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The modification of the effect of interactions of a particle as a
function of its preselected and postselected states is analyzed
theoretically and experimentally. The universality property of this
modification in the case of local interactions of a spatially pre-
selected and postselected particle has been found. It allowed
us to define an operational approach for the characterization
of the presence of a quantum particle in a particular place: the
way it modifies the effect of local interactions. The experiment
demonstrating this universality property provides an efficient
interferometric alignment method, in which the position of the
beam on a single detector throughout one phase scan yields all
misalignment parameters.
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Preselected and postselected systems are ubiquitous in quan-
tum mechanics. In many quantum information schemes, the

intended process is only realized by the interplay of preselection
and postselection. The addition of postselection, often together
with conditioned transformations, is the basis of protocols such
as universal quantum computation within the Knill–Laflamme–
Milburn scheme (1), entanglement swapping (2), and heralding
in general (3).

The two-state vector formalism (TSVF) (4) provides a general
framework for the description of preselected and postselected
systems. It introduces a state evolving backward in time and
thereby treats the postselection on equal footing as the pre-
selection. The key element of the TSVF is the weak value of
an observable. As long as the interaction is sufficiently weak
or short, the observable effect on the external system is com-
pletely characterized by the weak value (5). For such interac-
tions, the state of the external systems after the postselection
can deviate significantly from the states expected by just con-
sidering the coupling to preselected systems (6). The concept
of weak values became the basis of several successful applica-
tions in precision-measurement techniques (7, 8). While there
are theoretical controversies about the optimality of the weak
value-based tomography and precision-measurement methods
(9–20), a plethora of fruitful applications continues to emerge
(21–34).

We take a step back and investigate the fundamental prop-
erties of preselected and postselected systems. We find that
there exists a general universality principle characterizing how
the effects of the interactions in one location of a spatially pre-
selected and postselected quantum system are modified as a
function of preselection and postselection. All these modifica-
tions are specified by a single complex number, the weak value
of the spatial projection operator. One of the innovations of our
approach is that it does not rely on the specific form of the inter-
action Hamiltonian. Instead, it expresses the change of the state
via the complex amplitude of an orthogonal component, which
emerges due to the interaction. If the weak value is a positive
number, the size of the changes in every variable is multiplied by
this number, and when it is negative, all modifications happen in

the opposite direction. If the effect originally changed a partic-
ular variable, in the case of an imaginary weak value, the effect
will occur in a variable conjugate to the initial one, and when
the weak value is a complex number, both effects are combined
together. This approach allows a formal definition of a quantum
particle’s presence.

Until now, most accounts considered the weak value to be
limited to the case of weak interactions—e.g., refs. 35–39. It is
another crucial innovation of our approach, however, that we
explicitly apply the formalism to the case of much stronger inter-
actions. We use an expression for the weak value which takes
into account changes due to interactions of finite strength in
the time interval between preselection and postselection. Besides
incorporating the stronger interactions, we also account for deco-
herence or imperfections in the measurement system. We show
experimentally that this weak value can in fact be measured by
using weakly coupled pointers.

An interferometer, especially a Mach–Zehnder-type interfer-
ometer (MZI), can be seen as the iconic example for preselected
and postselected systems. The reflectivity/transmittivity of the
first beam splitter together with the phase shifter defines the
preselected state of the system. The final beam splitter together
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with detection of the particle in one output of the interferom-
eter sets the postselected state. The effect of weak interactions
of the particle with external systems, which can be seen as a trace
the particle leaves inside the interferometer, is characterized by
the weak value of the projection operator on the corresponding
arm. Surprisingly, we also found that for Gaussian states of the
external system, the weak value characterizes the modification of
the trace for arbitrary strength of the interaction.

The interferometer enables straightforward experimental im-
plementation, where we consider a preselected and postselected
photon passing through. We experimentally characterize the var-
ious effects of multiple interactions in one of the interferometer’s
arms using the mode and the polarization of the propagating
photon as the external systems coupled to the photon’s path. We
find that the modifications of the weak effects on the photon
can be described by the weak value of the projection opera-
tor on the corresponding arm for various types and strengths of
couplings.

