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1. Introduction

Quantum mechanics can describe physical systems in accordance to experi-
mental observations that seem counterintuitive from a classical point of view.
Also, Einstein, Podolsky, and Rosen (EPR) did not question the correctness
of quantum mechanics in their publication titled “Can Quantum-Mechanical
Description of Reality Be Considered Complete?” [12] from 1935. But they
adressed the philosophical question if the theoretical framework of quantum
mechanics can give full knowledge of reality. The example they chose for their
argumentation was an entangled quantum mechanical state describing a sys-
tem itself consisting of two subsystems.

In this work entangled two-photon states were under experimental scrutiny.
When measuring the two photons correlations between the results are observed
which are covered by quantum mechanics but not by classical physics, or more
precisely, they are not covered by the statistics of independent events. A
criterion for the decision whether experimentally measured correlations could
be explained by such classical statistics was given by Bell [4, 3, 6, 5] three
decades after EPR’s considerations by defining inequalities. Nowadays the
notion “Bell inequality” not only stands for his original inequalities but also
for a whole class of similar ones.

Bell inequalities were tested on the experimental setup described in this
work. Such Bell tests can verify the nonlocal correlations between the two
parties’ measurement results and consequently evidence the entanglement of
the corresponding quantum mechanical state. This is useful for several appli-
cations, e. g. in the field of quantum cryptography where Bell tests can ensure
the inherent security of a quantum communication channel [13]. A method
of entangling states especially suitable for quantum communication is time-
energy entanglement as it is preserved even over long distances [33]. Though,
a challenging feature of time-energy entanglement is the requirement for high
stability of the used interferometers. This task could be achieved for the ex-
perimental setup that this thesis is concerned with [26].

Another property making time-energy entanglement an advantageous choice
for quantum communication [34] and quantum computation is its extensibility
to higher dimensions [35, 20] enabling the encoding of more information in one
pair of entangled photons [25] and the reduction of elemental gates, respectively
[24]. Thus, an experimental scheme originally proposed by Franson [16] in 1989
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1. Introduction

was extended in this experiment. As entanglement in higher dimensions may
yield more complex correlations it is reasonable to define Bell inequalities which
take them into account [11, 37, 2].
Therefore, the aim of this work was to characterize entangled states defined

in higher-dimensional Hilbert spaces by measuring the corresponding interfer-
ence visibilities and by performing suitable Bell tests.
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2. Quantum mechanical
description of the experiment

In this chapter the experimental setup is quantum mechanicaly described in
a suitable way for the derivation of inequalities that lead to Bell tests. Be-
forehand a short introduction of important quantum mechanical notations is
given.

2.1. Mathematical framework

The Hilbert space

Hilbert spaces [23, 36] serve as the mathematical framework for quantum me-
chanics. In the bra-ket notation introduced by Paul Dirac a vector in a Hilbert
space H is a ket |ψ〉. A Hilbert space which in quantum mechanics usually
is defined over the field C of the complex numbers is a complete inner prod-
uct space. The inner or scalar product 〈φ|ψ〉 := (|φ〉 , |ψ〉) defines the norm∥∥|ψ〉∥∥ :=

√
〈ψ|ψ〉 which itself defines the metric d(|φ〉 , |ψ〉) :=

∥∥|φ〉 − |ψ〉∥∥ for
|φ〉 , |ψ〉 ∈ H.

The dual space

The dual space H∗ of a Hilbert space H over C consists of all bounded i. e. con-
tinuous linear functionals l : H → C:

H∗ := { l : H → C | l bounded and linear }

As a Hilbert space H is canonically isomorphic to its dual space H∗, i. e. there
is an antilinear bijective isometry A : H∗ → H, each l ∈ H∗ can be uniquely
identified with an element of H itself through the Riesz representation:

∀l ∈ H∗ ∃1 |φ〉 ∈ H : l(|ψ〉) = (|φ〉 , |ψ〉) = 〈φ|ψ〉 ∀ |ψ〉 ∈ H

This justifies the notation as a bra 〈φ| ∈ H∗ for a dual space element l that
is mapped to the element A(l) = |φ〉 ∈ H of the Hilbert space itself by the
isometric isomorphism A.
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2. Quantum mechanical description of the experiment

Hermitian operators

The Hermitian adjoint A† of a linear operator A : H → H is defined by

〈ψ|A†|φ〉 :=
(
|ψ〉 , A† |φ〉

)
= 〈φ|A|ψ〉∗ ∀ |φ〉 , |ψ〉 ∈ H.

A is Hermitian, i. e. self-adjoint, if

A† = A.

As in this thesis only finite dimensional Hilbert spaces are considered the
Hermitian operator A can be decomposed into

A =
∑
n

λnPn

according to the spectral theorem where Pn is the orthogonal projection onto
the eigenspace corresponding to the eigenvalue λn ∈ R of A.

2.2. States and observables

Probabilities

In quantum mechanics pure physical states are represented by kets with norm
1 and measurable physical properties by Hermitian operators called observ-
ables. If a physical state is not pure but a statistical mixture of pure states
it cannot be represented by a single vector which itself can be a superposition
of pure vectors. Instead, a statistical mixture of – without loss of generality –
orthonormal pure states can be described by a density matrix

ρ :=
∑
k

pk |ψk〉 〈ψk| ,
∑
k

pk = 1, (2.1)

where pk is the probability that the system was prepared with in the pure state
|ψk〉.
The measurement of a physical property gives an eigenvalue of the corre-

sponding Hermitian operator as result. If the system is in the state ρ the
probability of getting the result λn for a measurement of the property corre-
sponding to the Hermitian operator A =

∑
n λnPn is

p(λn) = Tr(ρPn). (2.2)
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2.3. Franson experiment

Entanglement

The Hilbert space H of a system which consists of two subsystems correspond-
ing to the Hilbert spaces H1 and H2 respectively is the tensor product

H = H1 ⊗H2.

The orthonormal basis of the compound system consists of all tensor products

|n〉 ⊗ |m〉

where |n〉 and |m〉 are elements of an orthonormal basis of H1 and H2, respec-
tively. A state |ψ〉 ∈ H = H1 ⊗ H2 which can be decomposed into a tensor
product

|ψ〉 = |ψ1〉 ⊗ |ψ2〉
of a state |ψ1〉 ∈ H1 and a state |ψ2〉 ∈ H2 is separable. If such a decomposition
does not exist the state is entangled.

2.3. Franson experiment

In this section a brief introduction to the principle of the experiment of time-
energy entanglement proposed by Franson [16] is given. Time-energy entan-
glement serves for preparing the entangled state used in this experiment.
The two parties in the experiment, Alice and Bob, are each provided with

one photon of a pair emitted from a two-photon source. For analysis Alice
and Bob are equipped with unbalanced interferometers each implementing a
time delay of ∆T and an adjustable phase shift φ = φα, φβ acquired at its long
arm. The detectors Da,+, Da,−, Db,+, Db,−, one at each interferometer output,
enable Alice and Bob to register the photons (see Figure 2.1). Both photons
of a pair are created simultaneously but the absolute time of emission of the
photon pair itself is undetermined up to the coherence time tc,creation[22] of its
creation process.
Though the beamsplitters distribute with equal probability among their out-

puts single photon interference of a photon’s spatial mode corresponding to the
path in the interferometer’s long arm with the spatial mode corresponding to
the path in the respective short arm is not possible as the photon’s coherence
time is orders of magnitude smaller than the time delay acquired:

tc,photon � ∆T

But the two-photon states encoded for both parties are coherent as

∆T � tc,creation.
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2. Quantum mechanical description of the experiment

+ +

- -

Source

Pump Photon

SPDC

BOB ALICE

β1 α1

Figure 2.1.: Schematic depiction of the Franson experiment. The source emits
pairs of photons. Each interferometer implements a time delay of
∆T and an adjustable phase shift φ = φα, φβ for its long arm with
respect to its short arm. The beam splitters have a 50 : 50 splitting
ratio. For coincidences with relative time delay tA − tB = 0 the
entangled state |Ψ〉 is detected. Each of the two interferometer
outputs at Alice’s and Bob’s side is equipped with a single photon
detector labeled “+” or “−” respectively.
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2.4. State from the source

In this case Alice and Bob can observe interference of the two-photon state
where both photons travel the short arms with the two-photon state where
both travel the long arms by triggering on coincidences with equal arrival time
for both photons.

Describing each party’s interferometer by a two dimensional Hilbert space
H an orthonormal basis is formed by the state |0〉 corresponding to the short
arm and the state |1〉 corresponding to the long arm. In this notation the two-
photon state analyzed by triggering on coincidences with equal arrival time at
the detectors Da,+ on Alice’s and Db,+ on Bob’s side reads

1√
2

(
|0〉a ⊗ |0〉b + eiφα |1〉a ⊗ eiφβ |1〉b

)
∈ Ha ⊗Hb (2.3)

where the subscripts a and b respectively denote Alice’s and Bob’s interferom-
eter. This state is entangled because it cannot be rewritten as a tensor product
|x〉a ⊗ |y〉b , |x〉a ∈ Ha, |y〉b ∈ Hb.

2.4. State from the source

For the experiment considered in this work the interferometer system of the
Franson experiment is extended by two additional interferometers, one for
Alice and one for Bob. What will be explained in the following about one
party’s interferometer system applies analogously to the other.

The first interferometer implements a time delay of ∆T for its long arm with
respect to its short arm. The delay in the second interferometer is 2∆T (see
Figure 2.2). By transmitting a photon through the short or long arm in the first
and the short or long arm in the second interferometer it can acquire the time
delay 0∆T, 1∆T, 2∆T or 3∆T with equal probability because the beamsplitters
that distribute between the short and the long arm in the interferometers have
a 50 : 50 splitting ratio (see Table 2.1 on page 12). Computing the delay
∆tsingle of the respective path in the binary system in multiples of ∆T gives
an intuitive representation. The digit with subindex 0, i. e. the last digit,
corresponds to the first interferometer and the digit with subindex 1 to the
second interferometer. This notation becomes advantageous for generalisations
to more interferometers and higher dimensions (see Chapter 6). In this case
of only two interferometers per party the usual decimal system will be used to
describe the two-party system states.
Each path with its specific time delay ∆tsingle = m∆T is bijectively mapped

to a basis state |m〉 ,m ∈ {0, 1, 2, 3}. As the coherence time of the single
photon is much shorter than the delay ∆T no single photon interference can
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2. Quantum mechanical description of the experiment

+ +

-

BOB

Source

ALICE
Pump Photon

--

SPDCβ2 α2

β1 α1

Figure 2.2.: Scheme of the interferometer system used in this experiment for
the creation of the four-dimensional time-energy entangled state
|Ψ〉. Phases can be adjusted independently in each interferometer
implementing the time delay ∆T and 2∆T respectively.

Table 2.1.: Delays of possible paths in binary and decimal representation. In
the first and second column “0” means “short arm” and “1” means
“long arm”. Note the correspondence to the third column.

interferometer total delay

second (2∆T ) first (1∆T ) binary decimal

0 0 00 0
0 1 01 1
1 0 10 2
1 1 11 3
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2.5. Analysis of the state

occur. Hence only two-party states will be under consideration here. The set

{ |k, l〉 := |k〉|l〉 := |k〉 ⊗ |l〉 | k, l ∈ {0, 1, 2, 3} }

of all tensor products of a basis state |k〉 for Alice’s photon with a basis state
|l〉 for Bob’s photon forms a basis for the compound system.

