
to favor the heat flow. Because conical mirror and heat sink operate at very
different temperatures, when the TEC unit is on, it is important that the
screw is made of a thermal insulating material like PVC or similar, to prevent
from the detriment of the cooling/heating process. Successively, a new holder
for the driving electronics has been directly mounted on the heat sink, leading
to the final working prototype shown in Fig. 5.10.
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5 Temperature Stabilization

Figure 5.8: The modified conical mirror with the new M6 borehole in the middle
for the PVC screw.

Figure 5.9: The new design of the source with Peltier cooling module and heat
sink, as simulated with a 3-D CAD software. Driving electronics is not shown.
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5.3 New Design

Figure 5.10: A picture of the final prototype projected to include the source tem-
perature stabilization with the help of a TEC device.
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6 Summary & Outlook

In this work, we presented the main ideas and underlying physical concepts
for the realization of a potentially unconditional secure point-to-point crypto-
graphic scheme realized with quantum optical devices. Our setup is designed
to implement the BB84 four-state protocol over a free-space link of about
500 m, using weak coherent pulses for transmitting and four silicon-based
avalanche photo diodes detectors for receiving. Information is encoded in the
polarization states of single photons. An automatic alignment algorithm is
able to keep a stable optical link between sender and receiver over several
hours without user interaction. Software-based error correction and privacy
amplification procedures complete the setup.

The QKD system could achieve transmission rates which are comparable with
ISDN bit rates. Even in a bad weather environment, the raw-bit rate could
be stabilized around 20 kbit/s. We also discussed possible security loopholes
which could arise from multi-photon pulses and source spectral distinguisha-
bility, and how to minimize those risks. The so called decoy state protocol
represents the solution for the first problem. The protocol is a powerful means
to prevent from side-channel attacks relying on photon number splitting strate-
gies. Concerning the second question, the information leakage due to slightly
different spectral distributions of the sources has been estimated. Once this
amount is known, it can be fed into the privacy amplification routine leading
to a secure shared key.

One major limitation of free-space based cryptography is represented by its
unability to operate by daylight, due to the high rate of detected background
photons. To improve the compatibility with daylight, the idea of spectral fil-
tering has been implemented. For this purpose, temperature stabilisation of
the source is needed, and this has been achieved with the help of a thermo-
electric device driven by a closed-loop PI controller. Performance tests with
different environment temperatures and TEC devices have been carried out.
The next step in this direction will be a key-exchange test carried out by
daylight.

Should the daylight tests produce reasonable key rates, there would be all
prerequisites for building a quantum-cryptography based network consisting
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6 Summary & Outlook

of one sender and at least two receivers. Thinking forward in this direction,
the next step could be the integration on large scale of quantum cryptographic
devices into existing IT infrastructures1. A hybrid classical-quantum based
protocol could manage the exchange of encryption keys over the quantum
channel and succesively allow symmetric encryption algorithms to use those
secure keys for exchanging sensible information.

Nevertheless, the main challenge QKD has to bear for becoming an usual tool
in IT security, is the improvement of its operation range. As fo today, fiber
based systems can afford a maximum link distance of about 100 km, while
the free space record could be hopefully pushed up to 140 km within the next
months. An idea how to extent this limit is based on so called quantum relays,
a sort of amplification stages for quantum information, placed at regular dis-
tances between a longer quantum channel (see e.g. [CGdR03]). Furthermore,
free-space systems offer the possibility to communicate via satellites. Within
this scheme, a geo-stationary orbiting satellite could exchange keys in parallel
with Alice and Bob. Security could be further improved if the satellite would
carry a source of entangled particles, directing one particle to Bob and one to
Alice. They can then apply an entangled based protocol to extract the key. In
this case, the satellite wouldn’t even need to be trusted. QKD with entangled
pairs could also solve the free-space problem of the free line of sight between
Alice and Bob: it would be sufficient to ensure that both parties have a direct
link with the source (e.g. placing it on a tall building).

As visionary as these scenarios may appear, the european project named
SECOQC [sec] (Secure Communication through Quantum Cryptography) is
aiming at the realization of a global network architecture based on the new
issue of quantum-cryptography. Should future technological developments se-
riously menace the security of classical cryptography, quantum-based crypto-
graphy is indeed the perfect candidate to guarantee an all-time high security
dimension. The way for QKD schemes for becoming an everyday technology
is still a long one, but all prerequisites show in the right direction.

1A first implementation of this idea has been realized in 2004 by the team of Chip Elliott
at BBN Technologies in Cambridge, Massachusetts [EPT03]. The QC based network
consists of six servers interconnected by ordinary telecommunication fibers. The actual
key distribution occurs with polarized photons produced by weak coherent sources.
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A The Extended Euclidean
Algorithm

The Euclidean algorithm is a P-time procedure to calculate the greatest com-
mon divisor between two non-negative integers a and b, denoted GCD(a, b).
Suppose w.l.o.g. that a > b; then we can write a = q1 · b + r1, where q1
and r1 < b are the quotient and remainder of the integer division of a by b,
respectively. Since r1 = a − q1b, any common divisor of a and b also divides
r1, and similarly any common divisor of b and r1 will also divide a. There-
fore, denoting with [x] the integral part of a real number x, we can write the
following iteration:

q1 =
a
b


a = q1 · b+ r1 r1 = a− q1 · b

q2 =

b

r1


b = q2 · r1 + r2 r2 = b− r1 · q2

...
...