We can now turn the picture upside-down and view any
coupling to the external degrees of freedom as being due to
misalignment of the interferometer. For example, a tilted mir-
ror in one of the beams now becomes an interaction deflecting
the Gaussian mode of the beam from its ideal direction. This
analogy directly leads us to an efficient alignment technique for
interferometers, where our analysis provides a simple model for
the image observable at the output of an interferometer. More
precisely, by measuring the phase-dependent trajectory of the
centroid of the output mode on only a single spatially resolving
detector, we can extract the misalignment parameters in one go.
This technique harnesses the benefits of the weak amplification
method (6) to improve precision.

Weak Value of Local Projection and its Connection to the
Trace
Let us first consider the effect of a quantum particle on exter-
nal systems due to all kinds of local interactions in the channel
through which it passes. The interactions might be caused by
various properties of the particle—e.g., charge, mass, magnetic
moment, etc.—but we assume that the particle passing through
the channel does not change its quantum state.

∗

If the quantum particle is not present in the channel, the
state of the external systems at a particular time is |χ〉. When
the quantum particle is localized in the channel, as shown in
Fig. 1A, the interactions change the total state of the external
systems as

|χ〉→ |χ′〉≡ η
(
|χ〉+ ε|χ⊥〉

)
, [1]

where |χ⊥〉 denotes the component of |χ′〉, which is orthogonal
to |χ〉. By definition, we choose the phase of |χ⊥〉 such that ε> 0.
For simplicity, but without loss of generality, we also disregard
the global phase and consider the coefficient η to be positive,
such that η= 〈χ |χ′〉= 1√

1+ε2
. The trace left by the particle is

manifested by the presence of the orthogonal component |χ⊥〉
and is quantified by the parameter ε.

Next, let this channel be an arm of an MZI (Fig. 1B). We
assume that the arm B of the MZI is ideal—i.e., the particle
leaves no trace there.† For the creation of the preselected state

*To deal with cases where the states of some degrees of freedom of the particle change,
we treat them equivalently to the external degrees of freedom. In fact, this is the case
in our experiment (Observing the Universality Property).

†This assumption is made for simplicity of presentation. The main results of the paper
about the universality of modification of interactions are easily transformed to the case
when some weak traces are left in all parts of the interferometer.

A

B

Fig. 1. Comparison between effect of the local coupling of the particle
when it passes through a single channel and when it passes through an
interferometer. (A) The particle interacts with external systems in a sin-
gle channel originally in the state |χ〉. (B) The particle passes through an
MZI with arm A identical to the channel described in A with all its local
interactions, while it is assumed that there are no local couplings in arm B.

inside the interferometer |ψ〉, the unbalanced input beam splitter
is followed by a phase shifter, resulting in

|ψ〉= cosα|A〉+ sinαe iϕ|B〉, [2]

where |A〉 and |B〉 represent the eigenstates of the path degree
of freedom, and α and ϕ are the two real parameters of the state.

The second beam splitter is balanced, so its operation can be
modeled as

|A〉→ 1√
2

(|C 〉+ |D〉), [3a]

|B〉→ 1√
2

(|C 〉− |D〉). [3b]

We collect photons in output port C , which corresponds to a
postselection of the state

|φ〉= 1√
2

(|A〉+ |B〉). [4]

Accounting for the interactions in arm A (Fig. 1B), the compos-
ite state |Ψ〉 of the particle and the external systems before the
second beam splitter is

|Ψ〉= cosα|A〉|χ′〉+ sinαe iϕ|B〉|χ〉, [5]

where here and in the rest of the paper, we use a shorthand
notation for tensor products with |A〉|χ′〉≡ |A〉⊗ |χ′〉. After
detection of the particle in arm C—i.e., postselection of the
particle in state [4]—the state of the external systems becomes

|χ̃〉=N
(
|χ〉+ ηε

η+ tanαe iϕ
|χ⊥〉

)
, [6]

where N is the normalization factor. Here and in the rest of the
paper, we use the accent symbol “∼” to denote situations with
preselection and postselection.