The state of the compound system reads

|ψsource〉 = 1/4( |0, 0〉 + |0, 1〉 + |0, 2〉 + |0, 3〉
+ |1, 0〉 + |1, 1〉 + |1, 2〉 + |1, 3〉
+ |2, 0〉 + |2, 1〉 + |2, 2〉 + |2, 3〉
+ |3, 0〉 + |3, 1〉 + |3, 2〉 + |3, 3〉)

⊗1/2( |+,+〉+ |+,−〉+ |−,+〉+ |−,−〉) (2.4)

where |a, b〉 := |a〉 |b〉 := |a〉 ⊗ |b〉 , a, b ∈ {+,−} denotes the outputs a and
b where Alice’s and respectively Bob’s photon are detected. As |ψsource〉 is a
pure state the corresponding density operator is just the outer product

ρsource
(2.1)
= |ψsource〉 〈ψsource| . (2.5)

2.5. Analysis of the state

The pairs of entangled photons are produced using the process of spontaneous
parametric down-conversion (SPDC) which is described in more detail in chap-
ter A. An important criterion in this experiment is that the time of creation of
the pair is undetermined up to the coherence time tc,pump of the pump photon
that is converted into a photon pair in the process. Thus, when the arrival
time of a photon at the detector is measured, it is not possible to distinguish
whether the photon pair was created 0∆T, 1∆T, 2∆T or 3∆T before the de-
tection1 because

3∆T � tc,pump. (2.6)

In contrast, the difference ∆tpair in the arrival times of the constituents of a
pair can in principle be resolved up to their coherence length which is much
shorter than ∆T :

tc,SPDC � ∆T (2.7)

This, as explained before, renders interference of a single photon’s spatial
mode |m〉 with another spatial mode |n〉 impossible. But inequalities (2.6)
and (2.7) give rise to interference of all two-party basis states that share the

1Nevertheless no single photon interference can occur. See 2.4.
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2. Quantum mechanical description of the experiment

same acquired time delay ∆tpair between Alice’s and Bob’s photon up to their
detection in the same interferometer outputs (see Figure 2.2). Hence, the
original state |ψsource〉 is projected by coincidence event states

|∆tpair, a, b〉 =
∑

k−l=∆tpair/∆T

ck,l,a,b |k, l〉 ⊗ |a, b〉 , ck,l,a,b ∈ C

where a and b denote the output where Alice’s and respectively Bob’s photon
is registered.
Depending on the output and the path that the prefactor ck,l,a,b corresponds

to, it includes additional phase shifts, as the beamsplitters at the interferometer
system outputs, like all beamsplitters in the setup, introduce a phase shift of
π/2, i. e. a factor eiπ/2 = i, if a photon enters at the “+” or “−” input of the
beamsplitter but leaves at the “−” or respectively “+” output [38].
In addition to these phase shifts the photons acquire a phase in the long

arm of an interferometer with respect to its short arm. The amount of this
relative phase can be adjusted. The relative phases – modulo 2π – acquired in
Alice’s first and second interferometer are denoted by α1 and α2 respectively.
Analogously β1 and β2 are defined for Bob’s interferometers.
There are four output combinations |+,+〉 , |+,−〉 , |−,+〉 and |−,−〉. As

k, l ∈ {0, 1, 2, 3} implies ∆tpair ∈ {−3∆T, . . . , 3∆T} there are 7 coincidence
windows summing up to 4·7 = 28 distinguishable coincidence events |∆tpair, a, b〉 , a, b ∈
{+1,−1} which are listed in Table 2.2 on page 15. The corresponding projec-
tors P∆tpair,a,b can be computed by forming outer products:

P∆tpair,a,b = |∆tpair, a, b〉 〈∆tpair, a, b| (2.8)

In the following the projected two-photon state |0∆T,+,+〉 serves as an ex-
ample in order to explain how the phases acquired during the photon’s passage
through the interferometer system determine the prefactors ck,l,a,b (see Figure
2.2). The state |0∆T,+,+〉 is a superposition of four basis states. The basis
state |0, 0〉⊗|+,+〉 denotes the paths of Alice’s and Bob’s photon, respectively,
that lead through the “+” inputs and the “+” outputs at the respective beam
splitters. Therefore none of the paths involves a long interferometer arm. This
short two-photon path can be defined to introduce the phases φa = 0 for Alice
and φb = 0 for Bob which serve as the reference for the calculation of the
relative phases acquired in other paths, i. e.

c0,0,+,+ = ei(0+0) = 1. (2.9)

The second basis state |1, 1〉 ⊗ |+,+〉 in the superposition |0∆T,+,+〉 de-
notes the paths where both photons take the long arm in the respective first
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2.5. Analysis of the state

Table 2.2.: 28 different projections onto the two-photon states prepared after
their passage through the interferometer system paths and their
detection at the +,− outputs.

|3∆T, a, b〉 = |3, 0〉 ⊗ |a, b〉 , a, b ∈ {+,−}

|2∆T, a, b〉 =
1√
2

(
|2, 0〉+ ei(π+α1+β1) |3, 1〉

)
⊗ |a, b〉 , a, b ∈ {+,−}

|1∆T,+,+〉 =
1√
3

(
|1, 0〉+ ei(π−α1+α2+β1) |2, 1〉+ ei(π+α2+β2) |3, 2〉

)
⊗ |+,+〉

|1∆T,+,−〉 =
1√
3

(
|1, 0〉+ ei(π−α1+α2+β1) |2, 1〉+ ei(α2+β2) |3, 2〉

)
⊗ |+,−〉

|1∆T,−,+〉 =
1√
3

(
|1, 0〉+ ei(−α1+α2+β1) |2, 1〉+ ei(α2+β2) |3, 2〉

)
⊗ |−,+〉

|1∆T,−,−〉 =
1√
3

(
|1, 0〉+ ei(−α1+α2+β1) |2, 1〉+ ei(π+α2+β2) |3, 2〉

)
⊗ |−,−〉

|0∆T,±,±〉 =
1

2

(
|0, 0〉+ ei(α1+β1) |1, 1〉+ ei(α2+β2) |2, 2〉+ ei(α1+α2+β1+β2) |3, 3〉

)
⊗ |±,±〉

|0∆T,±,∓〉 =
1

2

(
|0, 0〉+ ei(α1+β1) |1, 1〉+ ei(π+α2+β2) |2, 2〉+ ei(π+α1+α2+β1+β2) |3, 3〉

)
⊗ |±,∓〉

|−1∆T,+,+〉 =
1√
3

(
|0, 1〉+ ei(π+α1−β1+β2) |1, 2〉+ ei(π+α2+β2) |2, 3〉

)
⊗ |+,+〉

|−1∆T,+,−〉 =
1√
3

(
|0, 1〉+ ei(α1−β1+β2) |1, 2〉+ ei(α2+β2) |2, 3〉

)
⊗ |+,−〉

|−1∆T,−,+〉 =
1√
3

(
|0, 1〉+ ei(π+α1−β1+β2) |1, 2〉+ ei(α2+β2) |2, 3〉

)
⊗ |−,+〉

|−1∆T,−,−〉 =
1√
3

(
|0, 1〉+ ei(α1−β1+β2) |1, 2〉+ ei(π+α2+β2) |2, 3〉

)
⊗ |−,−〉

|−2∆T, a, b〉 =
1√
2

(
|0, 2〉+ ei(π+α1+β1) |1, 3〉

)
⊗ |a, b〉 , a, b ∈ {+,−}

|−3∆T, a, b〉 = |0, 3〉 ⊗ |a, b〉 , a, b ∈ {+,−}
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2. Quantum mechanical description of the experiment

interferometer. Therefore the phases are shifted by π/2 twice. First by the
change from the “+” input to the “−” output at the respective first beamsplit-
ter and secondly by the change from the “−” input to the “+” output at the
second beamsplitter. Additional phases – modulo 2π – (α1 for Alice’s photon
and β1 for Bob’s) are acquired in the long arms of the first interferometers
with respect to the short arms. Thus, the second basis state with its prefactor
reads

c1,1,+,+ |1, 1〉 ⊗ |+,+〉 = ei(π/2+π/2+α1) |1〉 ⊗ ei(π/2+π/2+β1) |1〉 ⊗ |+,+〉(2.10)
= ei(α1+β1) |1, 1〉 ⊗ |+,+〉 .

Similar considerations yield

c2,2,++ = ei(α2+β2), (2.11)
c3,3,+,+ = ei(α1+α2+β1+β2). (2.12)

Combining equations (2.10), (2.11), (2.12) and (2.12) the whole superposition
reads

|0∆T,+,+〉 =

1

2

(
|0, 0〉+ ei(α1+β1) |1, 1〉+ ei(α2+β2) |2, 2〉+ ei(α1+α2+β1+β2) |3, 3〉

)
⊗ |+,+〉 .

2.6. Projector decomposition

Using the described system a projection onto the state |0∆T,+,+〉 can be
performed by selecting the two-photon amplitudes registered in the |+,+〉
output combination at time delay ∆tpair = 0. Though |0, 0〉 , |1, 1〉 , |2, 2〉 and
|3, 3〉 are mutually linearly indepent not the whole four dimensional Hilbert
space is spanned by the linear combinations of the form

|0∆T,+,+〉 =
1

2

(
|0, 0〉+ eiγ1 |1, 1〉+ eiγ2 |2, 2〉+ ei(γ1+γ2) |3, 3〉

)
⊗ |+,+〉 ,

(2.13)
where γ1 := α1 + β1 and γ2 := α2 + β2. Apart from adjustable relative am-
plitudes three independent relative phases would be a necessary condition for
reaching – modulo normalization – all points in the four dimensional Hilbert
space spanned by{

|0, 0〉 ⊗ |++〉 , |1, 1〉 ⊗ |++〉 , |2, 2〉 ⊗ |++〉 , |3, 3〉 ⊗ |++〉
}

whereas in this case the third relative phase depends on the other two.
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2.7. Coincidence functions

In the binary representation from Table 2.1 on page 12 equation (2.13) reads

|0∆T,+,+〉 =

1/2
(
|00, 00〉+ eiγ1 |01, 01〉+ eiγ2 |10, 10〉+ ei(γ1+γ2) |11, 11〉

)
⊗ |+,+〉

= 1/2
(
|00〉⊗|00〉+eiγ1 |01〉⊗|01〉+eiγ2 |10〉⊗|10〉+ei(γ1+γ2) |11〉⊗|11〉

)
⊗|+,+〉 .

The superposing basis states of the four dimensional Hilbert space can be
further decomposed by recalling that the single photon basis state |sf〉 , s, f ∈
{0, 1}, can be seen as a tensor product |sf〉 = |s〉 ⊗ |f〉 consisiting of the basis
state |s〉 for the respective second interferometer and the basis state |f〉 for
the respecitve first interferometer. Thus

|0∆T,+,+〉 = 1/2
(
|0〉a2

⊗ |0〉a1
⊗ |0〉b2 ⊗ |0〉b1 + eiγ1 |0〉a2

⊗ |1〉a1
⊗ |0〉b2 ⊗ |1〉b1

+eiγ2 |1〉 a2⊗|0〉 a1⊗|1〉 b2⊗|0〉 b1 +ei(γ1+γ2) |1〉 a2⊗|1〉 a1⊗|1〉 b2⊗|1〉 b1
)
⊗|+,+〉

where the indices a1, a2 denote Alice’s first and second interferometer respec-
tively and b1, b2 analogously denote Bob’s interferometers. By reordering the
tensor products it can be shown that the state |0∆T,+,+〉 itself can be rep-
resented as a tensor product:

|0∆T,+,+〉 = 1/2
(
|0〉a2

⊗|0〉b2⊗|0〉a1
⊗|0〉b1 +eiγ1 |0〉a2

⊗|0〉b2⊗|1〉a1
⊗|1〉b1 +

eiγ2 |1〉 a2 ⊗ |1〉 b2 ⊗ |0〉 a1 ⊗ |0〉 b1 + ei(γ1+γ2) |1〉 a2 ⊗ |1〉 b2 ⊗ |1〉 a1 ⊗ |1〉 b1
)
⊗ |+,+〉

=
1√
2

(
|0〉a2

⊗ |0〉b2 + eiγ2 |1〉a2
⊗ |1〉b2

)
⊗ 1√

2

(
|0〉a1

⊗ |0〉b1 + eiγ1 |1〉a1
⊗ |1〉b1

)
⊗ |+,+〉

Still the state |0∆T,+,+〉 is entangled concerning the two-party state dis-
tributed to the local entities of Alice’s and respectively Bob’s interferometer
system! The state |0∆T,+,+〉 cannot be represented as a tensor product
|a〉 ⊗ |b〉 of a state |a〉 from the Hilbert space Ha that corresponds to Alice’s
interferometer system and a state |b〉 from the Hilbert space Hb that corre-
sponds to Bob’s interferometer system. Rather the state |0∆T 〉 is a tensor
product of entangled states each of them being an element of a Hilbert space
corresponding to the subsystem of both first interferometers and respectively
both second interferometers (see Figure 2.2). This resembles hyperentangle-
ment where entanglement is observed and exploited in two or more degrees of
freedom separately.

