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The efficient characterization of multipartite entangled states is possible with
analysis tools not requiring a full tomographic state estimation. We describe several
methods and apply them to two different, genuinely four-partite entangled states,
that were recently observed in the experiment.

1. INTRODUCTION

Entanglement is the crucial resource in the field of quantum information processing and
consequently a better understanding of its properties is very desirable. While for bipartite
entangled qubit states many tools for characterization exist and also the experimental
implementation of the tools is feasible, the situation for multipartite entangled states is
different: The available tools have to be suited for a much greater diversity of entanglement
properties, e.g. to analyze all the different entanglement classes [1]. A full experimental
characterization via state tomography is increasingly difficult as the number of necessary
measurement settings grows exponentially with the number of particles.

In this contribution we focus on efficient, non-tomographic methods to characterize
experimentally observed, multipartite entangled states. First steps towards this goal were
demonstrated recently, for instance, for the proof of genuine multipartite entanglement [2]
or for the analysis of the persistency of entanglement under loss [3]. Such methods can be
further optimized by tailoring them to particular properties of states. We show how three
important characteristic quantities, the fidelity, the non-separability and the permutation
symmetry, can be evaluated with a significantly lower number of measurement settings
than required for a complete tomography. Although the determination of these particular
properties provides less information than the reconstruction of the complete density ma-
trix, it allows to judge how well state characteristics are reproduced experimentally. This
might be important with respect to an experimental application of states in quantum in-
formation. Exemplarily we apply the analysis tools to two genuinely four-qubit entangled
states: the Dicke state with two excitations |D(2)

4 〉 [4] and the cluster state |C4 〉 [5, 6].

These states are relevant for particular tasks: The state |D(2)
4 〉 is a resource for tele-

cloning [7], cluster states find an application in one-way quantum computation [6, 8] and
are a subgroup of graph states, which play an important role for quantum error correction.

2. EXPERIMENTAL REALIZATION OF THE STATES |D(2)
4 〉 AND |C4 〉

The states were realized experimentally via spontaneous parametric down conversion
(SPDC) and linear optics setups, see Fig. (1). We begin with the experimental setup for
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the symmetric four-qubit Dicke state with two excitations

|D(2)
4 〉 =

1√
6
(|HHV V 〉 + |HVHV 〉 + |V HHV 〉 + |HV V H〉 + |V HV H〉 + |V V HH〉),

where, e.g., |HHV V 〉 = |H〉a ⊗ |H〉b ⊗ |V 〉c ⊗ |V 〉d, and where |H〉 and |V 〉 mean linear
horizontal (H) and vertical (V ) polarization of photons, respectively, and the subscript
denotes the spatial mode. The state is the equally weighted superposition of all six
possibilities how to distribute two horizontally and two vertically polarized photons onto
four spatial modes. We use as photon source the second order emission of type II collinear
SPDC from a BBO (β-Barium Borate, 2 mm thick) crystal, where two horizontally and
two vertically polarized photons are created. UV pulses with a central wavelength of
390 nm and a power of 600-700 mW from a frequency-doubled mode-locked Ti:Sapphire
laser are used to pump the crystal. The SPDC emission is coupled into a single mode fiber
that defines the spatial mode. Then, the photons are distributed equally onto four spatial
modes a,b,c and d via three polarization independent beam splitters. The state |D(2)

4 〉 is
observed if a photon is registered in each output mode. Details of the experimental setup
can be found in [4].

The second state to be characterized is the four-qubit cluster state

|C4 〉 =
1

2
(|HHHH〉 + |HHV V 〉 + |V V HH〉 − |V V V V 〉).