We start by considering interactions which are sufficiently
small, with ε� 1. In the case of a single channel, the particle
passing through it leads to the change of the state of the external
systems,

|χ〉→ |χ′〉= |χ〉+ ε|χ⊥〉+O(ε2), [7]
which is just an expansion of [1] in orders of ε.
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For the particle that has passed through the corresponding
MZI and has been detected in C , we observe a different change
of the state of the external systems. Expanding Eq. 6 in orders of
ε, we can see that the weak effect of the interaction is modified
relative to [7] by a single parameter, the weak value of projection
on arm A,

|χ〉→ |χ̃〉= |χ〉+ ε (PA)w |χ⊥〉+O(ε2), [8]

where, for defining the weak value, we neglect the coupling to
external systems

(PA)w ≡
〈φ|PA|ψ〉
〈φ|ψ〉 =

1

1 + tanα e iϕ
. [9]

The design of the interferometer allows the full range of weak
values of projection onto arm A, by varying the parameters tanα
and ϕ. Note that we did not restrict the number of interactions
as long as their combined effect is sufficiently weak.

When the trace left in the interferometer is small, ε� 1, the
weak value can be considered neglecting the effect of the interac-
tions, as in [9]. In the next section, we will turn toward scenarios
with stronger couplings for which the interactions cannot be
neglected.

Weak Value Considering Finite Coupling Strength and
Imperfections
Calculating the weak value as in Eq. 9, we have implicitly as-
sumed that it only depends on the preselection and postselection
states at the boundaries of the considered time interval. This is
correct in the limit of weak coupling, which is considered in most
works about weak measurements. However, sometimes even in
scenarios with coupling of finite strength, the weak value has
been treated as if there was no coupling—i.e., using formula [9]
(20, 35–40).

To correctly account for couplings of finite strength, we turn to
the proper definition of the weak value in the framework of the
TSVF, which refers to a single point in time t , at which the par-
ticular forward- and backward-evolving quantum states have to
be evaluated (41). All interactions of finite strength and imper-
fections of optical devices between preselection and t , as well
as between t and postselection, must be considered. Thus, Eq. 2
correctly describes the forward-evolving state only immediately
after the first beam splitter, and Eq. 4 describes the backward-
evolving state only immediately before the second beam splitter.
Since all evolutions due to imperfections or interactions with the
different external systems are local—i.e., they have the common
eigenstates |A〉 and |B〉—the time ordering of the evolutions is of
no consequence. Therefore, the weak value (PA)w stays constant
in time, and we are free to choose any moment in time to calcu-
late it. For convenience, we calculate the weak value immediately
before postselection on state [4] and modify only the forward-
evolving state to account for the evolution due to interactions
inside the interferometer.

Due to the interactions, the system becomes entangled with
the external systems as described by Eq. 5. Thus, the particle is
in the mixed state described by the density matrix in the basis
{|A〉, |B〉}

ρ=

(
cos2 α cosα sinαe−iϕη

cosα sinαe iϕη sin2 α

)
. [10]

The weak value in the case of mixed states has been derived in
ref. 5 (equation 32 therein),

Aw =
Tr (ρpostAρpre)

Tr (ρpostρpre)
. [11]

In our case, this formula is not applicable for arbitrary time
between the preselection and postselection due to entanglement
in both forward- and backward-evolving states with the same
external systems (section VI of ref. 5), but it can be used to cal-
culate the weak value immediately before the last beam splitter
since the backward-evolving state is not entangled (see also refs.
35, 42, and 43). As we explained above, the weak value of the
projector PA is constant between preselection and postselection,
so it can be calculated as