2.7. Coincidence functions

In the experiment coincidence count rates can be associated with each projec-
tor and serve as a source of information about the detected state. Coincidence
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2. Quantum mechanical description of the experiment

functions, i. e., probabilites which correspond to the 28 distinguishable coinci-
dence events shall be derived in this section.
Moreover the coincidence functions shall be grouped in order to define cor-

relation functions. In this way functions displaying full information about the
correlations between both parties can be defined.

Derivation

The relative count rates of the 28 distinguishable coincidence events can be
predicted by calculating the corresponding probabilities

p(∆tpair, a, b)
(2.2)
= Tr

(
ρsource P∆tpair,a,b

)
(2.5),(2.8)

= Tr
(
|ψsource〉 〈ψsource|∆tpair, a, b〉 〈∆tpair, a, b|

)
= 〈ψsource|P∆tpair,a,b|ψsource〉

from theory where |ψsource〉 is defined in (2.4) on page 13. All probabilities are
listed in Table 2.3 on page 19.

Definition of correlation functions

Many of the distinguishable coincidence events have exactly the same depen-
dence on the phases α1, α2, β1 and β2. This means that the distribution of
outcomes among the elements of such a subset of events is completely random.
By adding the count rates of all events belonging to the same subset the latter
is considered as an equivalence class and randomness is canceled as far as pos-
sible. The sums over coincidence functions with the same phase dependence
are listed in Table 2.4 on page 20.
These newly defined probabilities can be further grouped in the sets

{p0∆T,x, p0∆T,y, p±2∆T} ,
{p±1∆T,x, p±1∆T,y, p±1∆T,w, p±1∆T,z} ,

{p±3∆T} ,

each yielding a constant value for the sum of its constituents:

p0∆T,x + p0∆T,y + p±2∆T = 1/2 (2.14)
p±1∆T,x + p±1∆T,y + p±1∆T,w + p±1∆T,z = 3/8

p±3∆T = 1/8

Except for the last group which does not depend on the adjustable phases
an advantage of this grouping is that it enables the definition of correlation

18



2.7. Coincidence functions

Table 2.3.: Coincidence probabilities for all 28 distinguishable coincidence
events.

p (0∆T,+,+) = p (0∆T,−,−) =
1

4
cos2

(
α1 + β1

2

)
cos2

(
α2 + β2

2

)
p (0∆T,+,−) = p (0∆T,−,+) =

1

4
cos2

(
α1 + β1

2

)
sin2

(
α2 + β2

2

)

p (−1∆T,+,+) = p (1∆T,−,−) =

1

64
(3− 2 cos ((α1 − β1)− α2)− 2 cos (α2 + β2) + 2 cos ((α1 − β1) + β2))

p (−1∆T,−,−) = p (1∆T,+,+) =

1

64
(3 + 2 cos ((α1 − β1)− α2)− 2 cos (α2 + β2)− 2 cos ((α1 − β1) + β2))

p (−1∆T,+,−) = p (1∆T,−,+) =

1

64
(3 + 2 cos ((α1 − β1)− α2) + 2 cos (α2 + β2) + 2 cos ((α1 − β1) + β2))

p (−1∆T,−,+) = p (1∆T,+,−) =

1

64
(3− 2 cos ((α1 − β1)− α2) + 2 cos (α2 + β2)− 2 cos ((α1 − β1) + β2))

p (−2∆T, a, b) = p (2∆T, a, b) =
1

16
sin2

(
α1 + β1

2

)
, a, b ∈ {+,−}

p (−3∆T, a, b) = p (3∆T, a, b) =
1

64
, a, b ∈ {+,−}
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2. Quantum mechanical description of the experiment

Table 2.4.: Probabilities summed over coincidence functions with the same
phase dependence.

p0∆T,x := p (0∆T,+,+) + p (0∆T,−,−) =
1

2
cos2

(
α1 + β1

2

)
cos2

(
α2 + β2

2

)
p0∆T,y := p (0∆T,+,−) + p (0∆T,−,+) =

1

2
cos2

(
α1 + β1

2

)
sin2

(
α2 + β2

2

)

p±1∆T,x := p (−1∆T,+,+) + p (1∆T,−,−) =

1

32
(3− 2 cos ((α1 − β1)− α2)− 2 cos (α2 + β2) + 2 cos ((α1 − β1) + β2))

p±1∆T,y := p (−1∆T,−,−) + p (1∆T,+,+) =

1

32
(3 + 2 cos ((α1 − β1)− α2)− 2 cos (α2 + β2)− 2 cos ((α1 − β1) + β2))

p±1∆T,w := p (−1∆T,+,−) + p (1∆T,−,+) =

1

32
(3 + 2 cos ((α1 − β1)− α2)−+2 cos (α2 + β2) + 2 cos ((α1 − β1) + β2))

p±1∆T,z := p (−1∆T,−,+) + p (1∆T,+,−) =

1

32
(3− 2 cos ((α1 − β1)− α2) + 2 cos (α2 + β2)− 2 cos ((α1 − β1) + β2))

p±2∆T :=
∑

∆tpair∈{−2∆T,+2∆T}

∑
a,b∈{+,−}

p (∆tpair, a, b) =
1

2
sin2

(
α1 + β1

2

)
p±3∆T :=

∑
∆tpair∈{−3∆T,+3∆T}

∑
a,b∈{+,−}

p (∆tpair, a, b) =
1

8
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2.7. Coincidence functions

functions that can be normalized on – theoretically – constant count rates.
This method is adopted in Section 5.2.

There correlation functions defined on the set {p0∆T,x, p0∆T,y, p±2∆T} are
tested:

C1 =
p0∆T,x + p0∆T,y − p±2∆T

p0∆T,x + p0∆T,y + p±2∆T

= cos(α1 + β1) (2.15)

C2 =
p0∆T,x − p0∆T,y − p±2∆T

p0∆T,x + p0∆T,y + p±2∆T

(2.16)

= cos2

(
α1 + β1

2

)
cos(α2 + β2)− sin2

(
α1 + β1

2

)
C2 contains information about the phases in all interferometers. C1 contains
no information about the phases in the second interferometers.
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3. Bell inequalities

In this chapter Bell inequalities shall be derived which can be tested on the
described experimental setup. First an introduction to classical probability
theory and classical correlation polytopes is given. They constitute a theo-
retical framework for Bell-type inequalities. This follows the line as described
in [29]. After applying those methods to derive the CHSH [9] inequalities the
adaption to a higher number of measurement outcomes is considered. At the
end the CGLMP inequalities (Collins, Gisin, Linden, Massar, and Popescu
[11]) suited for more than two outcomes are introduced.

3.1. Classical correlations and local hidden
variables

Bell inequalities represent constraints on probabilities that are fulfilled by
events described by classical probability theory. More precisely, in experi-
ments that Bell inequalities are tested on, the latter would be satisfied if the
system’s statistics can be reproduced by a local hidden variable (LHV) model.

Experiment with two parties, two settings per party and
two outcomes per setting

Consider an experiment like the one originally proposed by Franson [16]. In
this setup two parties, Alice and Bob, are provided each with a particle of a
two-particle system sharing the same state (see Figure 2.1). Each party can
independently choose one out of two measurement settings, i. e. α ∈ {1, 2} for
Alice and β ∈ {1, 2} for Bob. And for each measurement setting there are two
possible outcomes, Aα, Bβ ∈ {+1,−1}.

Joint outcomes

As Alice and Bob share the same state they can define joint outcomes after
performing independent measurements on their respective particles. If Alice
and Bob have chosen their respective measurement settings α, β ∈ {1, 2} then,
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3. Bell inequalities

as Alice’s result Aα as well as Bob’s result Bβ can take values +1 or −1, there
exist four possible joint outcomes (Aα = +1, Bβ = +1), (Aα = +1, Bβ = −1),
(Aα = −1, Bβ = +1) and (Aα = −1, By = −1), i. e. in brief (1, 1), (1,−1),
(−1, 1) and (−1,−1), respectively. A constraint that the probabilities P (Aα =
a,Bβ = b) will satisfy for the outcomes (Aα = a,Bβ = b), a, b ∈ {−1,+1} is∑

a,b∈{−1,+1}
P (Aα = a,Bβ = b) = 1. (3.1)

Moreover the probability for the joint detection of two events is trivially non-
negative and cannot be greater than the probability of each single event:

0 ≤ P (Aα = a,Bβ = b) (3.2)
P (Aα = a,Bβ = b) ≤ P (Aα = a) (3.3)
P (Aα = a,Bβ = b) ≤ P (Bβ = b) (3.4)

Furthermore the probability for the event (Aα = +1∧Bβ = +1)∨ (Aα = +1∧
Bβ = +1), i. e. “either Aα or Bβ yields +1 but not both”, trivially cannot
exceed 1. This fact serves as another condition:

P (Aα = +1) + P (Bβ = +1)− P (Aα = +1, Bβ = +1) ≤ 1 (3.5)

LHV model

If there exists a set of LHVs which can reproduce the experimental data, ad-
ditional constraints on the probabilities have to be fulfilled. In an LHV model
the probabilities of the individual measurement outcomes for Alice and Bob,
respectively, are predetermined by the state emitted from the source and in-
dependent of the measurement setting chosen by the respective other party.
So a suitable set of local hidden variables, i. e. of single outcome probabilities,
would be

SLHV := {pA1;+1, pA1;−1, pA2;+1, pA2;−1, pB1;+1, pB1;−1, pB2;+1, pB2;−1}

where pAα;a := P (Aα = a) is the probability that Alice’s outcome Aα for
the measurement with setting α takes value a and pBβ ;b := P (Bβ = b) is
analogously defined for Bob.
SLHV constitutes of |SLHV| = 8 elements. This number can be reduced by

considering the constraint

pX;+1 + pX;−1 = 1, X ∈ {A1, A2, B1, B2} (3.6)
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3.1. Classical correlations and local hidden variables

any LHV model needs to satisfy because there is always a result, either +1 or
−1. As (3.6) implies pX;−1 = 1− pX;+1 the resulting set

S ′LHV : = {pA1 , pA2 , pB1 , pB2},

where pX := pX;+1, now consists of only 4 variables.
Next, it is possible to define constraints on the probabilities of the joint

events. An LHV model is assumed to determine them, too. They can be
calculated from the single outcome probabilities. As in this LHV model an
event detected by a specific party is independent of the simultaneous event at
the other party, the probability P (Aα = a,Bβ = b) of the joint event is the
product of the corresponding single probabilities:

P (Aα = a,Bβ = b) = pAα;a · pBβ ;b (3.7)

This together with (3.6) sets new constraints, in addition to (3.1), for the
probabilities P (Aα = +1, Bβ = +1), P (Aα = +1, Bβ = −1), P (Aα =
−1, Bβ = +1) and P (Aα = −1, Bβ = −1) of joint outcomes that are pos-
sible for a chosen set of Alice’s and Bob’s measurement settings α and β.
If, e. g., P (Aα = +1, Bβ = +1) = 0, then P (Aα = +1, Bβ = −1) = 0 or
P (Aα = −1, Bβ = +1) = 0 because

P (Aα = +1, Bβ = +1) = pAα · pBβ = 0 =⇒ pAα = 0 ∨ pBβ = 0 =⇒
P (Aα = +1, Bβ = −1) = pAα · (1− pBβ) = 0∨

P (Aα = −1, Bβ = +1) = (1− pAα) · pBβ = 0. (3.8)

In contrast, a quantum mechanical system does not need to fulfill this con-
straint. There is a contradiction e. g. for the coincidence probability corre-
sponding to the entangled state analyzed in the Franson experiment (see (2.3)).
This probability is of the form

P (Aα = +1, Bβ = +1) =
1

2
cos2 (φα + φβ)

where outcome +1 or −1 respectively means detection in the detector Dx,+ or
Dx,−, x ∈ a, b. This probability vanishes for the phases φα = φβ = π

4
whereas

P (Aα = +1, Bβ = −1) = P (Aα = −1, Bβ = +1) =
1

2
sin2 (φα + φβ)

is non-zero in this case in contradiction to (3.8).
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3. Bell inequalities

1

1

pX;+1

pX;-1

(pX;+1,,pX;-1)

Figure 3.1.: Geometric interpretation of constraint (3.6). The possible values
of the vector (pX;+1, pX;−1) are constrained to the line segment
from (0, 1) to (1, 0) as pX;+1 + pX;−1 = 1.