The state |C4 〉 was realized experimentally by entangling two polarization entangled pho-
ton pairs via a controlled phase gate [9]. The pairs (|φ+ 〉ab′ = 1/

√
2(|HH 〉ab′ + |V V 〉ab′)

in modes a and b′, and |φ+ 〉c′d in modes c′ and d) were created by the first order emission
of non-collinear type II SPDC in double pass configuration using the same pump laser
system as above. The linear optical gate between modes b′ and c′ was implemented ex-
perimentally via a second order interference on a polarization dependent beam splitter
(PDBS). A phase shift is applied only in the case that both photons carry vertical po-
larization: |V V 〉b′c′ → −|V V 〉bc. The state |C4 〉 is observed if a photon is registered in
each of the four modes. Details can be found in [5, 9].

Figure 1: Schematic setups for the observation of the states |D(2)
4 〉 (a) and |C4 〉 (b) in

modes a,b,c and d. (PD)BS means a polarization independent (dependent) beam splitter.

3. QUALITY OF STATE PREPARATION

In the experiment one is interested in the quality of the prepared state, i.e. how
close is the experimental to the desired state. For this purpose we take the fidelity [10]
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as a measure. The fidelity FΦ of a state ρexp with respect to a desired state |Φ 〉 is:
FΦ = 〈Φ | ρexp|Φ 〉 =

∑
i,j,k,l Si,j,k,l 〈Φ |σiσjσkσl|Φ 〉, where the density matrix ρexp was

decomposed in tensor products of Pauli spin operators σr with r ∈ {0, x, y, z}. In general,
full knowledge of the experimental state requires a measurement of all its correlations
Si,j,k,l in order to determine its density matrix, yet for four qubits these are 256 values.
Fortunately, only the correlations that are non-zero, i.e. 〈Φ |σiσjσkσl|Φ 〉 �= 0, enter the
determination of the fidelity and thus the number of measurement settings is drastically
reduced.

The state |D(2)
4 〉 exhibits only 40 non-zero correlations. These 40 values can be de-

rived from 21 measurement settings in the standard bases (H/V ), (±45 ◦) and (L/R)
corresponding to the eigenvectors of σz, σx and σy, where |±45 ◦ 〉 = 1/

√
2(|H 〉 ± |V 〉)

and |L/R 〉 = 1/
√

2(|H 〉 ± i|V 〉). A fidelity of F
D

(2)
4

= 0.844 ± 0.008 was found [4]. The

determination of the fidelity for the cluster state needs even less measurement settings.
One can profit from the fact that the cluster state, as a four-qubit graph state, is com-
pletely describable by its 16 stabilizers [11]. Therefore, the fidelity of the cluster state
equals the averaged expectation value of the stabilizer operators and a measurement of
the respective correlations is sufficient to evaluate it. These 16 correlations can be derived
from only nine measurement settings and result in FC4 = 0.741 ± 0.013 [5]. The devia-
tion of the experimental from the ideal states can be attributed to a remaining degree of
distinguishability of the four photons, higher order emissions of the SPDC process and
imperfections in the optical components.

4. EFFICIENT WITNESS OPERATORS

Another important question is whether the experimental state exhibits genuine multi-
partite entanglement. Witness operators are an efficient tool to prove this. A generic
witness that detects a state |Φ 〉 as genuine multi-partite entangled is given by W =
α11−|Φ 〉〈Φ |, where α = max|ψ〉∈B|〈ψ |Φ 〉|2 and B denotes the set of biseparable states [2].
This construction guarantees that the expectation value of W on all biseparable states
is positive, but negative on the genuine multi-partite entangled state |Φ 〉. Effectively
the expectation value of W can be expressed in terms of the fidelity: Tr[Wρexp] = α −
〈Φ |ρexp|Φ 〉. Therefore, its determination requires as many measurements as are necessary
for the determination of the fidelity. In the following we apply more efficient witnesses
[11,12] that are tailored to particular features of the states |D(2)

4 〉 and |C4 〉, resulting in
a reduced number of necessary measurements.