(PA)w =
Tr (|φ〉〈φ|PAρ)

Tr (|φ〉〈φ|ρ)
=

1 + tanαηe−iϕ

1 + tan2 α+ 2 tanαη cosϕ
. [12]

From Eq. 10, we see that the overlap η quantifies the loss of
coherence between the two arms of the interferometer due to
interactions and imperfections, which consequently leads to a
reduction of the maximally achievable weak value. The depen-
dence of the weak value [12] on η as well as on α and ϕ
is presented in Fig. 2. Fig. 2 A and B show the case with
ideal overlap η= 1, while Fig. 2 C–F illustrate the depen-
dence for the nonideal case with reduced overlap and thus
smaller (PA)w .

The weak value [12] which accounts for multiple and even
strong interactions is not useful to describe the whole of the
external systems when inserted into expansion [8] because ε is
large. However, Eq. 12 can be used to describe the modification
for those interactions which are weak, even if some of the other
interactions or all of them together are arbitrarily strong. We will
show this now.

In our scenario, we neglect the interactions of external sys-
tems in arm A among themselves. If between some particular
systems, the interaction cannot be neglected, they are considered
as a single composite system. Thus, the interactions [1] in a single
channel (Fig. 1A) can be decomposed as

|χ〉=
⊗
j

|χj 〉→ |χ′〉=
⊗
j

ηj
(
|χj 〉+ εj |χ⊥j 〉

)
. [13]

Here, as for [1], we absorbed the phases in the definitions of
states, such that εj and ηj are positive numbers.

In the case where the coupling to the, say, k -th system, is weak,
the change of the state of the system can be also expressed by
using density-matrix language in the

{
|χk 〉, |χ⊥k 〉

}
basis as

ρk =

(
1 0
0 0

)
→ ρ′k =

(
1 εk
εk 0

)
+O(ε2k ). [14]

For a particle passing through the MZI, when both the preselec-
tion as well as the postselection state are superpositions of |A〉
and |B〉, several interactions in A (Fig. 1B) will lead to entan-
glement between the various external systems. Thus, each of
the systems will be described by a mixed state. The modified
evolution of the weakly coupled k -th system is

ρk→ ρ̃k =

(
1 (PA)∗w εk

(PA)w εk 0

)
+O(ε2k ). [15]

Again, the modification of the effect of the weak interaction is
characterized by the weak value (PA)w .

Manifestation of the Trace as Shifts in Pointer States
In the previous sections, we described the trace a particle leaves
as the appearance of an orthogonal component in the quantum
state of external systems. Another language, frequently closer to

Dziewior et al. PNAS | February 19, 2019 | vol. 116 | no. 8 | 2883



Fig. 2. Exact parameter dependence of weak value. Real (A, C, and E) and imaginary (B, D, and F) parts of weak value of the projection operator on arm A
for η= 1, η= 0.990, and η= 0.936. Each plot shows the dependence on the phase ϕ and the amplitude ratio tanα. The highlighted colored lines represent
the parameter values that are set in the various measurements (see Figs. 4 and 5).

experimental evidence, is the change in the expectation values of
the external systems. Given the small change due to interactions
in Fig. 1A, expressed in [7], every observable O of the external
system changes its expectation value as

δ〈O〉≡ 〈χ′|O |χ′〉− 〈χ|O |χ〉= 2εRe
[
〈χ|O |χ⊥〉

]
+O(ε2).

[16]
Then, using [8] (or [15], respectively), we see that for the pre-
selected and postselected particle (Fig. 1B), the change in the
expectation value of O is modified according to

δ̃〈O〉= 2εRe
[
〈χ|O |χ⊥〉 (PA)w

]
+O(ε2). [17]

This formula is universal—it is valid for every system which was
coupled weakly in arm A to the particle passing through the
interferometer.