3.2. Correlation polytopes and Bell inequalities

What an LHV model is will be further investigated on the basis of the concept
of correlation polytopes. Following this framework the CHSH inequalities are
derived to give a simple example.

Correlation polytopes

The constraints that were derived in the preceding section have a geometric
interpretation. Consider, e. g., within the two dimensional real space the vector
(pX;+1, pX;−1), whose entries are the probabilites that a measurement of X ∈
{A1, A2, B1, B2} yields +1 and −1, respectively (see Figure 3.1). Constraint
(3.6) confines this vector to the diagonal defined by the vertices (0, 1) and
(1, 0). This diagonal is a one dimensional geometric object. So without loss
of information, i. e. bijectively, this diagonal can be projected onto the real
numbers by mapping

(pX;+1, pX;−1) 7→

(+1) · pX;+1 + (−1) · pX;−1
(3.6)
= (+1) · pX;+1 + (−1) · (1− pX;+1) = 2pX;+1− 1.

The image of this mapping is the interval [−1; +1]. Later a similar mapping
will be defined as a correlation.
Now consider the three dimensional real space and within it the vector(
P (Aα = +1), P (Bβ = +1), P (Aα = +1, Bβ = +1)

)
consisting of the prob-
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3.2. Correlation polytopes and Bell inequalities

1

1

1

P(Aα=a^Bβ=b)

P(Bβ=b)

P(Aα=a)

(a)

1

1

1

P(Aα=a^Bβ=b)

P(Aα=a)

P(Bβ=b) (3.2)

(3.4)

(3.5)

(3.3)

(b)

Figure 3.2.: Geometric interpretation of additional constraints. All probabil-
ities are trivially bounded between 0 and 1 (3.2a). Requiring in
addition that the probabilities satisfy constraints (3.2), (3.3), (3.4)
and (3.5) gives a polytope of smaller volume (3.2b).

abilities P (Aα = +1) and P (Bβ = +1) for outcome +1 in Alice’s and Bob’s
measurement with setting α and β respectively and the probability P (Aα =
+1, Bβ = +1) for the conjunction of those events. As all probabilities are con-
strained within [0; 1] the vector lies in the cube defined by the vertices (0, 0, 0),
(1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1) and (1, 1, 1) representing
its corners (see Figure 3.2a).

In this case constraint (3.6) cannot be applied as the events (Aα = +1)
and (Bβ = +1) don’t exclude each other. However, by considering constraints
(3.2), (3.3), (3.4) and (3.5) the set of values the vector

(
P (Aα = +1), P (Bβ = +1), P (Aα = +1, Bβ = +1)

)
can reach is further limited (see Figure 3.2b). The generated geometrical
object, like the cube in Figure 3.2a, is the closed convex hull of its vertices
but of smaller volume and with only four delimiting facets. Each of them
corresponds to one of the four constraints (3.2), (3.3), (3.4) and (3.5) if “≤” is
replaced by “=”. In a space of dimension d each of these equations defines, in
the manner as constraint (3.6) does, a (d− 1) dimensional geometrical object,
i. e. a hyperplane.
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3. Bell inequalities

Table 3.1.: Truth table for the Clauser-Horne polytope. The eight colored
row vectors define the hyperplane that corresponds to one of the
Clauser-Horne inequalities.

pA1 pA2 pB1 pB2 pA1,B1 pA1,B2 pA2,B1 pA2,B2

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0
1 0 1 0 1 0 0 0
1 0 1 1 1 1 0 0
1 1 0 0 0 0 0 0
1 1 0 1 0 1 0 1
1 1 1 0 1 0 1 0
1 1 1 1 1 1 1 1

From correlation polytopes to inequalities

As it was shown in the preceding paragraphs, following the Weyl-Minkowski
theorem[17] the correlation polytope can be described either by its vertices
or by equations representing its facets. These equations can in principle be
derived once the vertices are known. The latter are calculated by constructing
a truth table (see Table 3.1 on page 28). It consists of rows each corresponding
to a vertex of the correlation polytope. Each row represents a possible com-
bination to assign truth values 0 and 1 to the single events. Also, each row
contains the truth values of the relevant joint events which can be calculated
from the row’s single event values.
Once the truth table is known it is straightforward to compute the equations

describing the facets of the polytope. A hyperplane in a d dimensional space
can be defined by d distinct points lying in the hyperplane. So each set of
d distinct vertices describes the hyperplane containing the set. The actual
computation can be realized by the application of Cramer’s rule.
As a prerequisite let M ∈ Rd×d denote the matrix that consists of d rows,

i. e. vertices, of the d columned truth table. Let n = (n1, . . . , nd) ∈ Rd denote
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3.2. Correlation polytopes and Bell inequalities

the in general unnormalized normal vector to the hyperplane. Then n can be
derived by solving the system

MnT = r(1, . . . , 1︸ ︷︷ ︸
d

)T (3.9)

of linear equations where r ∈ R defines the distance r
|n| between the hyperplane

and the origin. If separately read for each row in M , (3.9) states that the
projection of the corresponding vertex onto the normal vector n yields r. This
is a sufficient condition for the vertex to lie in the hyperplane.

If none of the rows of M is the null vector then Cramer’s rule states

nj
r

=
det(Mj)

det(M)
, j = 1, . . . , d

whereMj is the matrix formed by replacing the jth column ofM by (1, . . . , 1)T .
If a row of M is the null vector then r equals zero and

nj = (−1)j det(M0j), j = 1, . . . , d

holds where M0j ∈ R(d−1)×(d−1) is the Matrix formed by dropping the jth
column of M as well as the row which is the null vector.

Applying this method to the matrix MCH,1 formed by the eight row vectors
marked in Table 3.1 on page 28 yields the normal vector

nCH,1 = (−1, 0,−1, 0, 1, 1, 1,−1).

As one of the rows in MCH,1 is the null vector, rCH,1 vanishes and

rCH,1 = mCH,1n
T
CH = 0 (3.10)

holds for any row vector from MCH,1. Repeating the procedure for the matrix
MCH,2 formed by the remaining eight row vectors yields the same normal vector
nCH,2 = nCH,1 =: nCH. In this case, as MCH,2 doesn’t include the null vector,
rCH,2 is not zero. The product of any row vector mCH,2 of MCH,2 with the
normal vector gives

rCH,2 = mCH,2n
T
CH = −1. (3.11)

As all row vectors from Table 3.1 on page 28, i. e. all vertices of the Clauser-
Horne polytope, satisfy either (3.10) or (3.11) and as the Clauser-Horne poly-
tope is the set of all convex combinations of these vertices, the following in-
equality holds for all vectors

p = (pA1 , pA2 , pB1 , pB2 , pA1,B1 , pA1,B2 , pA2,B1 , pA2,B2)
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3. Bell inequalities

that lie inside the Clauser-Horne polytope:

−1
(3.11)

= mCH,2n
T
CH

≤ pA1,B2 + pA1,B1 + pA2,B1 − pA2,B2 − pA1 − pB1︸ ︷︷ ︸
=pnTCH

≤ 0
(3.10)

= mCH,1n
T
CH

(3.12)
This Bell type inequality is one of the four Clauser-Horne inequalities [8] and
it is fulfilled by all row vectors listed in Table 3.1 on page 28.

Number of hyperplanes

If there are k independent single events considered then there are 2k distinct
possibilities to assign the values 0 and 1 to them, i. e. 2k rows in the corre-
sponding truth table. In the Clauser-Horne (CH [8]) example there are k = 4
independent single events of interest resulting in

2k = 24 = 16 (3.13)

rows (see Table 3.1 on page 28). As there are l = 4 joint events of interest the
dimension of the real space that contains the Clauser-Horne polytope is

d = k + l = 8. (3.14)

As a hyperplane in a d dimensional space is defined by d distinct points the
number of equations each describing a hyperplane intersecting the Clauser-
Horne polytope is (

2k

k + l︸︷︷︸
=d

)
(3.13),(3.14)

=

(
16

8

)
= 12870.

This number is much greater than the number of inequalities that are nec-
essary and sufficient to describe the Clauser-Horne polytope:

0 ≤ pAi,Bj ≤ pAi ≤ 1, 0 ≤ pAi,Bj ≤ pBj ≤ 1 i, j = 1, 2

pAi + pBj − pAi,Bj ≤ 1 i, j = 1, 2

−1 ≤pA1,B1 +pA1,B2 +pA2,B2 −pA2,B1 −pA1 −pB2 ≤0

−1 ≤pA2,B1 +pA2,B2 +pA1,B2 −pA1,B1 −pA2 −pB2 ≤0

−1 ≤pA1,B2 +pA1,B1 +pA2,B1 −pA2,B2 −pA1 −pB1 ≤0

−1 ≤pA2,B2 +pA2,B1 +pA1,B1 −pA1,B2 −pA2 −pB1 ≤0
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3.2. Correlation polytopes and Bell inequalities

These are 36 inequalities in total if each “≤”-relation and index combination
(i, j) is counted seperately.1 The last four inequalities – eight inequalities, if
each “≤” is counted separately – are called Clauser-Horne inequalities. They
are formally equivalent to the CHSH inequality. The latter is introduced at
the end of this section as it is experimentally better accessible.

Bounds of expressions

The preceding example shows that it is important to distinguish the hyper-
planes that delimit i. e. touch the polytope from the ones that merely intersect
it, especially if d and consequently the number of hyperplanes is increased.
In order to decide if a hyperplane described by its normal vector n and its
distance r

|n| from the origin delimits the correlation polytope it can be tested
if r is an extremal value of the expression

pn = (p1, . . . , pd)

 n1
...
nd

 (3.15)

for every p being an element of the correlation polytope. As each such p is a
finite convex combination

p =
2k∑
i=1

ci · vi,
2k∑
i=1

ci = 1, ci ≥ 0

of the polytope’s vertices vi, each corresponding to a row vector of the truth
table, it is sufficient to check if either

vin ≤ r ∀i = 1, . . . , 2k

or
vin ≥ r ∀i = 1, . . . , 2k

in order to test the extremality of 3.15.

CHSH

The CHSH inequality

− 2 ≤ C(A1, B1)− C(A1, B2) + C(A2, B1) + C(A2, B2) ≤ 2, (3.16)
1According to Collins and Gisin [10] “(t)here is no need for inequalities stating that prob-
abilities should be not greater than 1, since this follows from all the probabilities being
positive.”

31



3. Bell inequalities

where

C(Aα, Bβ) = P (Aα = +1, Bβ = +1)− P (Aα = +1, Bβ = −1) (3.17)
−P (Aα = −1, Bβ = +1) + P (Aα = −1, Bβ = −1)(3.18)

is a correlation function, is equivalent to one of the derived Clauser-Horne
inequalities [32]. By rewriting (3.17) as

C(Aα, Bβ) = 4P (Aα = +1, Bβ = +1)

−2
(
P (Aα = +1, Bβ = +1) + P (Aα = +1, Bβ = −1)

)
−2
(
P (Aα = +1, Bβ = +1) + P (Aα = −1, Bβ = +1)

)
+
(
P (Aα = +1, Bβ = +1) + P (Aα = +1, Bβ = −1)

+P (Aα = −1, Bβ = +1) + P (Aα = −1, Bβ = −1)
)

= 4P (Aα = +1, Bβ = +1)− 2P (Aα = +1)− 2P (Bβ = +1) + 1

and substituting it into (3.16) one gets

− 2 ≤ 4P (A1 = +1, B1 = +1)− 4P (A1 = +1, B2 = +1)

+ 4P (A2 = +1, B1 = +1) + 4P (A2 = +1, B2 = +1)

− 4P (A2 = +1)− 4P (B1 = +1) + 2 ≤ 2.