...

qn =

rn−2

rn−1


rn−2 = qn · rn−1 + rn rn = rn−2 − rn−1 · qn

qn+1 =

rn−1

rn


rn−1 = qn+1 · rn + 0 rn = rn−1/qn+1

the algorithm terminates when qn+1 divides rn−1 exactly and rn is theGCD(a, b).
A simple C/C++ implementation of the algorithm looks like:

int gcd(int a, int b) {
int t;
while (b != 0) {

t = b;
b = a % b;
a = t;

}
return a;
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}

The extended Euclidean algorithm is essentially the same as the Euclidean
algorithm, only that it keeps track of quotients during the computation, in
order to find x and y, such that:

a · x+ b · y = GCD(a, b) . (A.1)

Eq. A.1 (known as Bezout’s identity) is very useful if the two integers a
and b are coprime (i.e. GCD(a, b) = 1). In this case x is the multiplicative
inverse of amodulo b (see Sec. 2.7.2 for an application in the RSA algorithm).
The multiplicative inverse modulo a number does not exist for all couples (a, b),
but if a and b are coprime, then it can be shown that there exists a unique
inverse of a mod b. This is an implementation of the extended Euclidean
algorithm in C++ (source code taken from [Sch96]):

#define isEven(x) ((x & 0x01) == 0)
#define isOdd(x) (x & 0x01)
#define swap(x,y) (x^=y, y^=x, x^=y)

void ExtBinEuclid(int *u, int *v, int *u1, int *u2, int *u3){

int k, t1 , t2,t3;

if( *u < *v) swap(*u,*v);
for (k=0; isEven (*u) && isEven (*v): k++) {

*u >>= 1; *v >>= 1;
}

*u1 = 1; *u2 = 0; *u3 = *u ; t1 = *v; t2 = *u-1; t3 = *v;
do {

do{
if (isEven (*u3)) {

if(isOdd(*u1)) || isOdd(*u2) {
*u1 += *v; *u2 += *u;

}
*u1 >>= 1; *u2 >>= 1; *u3 >>= 1;

}
if (isEven(t3) || *u3 < t3) {

swap(*u1 ,t1); swap(*u2 ,t2); swap(*u3,t3);
}

} while (isEven (*u3));
while (*u1 < t1 || *u2 < t2) {

*u1 += *v; *u2 += *u;
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}
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}
*u1 -= t1; *u2 -= t2; *u3 -= t3;

} while (t3 > 0);
while (*u1 >= *v && *u2 >= *u) {

*u1 -= *v; *u2 -= *u;
}

*u1 <<= k; *u2 <<= k; *u3 <= k;
}

main(int argc , char **argv) {
int a, b, gcd;
if (argc < 3 ) {

cerr << "Usage␣exteuclid␣u␣v" << endl;
return -1;

}
int u = atoi(argv [1]);
int v = atoi(argv [2]);
if ( u <= 0 || v <= 0) {

cerr << "Please␣provide␣two␣positive␣integers" << endl;
return -2

}
ExtBinEuclid (&u, &v, &a, &b, &gcd);
cout << a << "*" << u << "+(-" << b << ")*" << v

<< "=" << gcd << endl;
if (gcd == 1)

cout << "the␣multiplicative␣inverse␣of␣" << v << "mod"
<< u << "␣is:␣" << u-b << endl;

return 0;
}
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B Beam Parameters

In this section we estimate the initial beam parameters as defined by the
optical arrangement shown in Fig. B.1. If we assume that a Gaussian beam
passes through a pinhole with Diameter D, placed at the point z, then the
fraction of transmitted light is given by (see [Sieg]):

T = 1− e−D2/2ω2(z) (B.1)

where ω(z) is the beam waist at the point z given by the formula:

ω(z) = ω0


1 +


z

zR

2

(B.2)

where we have chosen the origin of the z axes at the point of minimal waist ω0

and zR = πω2
0

λ is the Rayleigh range. The transmission through two pinholes
separated by a distance d, under the assumption that the beam minimal waist
is in the middle of the pinholes, is then given by:

Ttot =

1− e−D2/2ω2(z)

2

(B.3)

The two constraints for a maximum in the transmission for our setup are:

• The beam minimal waist is in the middle betweeen the two pinholes (this
leads to Eq. B.3).

• For given D and pinholes distance d, ω(z) must have its minimum at the
point d/2.

The latter condition yields the optimum value for the Rayleigh range zR:

∂ω2

∂zR
=
zRλ

π


1− z2

z2R


= 0 , (B.4)

which is fullfilled for zR = z = d/2.
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Figure B.1: The setup which defines the initial beam parameters.

Finally, for λ = 850 nm, D = 100 µm, the above relation and the definition of
the Raleygh range give a beam minimal waist between the pinholes of ω0 = 50
µm. With the help of Eq. B.3, the overall transmission evaluates to:

Ttot =

1− e−D2π

2λd


=

�
1− e−2

2 ≈ 74.8% (B.5)
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µm. With the help of Eq. B.3, the overall transmission evaluates to:
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