Eq. 17 represents a result in a very general scenario. Let us
now focus on the less general but very common measurement
situation, which is usually considered when treating weak values
(41). There, a single observable O is the pointer variable Q , the
pointer wavefunction χ(Q) is real, and the interaction with the
particle in the channel shifts the wave function in the pointer
variable representation as

χ(Q)→χ′(Q) =χ(Q − δQ). [18]

Obviously, this also shifts the expectation value

δ〈Q〉= δQ . [19]

In this scenario, χ⊥(Q) is also real, as well as 〈χ|Q |χ⊥〉. Then,
a positive weak value (PA)w just tells us how the effect of the
interaction is amplified or reduced according to

δ̃〈Q〉≈ δQ Re[(PA)w ]. [20]

If (PA)w is negative, it tells us that the pointer will be shifted in
the opposite direction.

If the weak value is imaginary, the expectation value of the
pointer position will not be changed. However, an orthogonal
component in the quantum state of the pointer will still appear.
It will manifest itself in the shift of the expectation value of the
momentum PQ conjugate to Q

δ̃〈PQ〉≈ 2δQ (∆PQ)2 Im[(PA)w ], [21]

where (∆PQ)2 = 〈χ|P2
Q |χ〉− 〈χ|PQ |χ〉2 and ~= 1.

Eqs. 20 and 21 were obtained from [16] and [17] on the
assumption of weak coupling when higher orders of ε can be
neglected. In the measurement situation [18] with a Gaussian
pointer, χ= e−Q2/4(∆Q)2 (we omit normalization), the usual
range of validity of the weak value formalism is extended. Even
when the coupling is strong and the pointer distribution is signifi-
cantly distorted during the measurement, the expressions for the
shifts of the expectation values of Q , [16] and [17], remain exact,
with

δ〈Q〉= 2εRe
[
〈χ|Q |χ⊥〉

]
, [22a]

δ̃〈Q〉= 2εRe
[
〈χ|Q |χ⊥〉 (PA)w

]
. [22b]

Indeed, for the Gaussian pointer 〈χ|Q |χ〉= 0, 〈χ′|Q |χ′〉= δQ ,
and also the following expressions are easily calculated as

η= 〈χ|χ′〉= e−(δQ)2/8(∆Q)2 , 〈χ|Q |χ′〉= 〈χ|χ′〉δQ
2
. [23]

Then, [22a] is proven by substituting [19] and [1], while including
[6] and [12] proves [22b].

If the pointer is a Gaussian in the position variable Q , it is
of course also a Gaussian in the conjugate momentum PQ rep-
resentation. Therefore, [20] and [21], in analogy to the above,
become exact formulas with ∆PQ = 1

2∆Q
. There are corre-

sponding exact formulas for the effect of a shift in momentum
δPQ with
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δ̃〈PQ〉= δPQRe[(PA)w ], [24a]

δ̃〈Q〉=−2δPQ(∆Q)2 Im[(PA)w ], [24b]

see also ref. 44.
Direct substitution shows that the expressions remain correct

for Gaussians in the regime of strong interactions also in the case
of combinations of shifts in Q and PQ , such that

δ̃〈Q〉= δQRe[(PA)w ]− 2δPQ(∆Q)2 Im[(PA)w ], [25a]

δ̃〈PQ〉= δPQRe[(PA)w ] +
δQ

2(∆Q)2
Im[(PA)w ]. [25b]

These equations are the basis of the alignment method presented
in Alignment Method.

Observing the Universality Property
We use an optical MZI to experimentally visualize our central
claim—namely, that all kinds of small effects of spatially prese-
lected and postselected systems taking place at a specific location
are modified in a universal manner characterized by the weak
value of spatial projection. In the experiment, we demonstrate
the universal change for three different couplings. In every case,
the effect is modified in the same manner.