After subtraction of 2 and subsequent division by 4 it yields the CH inequality

− 1 ≤ P (A1 = +1, B1 = +1)− P (A1 = +1, B2 = +1)

+ P (A2 = +1, B1 = +1) + P (A2 = +1, B2 = +1)

− P (A2 = +1)− P (B1 = +1) ≤ 0.

The CHSH inequality can be tested on the states experimentally prepared
in this work. This will be undertaken concerning the states detected as coin-
cidences with relative time delay 0∆T and ±2∆T in Chapter 5. There, sets of
numerically optimized angles are listed that yield a maximum quantum value
of 2
√

2 for the CHSH expression.

3.3. Bell inequalities for higher dimensional
systems

In the last section it was shown how an LHV model constrains the probabilities
of joint measurement outcomes. Those conditions were interpreted geometri-
cally as the supporting hyperplanes of a correlation polytope. A straightfor-
ward method was introduced for calculating the inequalities each correspond-
ing to a specific hyperplane of the polytope. The task of the distinction of the
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3.3. Bell inequalities for higher dimensional systems

relevant inequalities from a possible multitude of trivial ones arises, similar
to the CH inequalities, for higher-dimensional systems. A task similar to the
distinction of the delimiting from the intersecting hyperplanes of the Clauser-
Horne polytope arises for higher-dimensional systems, as the distinction of
the relevant inequalities from a possible multitude of trivial inequalities is not
straightforward.

CGLMP inequalities

In their article “Bell Inequalities for Arbitrarily High-Dimensional Systems”
Collins, Gisin, Linden, Massar, and Popescu [11] (CGLMP) derive the for-
mula for a class of Bell inequalities for two-party states each defined on a
higher-dimensional Hilbert space. As before these inequalities exploit the fact
that correlations exhibited by local variable theories must satisfy certain con-
straints. Such an inequality is tested on the experimentally prepared two-party
states in Section 5.1. The most important steps of the CGLMP approach are
explained in the following.

In their article CGLMP consider a system with two parties, Alice and
Bob, each of them being able to independently choose one out of two dis-
tinct measurements A1, A2 and respectively B1, B2 on a shared higher dimen-
sional state. Each of those measurements yields one of d possible outcomes
A1, A2, B1, B2 = 0, . . . , d − 1. In a local variable theory Alice’s measurement
yields A1 = j or A2 = k and Bob’s measurement B1 = l or B2 = m with
probability cjklm, j, k, l,m ∈ {0, . . . , d− 1}. Consequently, there are d4 proba-
bilities cjklm that satisfy

∑
jklm cjklm = 1 and completely describe the system

in a model of local variables (j, k) for Alice and (l,m) for Bob.
For a particular choice jklm of local variables the differences of outcomes

can be defined as

r :=B1 − A1=l − j,
s :=A2 −B1=k − l,
t :=B2 − A2=m− k,
u :=A1 −B2=j −m.

Three of these differences can be freely chosen but the fourth is constrained
since

r + s+ t+ u = (l − j) + (k − l) + (m− k) + (j −m) = 0. (3.19)

This constraint is exploited by constructing Bell expressions which involve
probabilities Q(Aa = Bb + n) that Alice’s and Bob’s outcome differ, modulo
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3. Bell inequalities

d, by n:

Q(Aa = Bb + n) :=
d−1∑
i=0

P (Aa = i, Bb = (i+ n) mod d) (3.20)

The Bell expressions constructed from these probabilities only achieve their
maximum value if constraint (3.19) is violated. The simplest such Bell expres-
sion is

I := Q(A1 = B1) +Q(B1 = A2 + 1) +Q(A2 = B2) +Q(B2 = A1)

which in the case of two dimensional systems is equivalent to the CHSH in-
equality (see Section 3.2).
The generalisation to d-dimensional systems introduced by CGLMP for any

d ≥ 2 reads

Id :=

[d/2]−1∑
n=0

(
1− 2n

d− 1

){
+
[
Q (A1 = B1 + n) +Q (B1 = A2 + n+ 1) +

Q (A2 = B2 + n) +Q (B2 = A1 + n)
]
−[

Q (A1 = B1 − n− 1) +Q (B1 = A2 − n) +

Q (A2 = B2 − n− 1) +Q (B2 = A1 − n− 1)
]}
. (3.21)

One of the expressions tested in Section 5.1 is

I3 =+
[
Q(A1 = B1) +Q(B1 = A2 + 1)+Q(A2 = B2) +Q(B2 = A1)

]
−
[
Q(A1 = B1 − 1)+Q(B1 = A2) +Q(A2 = B2 − 1)+Q(B2 = A1 − 1)

]
(3.22)

The maximum value attainable by local variable theories is independent of
d:

max
local variable

(Id) = 2 ∀d ≥ 2

Output projectors

The class of CGLMP inequalities is defined by sums of probabilities P (Aα =
a,Bβ = b) for joint events. But not all of these events are separately accessible
in the described experiment. The joint events Aα = 0∧Bβ = 0, Aα = 1∧Bβ =
1, Aα = 2 ∧Bβ = 2 and Aα = 3 ∧Bβ = 3 for example cannot be distinguished
because they all lead to a 0∆T coincidence. The same applies to the ±1∆T
and ±2∆T coincidences.
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3.3. Bell inequalities for higher dimensional systems

This problem can be solved by a change of basis. For the Hilbert space
e. g. spanned by {|0, 0〉 , |1, 1〉 , |2, 2〉 , |3, 3〉} an alternative orthonormal basis
would be the set consisting of

|Ψ0〉 := 1/2
(
|0, 0〉+ |1, 1〉+ |2, 2〉+ |3, 3〉

)
,

|Ψ1〉 := 1/2
(
|0, 0〉− |1, 1〉− |2, 2〉+ |3, 3〉

)
,

|Ψ2〉 := 1/2
(
|0, 0〉− |1, 1〉+ |2, 2〉− |3, 3〉

)
,

|Ψ3〉 := 1/2
(
|0, 0〉+ |1, 1〉− |2, 2〉− |3, 3〉

)
.

Each projector corresponding to one of these new basis states can be realized
by accordingly adjusting the phases α1, α2, β1, β2, resulting in

|0∆T,+,+〉 = 1/2
(
|0, 0〉+ ei(α1+β1) |1, 1〉+ ei(α2+β2) |2, 2〉+ ei(α1+β1+α2+β2) |3, 3〉

)
.

This method, i. e. to measure only “+,+” results, resembles the implementa-
tion of a Bell test where the polarization of the photons for a specific analysis
setting (α, β) is analyzed in subsequent measurements. In each of them a pro-
jection on one possible outcome (Aα = a,Bβ = b) is realized by accordingly
adjusted polarizers rather than analyzing the polarization by the application
of polarizing beam splitters where all outcomes for a specific analysis setting
could occur in the same measurement.
A similar change of basis as for the compound system can be separately

performed for the Hilbert spaces Ha and Hb of Alice and Bob, respectively.
The new basis states for a single Hilbert space can be defined in terms of the
old basis as

|ψ0〉 := 1/2
(
|0〉+ |1〉+ |2〉+ |3〉

)
,

|ψ1〉 := 1/2
(
|0〉− |1〉− |2〉+ |3〉

)
,

|ψ2〉 := 1/2
(
|0〉− |1〉+ |2〉− |3〉

)
,

|ψ3〉 := 1/2
(
|0〉+ |1〉− |2〉− |3〉

)
,

each corresponding to a different output of that single party’s analysis appa-
ratus. As before they can be implemented for the “+” detector by accordingly
adjusting the phases γ′1, γ′2, resulting in

|ψ〉 := 1/2
(
|0〉+ eiγ′1 |1〉+ eiγ′2 |2〉+ ei(γ′1+γ′2) |3〉

)
.

In this framework the detection of a coincidence with no relative time delay
in a specific output combination corresponds to a projection of the prepared
state onto the tensor product of Alice’s and Bob’s output projectors denoted
by the indices i and j, respectively. The associated probability is

Tr

(((
|ψi〉 〈ψi|

)
⊗
(
|ψj〉 〈ψj|

))
ρ′′0∆T

)
.
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3. Bell inequalities

The phases γ1 and γ2 adjusted in a party’s respective short and long interfer-
ometer are the sums of the respective projector and preparation phases:

γi = γ′i + γ′′i , i = 1, 2 (3.23)

A numerical optimization of the CGLMP expression I4 over all preparation
phases gives a maximum quantum mechanical prediction of

max
QM

(I4) = 2.55 > 2 = max
local variable

(I4).

A set of optimal preparation phases is described in Section 5.1.
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4. Experimental scheme and
test of the setup

In this chapter the actual implementation of the experimental setup is de-
scribed. For more details the reader is referred to [26] and [30].

4.1. Source of entangled photons

The source of entangled photons consists of a diode laser1 which pumps a
down-conversion crystal. The laser diode is operated at 402.8 nm and offers a
coherence time tc,pump = 2.58 µs� ∆T by using an external grating stabiliza-
tion scheme. The Hänsch-Couillaud[18] locking scheme is applied to fix the
central lasing frequency.

A fraction of ≈ 10−6 of the pump photons is down-converted into a pair of
entangled photons in a periodically poled KTiOPO4 (PPKTP) [15, 28] crystal
with a poling period of 9.67 µm. For details concerning the theory of the SPDC
process see appendix Chapter A.

The wavelength of the down-conversion photons depends on the temperature
of the PPKTP crystal. Thus it is placed inside an oven where the temperature
is kept at (26.0± 0.2) ◦C in order to ensure the degeneracy of the wavelengths
of each photon pair.

The SPDC efficiency η, i. e. the quotient of coincidence count rate and pump
power, remains close to η ≈ 49 × 103 (s ·mW)−1 over a wide range of the
pump power. The photons are produced with a central wavelength of λSPDC =
805.9 nm and a bandwidth of ∆λSPDC < 1.1 nm (see Figure 4.1).
As the down-conversion photons of a pair have orthogonal polarization with

respect to each other they can be separated by a polarizing beam splitter (PBS)
and be coupled into a single mode fibers each guiding the beam to Alice’s and
Bob’s interferometer system, respectively. This method has the advantage that
the probability of feeding both photons of a pair into the same interferometer
system is close to zero. Hereby additional loss of coincidences is avoided.

1manufactured by Nichia
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Figure 4.1.: Efficiency of SPDC. The ratio of coincidence and single count rates
remains constant over a wide range of the laser power pumping the
down-conversion crystal.

4.2. Interferometers

The interferometers are constructed by making use of a combination of fiber
paths, fused fiber couplers (FFC) and free space delays (see Figure 4.2). This
configuration exploits advantages of both concepts.
One of them is that the path lengths in the fibers vary on a larger time scale

compared to free space paths. Therefore the fused fiber couplers require mere
passive temperature stabilization. At the same time they offer a good mode
overlap which leads to a good interference visibility as required for observing
a high entanglement quality. The splitting ratio of (50 ± 2) % is comparable
to bulk beam splitters. Similarly the dimensionality of the states created can
be doubled by just adding another pair of interferometers twice the length of
the preceding interferometers. A detrimental effect of the fibers arises in this
experiment as they are employed for near infrared wavelengths and not for
telecom wavelengths. For the latter there are commonly used techniques to
compensate chromatic dispersion.
The delays, i. e. the long interferometer arms, are implemented as free space

paths. These offer a lower chromatic dispersion compared to fibers. By equal-
izing the fiber path lengths in the short and the respective long interferometer
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4.2. Interferometers
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Figure 4.2.: Experimental setup. The interferometer systems are constructed
of fibers (black), fused fiber couplers (FFC) and free space delays
(red). Each party, Alice as well as Bob, is provided with two
single photon detectors labeled “+” and “-”. All interferometers as
well as the laser pumping the periodically poled KTiOPO4 crystal
(PPKTP) are stabilized through the same reference laser which
itself is referenced to a frequency comb mode.
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Figure 4.3.: Coincidence histogram. tA and tB denote the detection times of
Alice’s and Bob’s photon, respectively. The time delay unit ∆T
is chosen long enough to let the count rate minima separating the
coincidence windows −3∆T, . . . , 3∆T approach the level of the
background counts.

arm the overall chromatic dispersion can be kept small. The total delay ac-
quired in the long arms of the first interferometers is ∆T = (2.4± 0.1) ns.