One can construct an efficient entanglement witness W
D

(2)
4

for the state |D(2)
4 〉 from

a measurement of the collective spin squared in the x- and y-direction (J2
x and J2

y )

[12]: W
D

(2)
4

= α11 − (J2
x + J2

y ), where α = 7/2 +
√

3 ≈ 5.23 is the maximal expecta-

tion value of J2
x + J2

y reached by biseparable states and where Jx/y = 1/2
∑
k σ

k
x/y with

e.g. σ3
x = 11⊗11⊗σx⊗11. Thus, only two measurement settings suffice for the experimental

determination of W
D

(2)
4

. Rewriting J2
x + J2

y as J2 − J2
z , where J = (Jx, Jy, Jz), we get for

|D(2)
4 〉 a total spin squared of 〈J2〉 = 6 due to its permutation symmetry and 〈J2

z 〉 = 0,
resulting in an expectation value for the witness of ≈ −0.77. Experimentally, from data
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shown in Fig. (2a), we find a value of Tr[W
D

(2)
4
ρexp] = −0.35± 0.02. For the cluster state

it was shown that the witness can be constructed from its stabilizers [11]:
WC4 = 3 · 11⊗4 − 1

2
(σ(a)

z σ(b)
z + 11)(σ(b)

z σ(c)
x σ(d)

x + 11) − 1
2
(σ(c)

z σ(d)
z + 11)(σ(a)

x σ(b)
x σ(c)

z + 11),

where σ
(j)
i is the Pauli matrix i acting on qubit j. Again only two local measurement set-

tings suffice for its determination. Theoretically a value of −1 is expected, experimentally
we find Tr[WC4ρexp] = −0.299±0.050, which is derived from the measurements displayed
in Fig. (2b). In both cases, negative expectation values clearly prove that both observed
states are genuine four-partite entangled.

Figure 2: Fourfold coincidence counts of the states |D(2)
4 〉 (a) and |C4 〉 (b) sufficient for

the evaluation of their witnesses. For |D(2)
4 〉 measurements in the (±45 ◦) and (L/R)

bases of all qubits are displayed. For |C4 〉 a measurement in (H/V ) of qubits a and b and
(±45 ◦) of qubits c and d is shown on the left of (b), on the right the bases are exchanged.

5. PERMUTATION SYMMETRY OF THE STATES

Non-tomographic methods not only allow to verify genuine four-partite entanglement,
but also to examine further properties. We show that permutation symmetry can be
analyzed with few local measurements. It is interesting to observe that, even though
permutation symmetry alone is not an entanglement criterion, important multipartite
entangled states are symmetric, like for instance the GHZ and the W state as well as the
examples we deal with. Here, we analyze how well the symmetries of the desired states
are reproduced by the experimentally obtained ones. We will discuss how deviations are
connected with the experimental implementation of the states.

Permutation is described by the swap operator Sba [10] exchanging photons a and b:
Sba|HH 〉ab = |HH 〉ba, Sba|HV 〉ab = |HV 〉ba, Sba|V H 〉ab = |V H 〉ba and Sba|V V 〉ab =
|V V 〉ba. The subscript of the ket denotes the spatial mode of the photon and the subscript
of the swap operator denotes the new ordering of the photons after its application. For
pure states, the expectation value of the swap operator 〈S〉 = 〈ψ |S|ψ 〉 has a simple
interpretation as the overlap between a pure state |ψ 〉 and its permuted counterpart S|ψ 〉.
It takes values between −1 and +1 representing a completely antisymmetric (|ψ− 〉) and
symmetric state (e.g. |ψ+ 〉), respectively [where |ψ± 〉 = 1/

√
2(|HV 〉 ± |V H 〉)]. When

extending this scheme to mixed states ρ we find two possible ways of how to look at
permutation symmetry. One is, as for pure states, by taking the expectation value of
the swap operator s = Tr[Sρ]. This value gives the weighted average of the pure state
symmetries in the decomposition of the mixed state: s = Tr[Sρ] =

∑
i pi〈ψi |S |ψi 〉,

where pi is the probability to contain the state |ψi 〉. However, this is not the overlap
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between a mixed state ρ and its permuted counterpart SρS anymore. The overlap is
given by: sρ = Tr