There are proposals and actual experiments where the pho-
ton couples to other particles in one arm of the interferometer
(45–49). In ref. 49, one arm of the interferometer is a Kerr
medium, and the photon passing through this arm changes the
quantum state of the pointer by introducing a shift in the relative
phase between the wave packets of the pointer photons. As it
is done in most weak-measurement experiments, instead of cou-
pling to external particles, we, rather, study interactions of the
photons in an arm of the interferometer by observing the effect
on other degrees of freedom of the photons itself. We also used
a (weak) laser beam, so all of the results can be explained by
using Maxwell equations (although in a much more difficult way),
but the observations would not change by using single photons,
since intensity measurements are in one-to-one correspondence
to single-photon probability distributions.

The interactions in arm A are realized by introducing con-
trolled changes of spatial and polarization degrees of freedom.
The initial state of the position degree of freedom can be well
approximated by a Gaussian along the x as well as the y coor-
dinates. The interaction is implemented by shifting the center
of the Gaussian intensity distribution of the light beam going
through arm A by δx , compared with the beam going through
arm B ,

χx (x ) = e−x2/w2
0 →χ′x (x ) = e−(x−δx)2/w2

0 , [26]

where w0 denotes the waist of the beam and normalization
factors are omitted.

Another degree of freedom is the spatial state in the y direc-
tion of the light beam, which we modified by changing the angle
of the beam around the x axis, which for small angles cor-
responds to the momentum shift δpy = 2π

λ
δθx . The resulting

modification in arm A can be expressed by

χy(py) = e−w2
0 p2

y /4→χ′y(py) = e−w2
0 (py−δpy )2/4. [27]

As a third external system, we use the photon polarization. The
interaction parameter here is the rotation of polarization by the
angle δΘ,

|χσ〉= |H 〉→ |χ′σ〉= cos
δΘ

2
|H 〉+ sin

δΘ

2
|V 〉, [28]

where the states |H 〉 and |V 〉 are defined via σz |H 〉= |H 〉 and
σz |V 〉=−|V 〉 for the Pauli matrix σz .

All other properties of the photon are expressed in the state
|χO〉. Any imperfections of the interferometer can be understood
to lead to a change of the initial state of these properties in arm
A, |χO〉→ |χ′O〉.

It is a good approximation to assume that there are no inter-
actions between the external degrees of freedom we consider,
and thus we can express the quantum state of the photon in arm
B just before reaching the final beam splitter of the interfero-
meter as

|B〉|χ〉= |B〉|χx 〉|χy〉|χσ〉|χO〉, [29]

while in arm A it is

|A〉|χ′〉= |A〉|χ′x 〉|χ′y〉|χ′σ〉|χ′O〉. [30]

To test the universality of modifications of effects for various
degrees of freedom, one could either perform complete tomo-
graphies of the final pointer states [14] and [15] or, more clearly,
show the modification of the effects of the three couplings ac-
cording to [20] and [21]. We follow the second approach. More
explicitly, we test the differences between effects of the interac-
tions on the expectation values in three degrees of freedom when
the particle passes through the single arm (expressed by δ) and
when the particle passes through both arms (expressed by δ̃).‡

Because of the linear relation between θy and px , as well as θx
and py , one obtains

δ̃〈x 〉= δ〈x 〉Re[(PA)w ], [31]

δ̃〈θy〉=
δ〈x 〉
zR

Im[(PA)w ], [32]

δ̃〈θx 〉= δ〈θx 〉Re[(PA)w ], [33]

δ̃〈y〉=−zRδ〈θx 〉Im[(PA)w ]. [34]

Here, we have used the Rayleigh range zR ≡ πw2
0
λ

as the
characteristic parameter of the Gaussian beam.