4.3. Detection

The detection of the down-conversion photons at the outputs of the interferom-
eters is accomplished by single photon avalanche photo diodes (APD).2 As the
minimal time delay ∆T depends on the detection timing resolution it would
be advantageous to use commercial shallow junction APDs with resolutions
down to ≈ 50 ps but reach-through APDs were chosen because they still offer
a better detection efficiency. The typical timing resolution of 300 to 500 ps of
the used APDs results in the constraint

∆T ≥ (2.4± 0.1) ns

imposed by the effective photon pair timing resolution for a critical level ap-
proaching the background counts (see Figure 4.3).

2quadruple single photon counting module model SPCM-AQ4C manufactured by
PerkinElmer; involves four independent thick APDs
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4.4. Stabilization

A time-to-digital converter3 measures the delay between the photons of a
coincident pair. The timing resolution of 80 ps of this computer controlled
module is better than the APDs’ resolution.

4.4. Stabilization

In order to observe the desired interference effects the experimental setup has
to be adjusted and stabilized accordingly. The delays implemented by the
four interferometers have to be equalized with respect to each other within
the coherence length of the down-conversion photons. Moreover, a stable,
well-defined phase relation between the superposing basis states is required
at least for measurement times of about 1/2 h. Consequently the difference in
length between short and long arm of an interferometer must be stabilized
with subwavelength accuracy.

This requirement is counteracted mainly by temperature drifts in the sur-
rounding air and components on a larger time scale and by vibrations of the
optical table on a shorter time scale. The variation ∆γ of the relative phase
γ between the spatial modes corresponding to an interferometer’s short and
long arm, respectively, is influenced by variations of the delay’s length as well
as by fluctuations of the pumping laser’s wavelength. So not only the interfer-
ometers themselves must be stabilized but also the frequency of the pumping
laser.

Thus, a maser referenced frequency comb mode with 250 kHz FWHM at
780 nm central wavelength is used to lock a reference laser. The latter is
a grating stabilized diode laser operated at the same wavelength of 780 nm.
Beside the stabilization of the interferometers through piezoactuator driven
translation stages the reference laser is used to stabilize the pump laser fre-
quency through a transfer cavity which is referenced by the Hänsch-Couillaud
method [18]. The same procedure is used to stabilize the cavity to the reference
laser.

The reference laser at 780 nm and the SPDC photons at 806 nm travel the
same paths through the interferometers. Thus they can be chromatically sepa-
rated. In addition, a polarization multiplexing scheme more detailed described
in [30] is applied. Finally time multiplexing of the stabilization laser signal al-
lows for independent stabilization of all interferometers.

In the following sections typical measurements on the coincidence count
rates in dependence of the phases in the four interferometers are presented.
The measurements are compared to the theoretical predictions from Section
2.7.

3model TDC-GPX manufactured by ACAM
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Figure 4.4.: Coincidence count rates in the +,+ detector combination and the-
oretical predictions as functions of phase α2 (a,b) and phase α1

(c,d) for the coincidence windows 0∆T, 1∆T and 2∆T .

4.5. Scans of single interferometers

Here coincidence count rates observed for relative detection delays±2∆T,±1∆T
and 0∆T are presented as functions of one of the phases in the interferometers
while the respective other phases were kept at a constant value. At the end of
this section it will be explained in brief how the method of scanning was also
applied in order to adjust and calibrate the setup.
Figure 4.4a shows the coincidence count rates recorded in the +,+ detector

combination during a scan of Alice’s second interferometer. In order to enable
the comparison with the theoretical predictions, the corresponding coincidence
functions from Table 2.3 on page 19 are plotted in Figure 4.4b. As α1 and β1

both are zero the coincidence probability

p(0∆T,+,+) =
1

4
cos2

(
α1 + β1

2

)
cos2

(
α2 + β2

2

)
varies with the maximal fringe visibility of 1. The corresponding fit of the mea-
sured count rates allows to extract a fringe visibility of V0∆T,α2 = 0.964±0.010.
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4.5. Scans of single interferometers

Table 4.1.: Measured interference visibilities of coincidence curves and corre-
sponding theoretical expectations.

experiment theory experiment
theory

V0∆T,α2 0.964± 0.010 1 0.964± 0.010
V1∆T,α2 0.664± 0.010 7/9 = 0.7̄ 0.854± 0.013
V2∆T,α2 0 0 —
V2∆T,α1 0.896± 0.010 1 0.896± 0.010

Table 4.1 on page 43 comprehensively lists the visibilities calculated from the
experimental data together with the corresponding theoretical expectations.
For the 1∆T coincidences the theoretical coincidence function has a visibility
of 7/9 = 0.7̄. For the measured data a fringe visibility of V1∆T,α2 = 0.664±0.010
was calculated. The fringe visibility for the 2∆T coincidence count rate van-
ishes in clear correspondence with the theoretical prediction. A phase offset
between the 0∆T and 1∆T coincidence curves of ∆φ0∆T,1∆T = (1.024±0.002)π
was calculated for the cosine functions fitted to the experimental data. The
theoretical expectation is π.
When plotted as a function of α1 the theoretical coincidence probability

p (−1∆T,+,+) =

1

64
(3− 2 cos ((α1 − β1)− α2)− 2 cos (α2 + β2) + 2 cos ((α1 − β1) + β2))

(4.1)

stays at a constant level of 1/64 if α2 = −β2 in comparison to the achievable
maximum of 9/64 (see Figure 4.4d). The corresponding scan of the 1∆T co-
incidence count rate shows the same behaviour as the phases in the second
interferometers fulfill α2 = −β2 = 0. The visibility of the 2∆T coincidence
count rate scan amounts to V2∆T,α1 = 0.896± 0.010 which closely corresponds
to the theoretical expectation of V2∆T = 1. This scan yields a phase offset
for α1 of ∆φ0∆T,2∆T = (1.013± 0.002)π between the interference curves of the
0∆T and 2∆T coincidences in comparison to the theoretical prediction of π.
As the probability for distributing the coincidences within any of the 7 co-

incidence windows is different, the signal to noise-ratio is different, too. The
contribution of accidental coincidences can be estimated by triggering on co-
incedences with time delay difference ∆tpair � 3∆T where no coincidence
events caused by SPDC photon pairs are expected. This contribution amounts
to about 1% of the maximal count rate observed in the (0∆T,+,+) coincidence
window. In contrast, this background count rate corresponds to about 4% of
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4. Experimental scheme and test of the setup

the maximal count rates of the 2∆T states, limiting their fringe visibilities.
The interference curve patterns specific to the interferometer system were

used to calibrate the different adjustable phases. The procedure is briefly
explained in the following. A minimum of the ±2∆T coincidence count rates
is obtained by adjusting the phases in the first interferometers to

α1 + β1 = 0 (4.2)

(see Table 2.3 on page 19). In order to satisfy this equation α1 and β1 are always
varied by the same absolute value but with opposite signs for the subsequent
steps. By adjusting α1 and β1 such that the count rate of the 1∆T coincidences
in the “+,+” detector combination is constant during the scan of the phase α2

the equation
α1 = β1 − β2 (4.3)

has to be fulfilled. Finally the phase α2 is adjusted such that the count rate of
the 0∆T coincidences in the “+,+” detector combination is maximal giving

α2 + β2 = 0. (4.4)

The phase β2 remains as a free parameter which can be defined as

β2 := 0. (4.5)

Together (4.2), (4.3), (4.4) and (4.5) yield

α1 = β1 = α2 = β2 = 0.

Furthermore the fringe visibilities serve as a measure for the equality of
the time delays in the different interferometers. In addition to the advantages
mentioned already in Section 4.2 the free space implementation of the delays in
the long interferometer arms facilitates blocking and thereby enables to select
which paths should interfere.
By blocking the long arms of both second interferometers and varying the

phase α1 or β1 interference is only possible for the two-party states |0, 0〉 and
|1, 1〉. Maximizing the fringe visibility of the 0∆T coincidences by adjusting
the length of the free space path in Alice’s or Bob’s first interferometer allows
to maximize the overlap of the two-party states |0, 0〉 and |1, 1〉 as well. Hence
the time delays ∆Ta1 ,∆Tb1 implemented in Alice’s and respecitvely Bob’s first
interferometer satisfy

∆Tb1 = ∆Ta1 (4.6)

up to the coherence time tc,SPDC of the SPDC photons which obey tc,SPDC
(2.7)
�

∆Ta1 .
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4.6. Influence of higher-dimensional states

Similarly by blocking only Bob’s second interferometer and scanning one
of the phases α1, β1 or α2 interference of the basis states |2, 1〉 and |1, 0〉 is
observed in the 1∆T coincidence window. When the fringe visibility has been
maximized by adjusting the length of the free space path in Alice’s second
interferometer the corresponding delay ∆Ta2 satisfies

∆Ta2 −∆Tb1 = ∆Ta1

(4.6)
=⇒ ∆Ta2 = 2∆Ta1 . (4.7)

Analogously to the equalization of the short interferometers the delay ∆Tb2 in
Bob’s long interferometer can be adjusted by blocking both first interferome-
ters, yielding

∆Tb2 = ∆Ta2

(4.7)
= 2∆Ta1 .

4.6. Influence of higher-dimensional states

Simultaneous scan of a short and a long interferometer

A simultaneous scan of the phase in a short and a long interferometer illus-
trates the difference between the four-dimensional entangled state registered
by triggering on coincidences with no relative time delay and a two-dimensional
state. In Figure 4.5 the phases α1 and β2 were scanned synchronously while the
other phases were kept constant at α2 = β1 = 0. The resulting dependence of
the 0∆T coincidence count rate on the sum α1 +β2 is ∝ cos4(α1 +β2) whereas
the theoretical expectation for the coincidence count rate corresponding to a
two-dimensional state would be proportional to cos2(α1 + β2). The latter is
plotted in the figure as well.
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Figure 4.5.: Synchronous scan of the phases α1 and β2. The other phases are
kept constant at α2 = β1 = 0. The resulting dependence of the
0∆T coincidence count rate on the sum α1 +β2 is ∝ cos4(α1 +β2)
as it corresponds to a four-dimensional state. This function is
fitted to the experimental data. For comparison the theoretical
coincidence function ∝ cos2(α1 + β2) of a two-dimensional state is
plotted there as well.
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5.1. Considering coincidence windows
separately

0∆T -Coincidences

Two different Bell inequalities were tested triggering on coincidences with rel-
ative time delay 0∆T , the CHSH inequality and a CGLMP inequality.

CGLMP inequality

Tests of a CGLMP inequality described in Section 3.3 are presented which
were performed by resorting to the choice of the basis described in Section 3.3.

The tested expression derived from (3.21) for d = 4 is

I4 ={ [
Q(A1 = B1) +Q(B1 = A2 + 1) +Q(A2 = B2) +Q(B2 = A1)

]
−
[
Q(A1 = B1 − 1) +Q(B1 = A2) +Q(A2 = B2 − 1) +Q(B2 = A1 − 1)

]}
+

1

3

{ [
Q(A1 = B1 + 1) +Q(B1 = A2 + 2) +Q(A2 = B2 + 1) +Q(B2 = A1 + 1)

]
−
[
Q(A1 = B1 − 2) +Q(B1 = A2 − 1) +Q(A2 = B2 − 2) +Q(B2 = A1 − 2)

]}
.