[√√
ρ · SρS · √ρ

]
. The expectation value s allows, in contrast to sρ,

to detect antisymmetry, as s captures the individual symmetries of pure states in the
decomposition of the mixed state. To illustrate this we consider two-qubit white noise:
ρnoise = 1/4(|φ− 〉〈φ− | + |φ+ 〉〈φ+ | + |ψ+ 〉〈ψ+ | + |ψ− 〉〈ψ− |). For ρnoise we obtain
s = 1/2, but sρ = 1. This difference stems from the fact that s detects the state |ψ− 〉 as
antisymmetric, whereas the remaining three states as symmetric. In contrast, sρ evaluates
the mixed state as a whole and ρnoise is symmetric when exchanging particles, thus sρ
yields 1. Which of the two types for evaluating the symmetry of mixed states is chosen
for an experimental determination depends on the problem to be analyzed. Here, we
pursue to study s, i.e. the expectation value of the swap operator, as for its experimental
determination only three local measurements are required: The swap operator can be
decomposed into Sba = 1/2(11(a) ⊗ 11(b) +σ(a)

z ⊗σ(b)
z +σ(a)

x ⊗σ(b)
x +σ(a)

y ⊗σ(b)
y ). In contrast,

the experimental determination of sρ requires a full tomographic state estimation.
For four qubits we find 24 possible permutations. These form a group and can be

obtained by concatenation of swap operators between different pairs of qubits. To obtain
all 24 permutations one only needs to consider three generators from the group: we
choose the swap operators acting on neighboring qubits: Sbacd, Sacbd and Sabdc. The
state |D(2)

4 〉 is completely symmetric with respect to all 24 permutations and therefore

the expectation value of the swap operators with |D(2)
4 〉 is +1. To test how well the

symmetry is reproduced by the experimental state we determined the expectation values
for the chosen swap operators depicted in Table (1). The values are close to +1 and thus
reflect the high symmetry of the experimental state. Small deviations between the values
are observed. As imperfections in the photon source can only lower all values by the same
amount, the differences between the values can solely be attributed to imperfections in the
linear optics setup. The permutation symmetry of the cluster state |C4 〉 is different. It is
only symmetric with respect to exchange of particles a and b (Sbacd) and c and d (Sabdc),
while not being fully symmetric for exchange of b and c (Sacbd). The expectation value of
Sacbd is +0.5 in theory. Table (1) shows the experimentally obtained values. The SPDC
emission provides the bipartite state |φab′ 〉|φc′d 〉 that already possesses the permutation
symmetry of the desired state |C4 〉. The observed high values for Sbacd and Sabdc support
the fact that the source emits a very symmetric state that is also not disturbed by the
phase gate. However, the value of Sacbd is higher than the theoretical one. We attribute
this to the non-perfect indistinguishability of the photons at the PDBS causing a non-
perfect two photon interference, in agreement with the interpretation in [5, 9]. That
results in a higher probability to observe the symmetric term |V V V V 〉 and thus makes
the resulting mixed state more symmetric with respect to Sacbd.

〈Sbacd〉 0.92 ± 0.02 0.98 ± 0.07

〈Sacbd〉 |D(2)
4 〉 0.97 ± 0.02 |C4 〉 0.62 ± 0.09

〈Sabdc〉 0.94 ± 0.02 0.98 ± 0.08

Table 1: Expectation values for three swap operators applied to |D(2)
4 〉 and |C4 〉.
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6. SUMMARY

In conclusion, we have described efficient, non-tomographic methods for state charac-
terization and applied them to two genuinely four-partite entangled states experimentally:
the Dicke state with two excitations and the cluster state. While evaluation of the state’s
fidelity requires 21 and 9 measurement settings, respectively, a proof of genuine four-
partite entanglement requires only two measurement settings. Together with the efficient
evaluation of permutation symmetry these methods represent useful tools for the analysis
of experimentally observed multipartite quantum states.
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