(5.1)

In this case each of the 16 expressions for Q is a sum of four coincidence
probabilities according to (3.20). So the Bell test requires the measurement
of relative coincidence frequencies for 64 combinations of the phases α1, α2, β1

and β2.
According to (3.23) these phases to be set in the respective interferometers

are sums of the respective phases corresponding to the output projector for
the single outcomes 0, 1, 2 or 3 and of the numerically calculated preparation
phases corresponding to the observable A1, A2, B1 or B2 respectively. The
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Figure 5.1.: Theoretical and measured probabilities of the 0∆T coincidences in
the “+,+” detector pair for the 64 sets of phases {α1, α2, β1, β2}
for which the CGLMP expression I4 reaches its maximal value (see
(5.1)).

optimized phases yielding the maximal value

max
QM

(I4) =
2

3

(
1 + 2

√
2
)
≈ 2.552

theoretically achievable for this experiment are

α′′1(A1) =0.431, α′′2(A1) =− 0.007, β′′1 (B1) =− 1.216, β′′2 (B1) =0.007,

α′′1(A2) =− 1.140, α′′2(A2) =− 0.007, β′′1 (B2) =0.355, β′′2 (B2) =0.007 .

In Figure 5.1 the computed theoretical expectations for the coincidence prob-
abilities as well as the corresponding measured probabilities are plotted for all
64 phase combinations.
The value of the expression calculated for the experimental data is

I4 = 2.421± 0.012

which surpasses the bound maxlocal variable(I4) = 2 by 35 standard deviations.
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5.1. Considering coincidence windows separately

CHSH inequality

The following test of a CHSH inequality is a test of the experimental scheme
for two-dimensional entangled states originally proposed by Franson [16] in
1989. This statement is true in the following sense.

As for each SPDC photon of a pair there is only a single path leading from
the source to the respective interferometer system no interference of spatial
two-photon modes can occur. Consequently the splitting ratio between the
event “Bob’s photon takes the same beam splitter output as Alice’s photon”
and the event “Bob’s photon takes output ∓ if Alice’s photon takes output ±”
is completely random i. e. the probabilities for both events are 1/2. If Alice’s
and Bob’s photon share the output mode after the first beam splitter they can
only acquire a time delay of 0∆T or ±2∆T such that

p±2∆T + p0∆T,x + p0∆T,y = 1/2 (5.2)

holds (see Table 2.4 on page 20 for definitions of the summed probabilities).
For the other events

p±3∆T +
∑

i=x,y,w,z

p±1∆T,i = 1/2 (5.3)

is fulfilled. By postselection of the 0∆T coincidences all events that contribute
to (5.3) are dropped. As α1 = β1 = 0 for all measurement settings in this test
(see (5.5)), p±2∆T = 0 holds and in principle all coincidences that contribute
to (5.2) are registered in the 0∆T time delay window. In the original Franson
experiment half of all coincidences are postselected in the 0∆T time delay
window as well. So the correlation function used here is the same as for the
test of the CHSH inequality in the original Franson setup:

CCHSH,0∆T =
p0∆T,x − p0∆T,y

p0∆T,x + p0∆T,y

=

[p (0∆T,+,+) + p (0∆T,−,−)]− [p (0∆T,+,−) + p (0∆T,−,+)]

[p (0∆T,+,+) + p (0∆T,−,−)] + [p (0∆T,+,−) + p (0∆T,−,+)]

A set of phases allowing to maximally violate the CHSH inequality

− 2 ≤ ICHSH,0∆T =

CCHSH,0∆T (A1, B1)+CCHSH,0∆T (A1, B2)+CCHSH,0∆T (A2, B1)−CCHSH,0∆T (A2, B2)

≤ 2, (5.4)

by the value maxQM(ICHSH,0∆T ) = 2
√

2 consists of

α1(A1) =0, α2(A1) =− π

4
, β1(B1) =0, β2(B1) =0,

α1(A2) =0, α2(A2) =
π

4
, β1(B2) =0, β2(B2) =

π

2
. (5.5)
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The experimental value for the CHSH expression extracted from the measured
data is

ICHSH,0∆T = 2.51± 0.04

which surpasses the bound maxlocal variable(ICHSH,0∆T ) = 2 for local variable
models by 12.8 standard deviations.

±1∆T -Coincidences

On the coincidences postselected within the time delay window ±1∆T the
CGLMP expression I3 was tested (see (3.22)). It resembles the expression I2

except for the form of the sums Q(Aa = Bb + n), a, b ∈ {1, 2}, n ∈ N (see
(3.20)). In the expression I2 each of the sums consists of two coincidence
probabilities P (Aa = i, Bb = (i+ n) mod d) whereas in I3 tested here each Q
consists of three coincidence probabilities, resulting in a total of 24 coincidence
probabilities to be measured.
In order to enable the distinction of different outcomes at each party a

change of basis as described in Section 3.3 was applied. In this case only three
different single outcomes are required and the corresponding new basis states
described in terms of the old basis are

|φ0〉 :=
1√
3

(
|0〉 + |1〉 + |2〉

)
,

|φ1〉 :=
1√
3

(
|0〉+ei1·2π/3 |1〉+ei2·2π/3 |2〉

)
,

|φ2〉 :=
1√
3

(
|0〉+ei2·2π/3 |1〉+ei1·2π/3 |2〉

)
,

for one party and

|ϕ0〉 :=
1√
3

(
|1〉 + |2〉 + |3〉

)
,

|ϕ1〉 :=
1√
3

(
|1〉+ei2·2π/3 |2〉+ei1·2π/3 |3〉

)
,

|ϕ2〉 :=
1√
3

(
|1〉+ei1·2π/3 |2〉+ei2·2π/3 |3〉

)
,

for the other party. They can be implemented for the “+” detectors by accord-
ingly adjusting the phases in the interferometers such that

|φ〉 =
1√
3

(|0〉+ eiγ′1 |1〉+ eiγ′2 |2〉)
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5.1. Considering coincidence windows separately

and respectively

|ϕ〉 =
1√
3

(eiγ′′1 |1〉+ eiγ′′2 |2〉+ ei(γ′′1 +γ′′2 ) |3〉)

= eiγ′′1
1√
3

(|1〉+ ei(γ′′2−γ′′1 ) |2〉+ eiγ′′2 |3〉)

hold where the global phase can be dropped. Here phase shifts introduced by
the beam splitters contribute to the phases γ′1, γ′2, γ′′1 and γ′′2 .

The quantummechanical maximum for I3 of maxQM(I3) = 4
3
·(1+

√
4
3
) ≈ 2.87

is reached for

α′′1(A1) =− π

3
, α′′2(A1) =− π

6
, β′′1 (B1) =− π

2
, β′′2 (B1) =π,

α′′1(A2) =0, α′′2(A2) =− π

2
, β′′1 (B2) =

π

6
, β′′2 (B2) =0.

The theoretical expectations for all 24 probabilities P
(
Aa = i, Bb = (i +

n) mod d
)
appearing in the expression I3 are plotted in Figure 5.2 together

with the measured relative frequencies of the corresponding coincidence events.

From the experimental data a value for the CGLMP expression of I3 =
2.68 ± 0.05 was calculated. This result represents a violation of the bound
maxlocal variable(I3) = 2 by 13.6 standard deviations, therefore proving intrinsic
three-dimensional entanglement.

±2∆T -Coincidences

Concerning the ±2∆T coincidences there is no information which can be ex-
tracted by defining a correlation function between the probabilities of detection
at different output modes. This is so as the coincidence probability is the same
for all output combinations, i. e. for (+,+), (+,−), (−,+) and (−,−). Thus,
for a postselection of the +∆2 or −∆2 coincidences the correlation function is
defined by resorting to a change of basis as described in 3.3.
The states forming the new basis of the postselected subspace read

|θ0〉 :=
1√
2

(
|0〉+ |1〉

)
,

|θ1〉 :=
1√
2

(
|0〉− |1〉

)
,
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Figure 5.2.: Theoretical and measured coincidence probabilities of the ±1∆T
coincidences in the “+,+” detector pair for the 24 sets of phases
{α1, α2, β1, β2} for which the CGLMP expression I3 (see (3.22)) is
maximized.
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5.2. Including time delay detection basis

for one party and

|ϑ0〉 :=
1√
2

(
|2〉+ |3〉

)
,

|ϑ1〉 :=
1√
2

(
|2〉− |3〉

)
,

for the other party. They can be implemented by accordingly adjusting the
phases α1 and β1. The preparation phases which maximize the absolute value
of the CHSH expression are

α′′1(A1) =− π

4
, α′′2(A1) =0, β′′1 (B1) =0, β′′2 (B1) =0,

α′′1(A2) =
π

4
, α′′2(A2) =0, β′′1 (B2) =

π

2
, β′′2 (B2) =0,

and give the theoretically maximal quantum value of

max
QM
|ICHSH| = 2

√
2 ≈ 2.828 .

The corresponding measured correlations are

CCHSH(A1, B1) = −0.619± 0.004,

CCHSH(A1, B2) = −0.653± 0.004,

CCHSH(A2, B1) = −0.714± 0.004,

CCHSH(A2, B2) = 0.487± 0.004 .

The associated CHSH expression amounts to

|ICHSH| = 2.475± 0.007

which means a violation of the bound maxlocal variable |ICHSH| = 2 for local vari-
able theories by 68 standard deviations for an integration time of 10 seconds.

5.2. Including time delay detection basis

As it was explained in Section 2.7, for specific subsets of all distinguishable
coincidence events, correlation functions can be defined such that the sum of
the contributing coincidence events remains constant.

The subset of coincidence events that this method was applied to consists
of all coincidence events with relative time delay 0∆T and ±2∆T whose prob-
abilities add up to the constant value of 1/2 (see (2.14)). Measurements on the
corresponding correlation functions C1 and C2 defined in (2.15) and (2.16) are
presented.
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5. Bell tests

CHSH

The correlation function

C1 =
(p0∆T,x + p0∆T,y)− p±2∆T

(p0∆T,x + p0∆T,y) + p±2∆T

= cos(α1 + β1)

resembles the correlation function used in the original Franson experiment for a
test of the CHSH inequality. This can be understood in the following manner.
Compare the setup of the original Franson experiment and the setup used

here (see Figure 2.1 and Figure 2.2). The “+,−” coincidence event with no
relative time delay in the Franson setup is mapped to a −2∆T coincidence
in the setup used in this experiment. The 0∆T “−,+” coincidence event in
the Franson setup corresponds to a +2∆T coincidence in the setup used here.
And the 0∆T “+,+” and “−,−” coincidences in the Franson case are mapped
to 0∆T coincidences detected at any output combination in this experiment.
Thus a CHSH inequality consisting of correlations C1(Aa, Bb) of observables

Aa, Bb, a, b ∈ {1, 2} at Alice’s and respectively Bob’s side was tested:

− 2 ≤ C1(A1, B1) + C1(A1, B2) + C1(A2, B1)− C1(A2, B2) ≤ 2 (5.6)

The phases which theoretically allow to reach the maximum of maxQM(ICHSH) =
2
√

2 ≈ 2.83 are

α1(A1) =0, α2(A1) =0, β1(B1) =− π

4
, β2(B1) =0,

α1(A2) =
π

2
, α2(A2) =0, β1(B2) =

π

4
, β2(B2) =0. (5.7)

For the CHSH expression a value of

2.29± 0.04

was calculated from the experimental data. This result violates the upper
bound maxlocal variable(ICHSH) = 2 by 7 standard deviations.

Bell tests for the correlation function C2

The expression tested for the correlation function C2 is similar to the CHSH
expression except for the different definition of the correlations:

IC2 := C2(A1, B1) + C2(A1, B2) + C2(A2, B1)− C2(A2, B2),

C2 :=
p0∆T,x − p0∆T,y − p±2∆T

p0∆T,x + p0∆T,y + p±2∆T

= cos2

(
α1 + β1

2

)
cos(α2 + β2)− sin2

(
α1 + β1

2

)

54



5.2. Including time delay detection basis

The bounds of this expression for correlations that can be described by a local
variable model were computed resorting to the method explained in Section
3.2:

min
local variable

(IC2) = −4,

max
local variable

(IC2) = 2.

The theoretical minimum of the correlations yielded for the setup described in
this work is the same as for local variable models: minQM(IC2) = −4 . A set of
phases allowing to surpass the bound maxlocal variable(IC2) = 2 by a maximum
of maxQM(IC2) = 2

√
2 ≈ 2.83 is

α1(A1) =0, α2(A1) =− π

4
, β1(B1) =0, β2(B1) =0,

α1(A2) =0, α2(A2) =
π

4
, β1(B2) =0, β2(B2) =

π

2
. (5.8)

From the measured data a value of

IC2,(5.8) = 2.59± 0.04

was calculated. This represents a violation of the upper bound maxlocal variable(IC2) =
2 for local variable models by 14.8 standard deviations.
An interesting detail about this Bell test is the fact that IC2 yields a violation

of the upper bound for the set of phases listed here in (5.8) where α1 and β1

constantly are zero as well as for the phases listed in (5.7) from the preceding
test of the CHSH inequality where only the phases α1 and β1 were varied.
Furthermore the set of phases listed in (5.8) is equivalent to the set of phases
listed in (5.5) in Section 5.1. There a test of the CHSH inequality concerned
with the pair of both second interferometers is described.

A test of the expression IC2 with the set of angles listed in (5.7) yields a
value of

IC2,(5.7) = 2.18± 0.04

which lies above maxlocal variable(IC2) = 2 by 4.5 standard deviations.
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6. Discussion and future
prospects

One of the main goals of this work was the characterization of the entanglement
of experimentally prepared states through the measurement of two-photon
interference and the test of suitable Bell type inequalities.

In Chapter 2 the framework of quantum mechanics was introduced neces-
sary for the description of the experiment. Based on this, coincidence functions
corresponding to different two-photon states were derived for the experimental
setup which represents a higher-dimensional extension of the Franson exper-
iment [16]. In the considered modification another pair of unbalanced inter-
ferometers allows for additional superpositions of interfering two-photon basis
states. The coincidence events corresponding to these superpositions can be
distinguished by the different relative time delays between the detections of
the photons of a pair. In Section 4.5 the derived coincidence functions were
consequently compared to measured coincidence curves (see Table 4.1 on page
43).

The ratios of the experimentally observed to the theoretically expected in-
terference visibilities range from 0.854± 0.013 for coincidences with a relative
time delay of 1∆T = (2.4±0.1) ns to 0.964±0.010 for coincidences with no rel-
ative time delay. As it was mentioned in Section 4.5 these reduced visibilities
can at least partially be ascribed to the different contributions of accidental
coincidences to the count rates of the different coincidence events. Therefore,
further reduction of background counts would be desirable.

The dimensionality of the Hilbert space corresponding to the coincidences
with no relative time delay was demonstrated by a simultaneous scan of two
different interferometers leading to a cos4 dependence. Also, the experimen-
tally achieved visibilities as well as the observed phase offsets ∆φ0∆T,1∆T =
(1.024±0.002)π and ∆φ0∆T,2∆T = (1.013±0.002)π with only small deviations
from the expected value of π (see Section 4.5) demonstrate that the behaviour
of the chosen experimental setup is close to the theoretical model.
In Chapter 5 several Bell inequalities were tested. Coincedence events with

different relative time delays were considered separately as well as in suitable
combinations. The results of all Bell tests violated the respective inequality’s
upper bound of 2 for local variable models by values ranging from IC2,(5.7) =
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6. Discussion and future prospects

2.18± 0.04 over IC2,(5.8) = 2.59± 0.04 to I3 = 2.68± 0.05.
In Section 2.7 the correlation function

C2 =
p0∆T,x − p0∆T,y − p±2∆T

p0∆T,x + p0∆T,y + p±2∆T

= cos2

(
α1 + β1

2

)
cos(α2 + β2)− sin2

(
α1 + β1

2

)
1 was defined to preserve information about all correlations between the three
classes of coincidence events it takes into account. Therefore the corresponding
inequality IC2 is violated for the two sets of phases that were optimized to give
maximal violations of the CHSH inequality ICHSH (see (5.6) on page 54) and
IC2 itself, respectively. In contrast, ICHSH is not violated for the second set
of phases as it is not defined to preserve information about all correlations
between the classes of coincidence events taken into account.
Hence, IC2 is non-redundant with respect to ICHSH according to the definition

given by Collins and Gisin [10]:

“Given two inequalities which are violated, we define the first to be
non-redundant if quantum mechanics gives a point P (jA, jB|iA, iB)
which violates the first inequality, but which does not violate the
second inequality (or any inequality equivalent to the second).”2

In Section 3.3 a change of basis was introduced enabling the test of Bell in-
equalities for which a higher number of outputs where the photons can be
detected would otherwise be necessary. It has to be checked if such changes of
basis that were performed in order to test Bell inequalities on the coincidences
postselected for relative time delay 0∆T , ±1∆T and ±2∆T are feasible for
applications in e. g. quantum key distribution (QKD). The applied method re-
quires to subsequently measure the count rates of different coincidence events.
Of course this is only necessary if all these count rates are needed for the
specific chosen QKD scheme. Consequently, this procedure would require a
longer measurement time and therefore could partially outweigh a higher data
transfer rate owed to the higher dimensionality.
In the performed measurements that relied on a change of basis only the

coincidence counts for a single output combination and relative time delay
were taken into account. Therefore it could be investigated if changes of basis
can be simultaneously implemented for different output combinations by the
same set of phases α1, α2, β1, β2.

1α1, α2, β1, β2 denote the relative phases adjusted in the interferometers.
2P (jA, jB |iA, iB) corresponds to a set of phases {α1, α2, β1, β2}.
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In this thesis Bell inequalities for two observables, i. e. sets of phases, per
party were tested. Other Bell inequalities [10], also for more than two observ-
ables [7], might be tested on the described experimental setup.

Furthermore the original Franson experiment is doubted to suit the needs
for a test of local realism due to the postselection of 50 % of all events [1].
Theoretical investigations could answer the question whether the extension to
higher dimensions represents a possibility to overcome this problem.

E. g. for the experimental setup that this thesis is concerned with, only 1/8

of all coincidences, i. e. coincidences with a relative time delay of 3∆T , cannot
be influenced by the phases α1, α2, β1, β2 set in the interferometers.

So far, attempts that were undertaken during this work to define a cor-
relation function which is suitable for the violation of a Bell inequality and
which takes into account all coincidence events, or at least the ones that can
be manipulated by the phases set in the interferometers, failed. A reason for
this failure can be associated with the probabilistic splitting of all coincidence
events into three classes (see (2.14) on page 18) leading to an upper bound of
1/2 for every coincidence probability. In contrast, in an LHV model the prob-
abilities pa and pb for some single events can reach the value one and hereby
maximize the probability pa · pb = 1 of the corresponding coincidence event.
From a theoretical point of view, the contributions of the ±1∆T coincidence
windows add to a mixed state, limiting the violation of a suited Bell inequality.

During this work an additional stage of two similar interferometers was set
up, each implementing a time delay of 4∆T for its long arm with respect to
its short arm. The Hilbert space serving as a framework for the description
of the system made up of three interferometer loops per party then is eight-
dimensional. It will enable the test of further Bell inequalities for higher-
dimensional systems possibly being exploitable for inherently secure quantum
communication protocols.
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A. Quasi-phasematching

The pairs of entangled photons used in the described experiment are produced
by spontaneous parametric down-conversion (SPDC) [19]. In this process a
pump photon of wavelength ωp spontaneously decays into a pair of SPDC
photons called signal and idler in a medium with a nonlinearity χ(2)

ijk of second
order in the polarisation’s dependence on the electric field:

P i = ε0(χ
(1)
ij E

j + χ
(2)
ijkE

jEk + · · · )

This nonlinearity also describes SPDC [27].
The wavelengths ωs and ωi of signal and respectively idler photon satisfy

ωp = ωs + ωi

as the photon energy is conserved in this process. Conservation of momentum
completes the quasi -phasematching conditions:

kp
(
λp, np(λp, T )

)
= ks

(
λs, ns(λs, T )

)
+ ki

(
λi, ni(λi, T )

)
+

2π

Λ(T )
(A.1)

Here kj and λj, j ∈ {p, s, i} are the wavevectors and wavelengths of pump,
signal and idler photons respectively. The crystal’s refractive indices nj, j ∈
{p, s, i} for the respective wave fields depend on their wavelengths and the
temperature. The additional term, which accounts for the prefix “quasi-”,
depends on the crystal’s poling period Λ as in the used periodically poled
KTiOPO4 (PPKTP) crystal the effective nonlinearity of the medium is pe-
riodically inverted. This property can be achieved by alternating an electric
field during the fabrication of the crystal. Compared to phasematching in bulk
nonlinear crystals, a broader range of phasematching angles and wavelengths
is possible for quasi-phasematching in periodically poled crystals. Similarly it
allows to warrant phasematching over directions of the crystal for which the
effective nonlinearity and therefore the photon pair creation efficiency is in-
creased. A significant advantage of the periodic poling is that the longitudinal
and transversal walkoff between the SPDC photons is compensated allowing
longer crystals.

The trajectories of signal and idler photon are constrained within two cones
whose axes are symmetrically arranged with respect to the pump beam. The
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A. Quasi-phasematching

SPDC process exploited in this experiment is of type-II [31]. I. e. not both
SPDC photons are ordinarily polarized but one is extraordinarily polarized,
while the pump photon is extraordinarily polarized with respect to the optical
axis of the crystal. The chosen geometrical configuration is collinear, i. e. the
emission cones of signal and idler photon contact in one line. Along this
line signal and idler photon of a pair are indistinguishable in principle with
respect to their spatial mode distribution. This fact gives rise to the desired
entanglement.
The wavelengths of the SPDC photons should be degenerate at λi = λs =

806 nm for this experiment. According to the manufacturer of the crystal
the ideal temperature allowing for this degeneracy is at 45.75 ◦C for a poling
period of 9.675 µm. In the experiment the optimal temperature for the desired
wavelength degeneracy turned out to be (26.0 ± 0.2) ◦C. For this value a
poling period of 9.735 µm can be computed in correspondence with calculations
according to [14] (see also [21]). According to the manufacturer deviations
in the range of 0.25 µm can occur in the fabrication process. Moreover the
Sellmeier coefficients incorporated in the calculations according to [14] are
empirically determined for different wavelength regimes. Thus, the Sellmeier
coefficients can lead to deviations for the wavelength regime from 400 to 800 nm
covered here. Figure A.1 shows a plot of the measured wavelengths of the
extraordinarily and ordinarily polarized SPDC photons in dependence of the
crystal temperature. The theoretical curves calculated from (A.1) are plotted
there as well for the grating periods of 9.675 µm and 9.731 µm respectively.
In order to maximize the efficiency of the SPDC process, i. e. the coincidence

count rate, the pump beam focusing was adjusted to a waist of wp = 25 µm in
the crystal of length 10 mm according to measurements published by Fedrizzi
et al. [15].
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Figure A.1.: Temperature dependence of down-conversion photon wavelengths
as experimentally measured (A.1a) and theoretically predicted
(A.1b). Signal and idler photon, together constituting a down-
conversion pair, are orthogonally polarized with respect to each
other.
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Nomenclature

APD avalanche photo diode

CGLMP Collins, Gisin, Linden, Massar, and Popescu

CH Clauser and Horne

EPR Einstein, Podolsky, and Rosen

FFC fused fiber coupler

FWHM full width at half maximum

LHV local hidden variable

PBS polarizing beam splitter

PPKTP periodically poled KTiOPO4

SPDC spontaneous parametric down-conversion
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