The conjugate variable to the angle Θ defining polarization
changes in the σx −σz plane is an angle Υ describing polariza-
tion rotations in the σy −σz plane relative to the initial state |H 〉.
For small deviations, these angles relate linearly to 〈σx 〉 and 〈σy〉,
respectively, and are given by

δ̃〈Θ〉= δ〈Θ〉Re[(PA)w ], [35]

δ̃〈Υ〉=−δ〈Θ〉Im[(PA)w ]. [36]

The test was performed for the full range of ϕ and thus for a
large range of values (PA)w ; see violet lines on the graphs of
Fig. 2. The parameters for the calculation of (PA)w necessary
for testing relations [31–36] were also obtained from measure-
ments. The signals from separate arms (when the other arm
was blocked) provided tanα. The phase ϕ and the overlap η
were obtained from the intensity of the interference signal
and visibility measurements, respectively. The relation between
the visibility V and the overlap η for the phase-dependent
output intensity I ∝ 〈φ|ρ|φ〉∝ 1 + tan2 α+ 2 tanαη cosϕ is
given by

V ≡ Imax−Imin

Imax + Imin
= η

2 tanα

1 + tan2 α
. [37]

The experiment is shown schematically in Fig. 3. After propaga-
tion through a single-mode fiber for spatial filtering, the horizon-
tally polarized light from a laser diode (λ= 780 nm) is split by

‡We chose this method since our measurements of the shifts δ〈x〉, δ〈θx〉, and δ〈Θ〉 in
a single channel are more precise than our control of the shifts δx, δθx , and δΘ via
manual stages.
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Fig. 3. Schematic experimental setup. The preselection state |ψ〉 is set by using a nonpolarizing beam splitter (BS), creating a spatial superposition between
arms A and B. Two equally oriented polarizers (POL) and a half-wave plate (HWPvar) are used to define the relative amplitudes. Angle and position shifts—
e.g., δθx and δx—are introduced by moving and tilting of optical components, whereas polarization rotations are imposed using a half-wave plate (HWP).
The postselection is done by considering only one of the output ports (C) of the interferometer. Analysis of the polarization degree of freedom is achieved
by means of half- and quarter-wave plates (QWP), polarizing beam splitters (PBS), and photodiodes (PD), allowing the projection onto the polarization
states 1/

√
2(|H〉± |V〉), 1/

√
2(|H〉± i|V〉), |H〉, and |V〉. Position-sensing detectors (PSD) at different z-positions allow us to determine position and angle,

respectively, in x and in y direction.

a nonpolarizing beam splitter. The moduli of the amplitudes of
the preselection state [2] are controlled by means of rotating the
polarization using a half-wave plate in arm A, followed by a hori-
zontal polarization filter. The relative phase between the arms ϕ
is set by an optical trombone system with retroreflecting prisms
moved by a piezoelectric crystal (not shown).

This setup enables us to directly implement the three desired
interactions along beam A and simultaneously measure their
effect. Fig. 3 depicts the setup. The spatial displacement δx ,
which is schematically depicted as a shift of the mirror, was
achieved by lateral movement of the prism from the trombone
system. Instead of a vertical tilt of this mirror, we incorporate
the vertical rotation δθx by tilting the second beam splitter. The
polarization rotation δΘ is controlled by rotating a half-wave
plate in arm A. Detecting light only from the output port C
provides the post-selection onto state |φ〉, Eq. 4.

The photons at port C are distributed onto several detectors
using beam splitters for position and polarization analysis. A
position-sensing detector PSD1 placed near the interferometer
and a detector PSD2 placed farther away allows the estimation
of position and angle in x and y directions. We perform tomogra-
phy of the polarization state using half- and quarter-wave plates
in combination with polarizing beam splitters, as shown in Fig. 3.

A measurement run consists of three steps—namely, first a
measurement of light propagating in arm A alone, second of arm
B alone, and last a measurement of the interference signal. The
six expectation values obtained from measurements of arm B are
used as a reference for the subsequent analysis.

The measurement with only beam A shows the effect of the
interactions when the photons pass through a single channel, as
in Fig. 1A. The results are indicated in the graphs of Fig. 4 as red
dashed horizontal lines since they exhibit no dependence on the
phase.§

The universality is clearly shown by the similarity of the
results for the three couplings (Fig. 4). Of course, in all graphs,
the observed values are different and have different units. For
demonstration purposes, we arranged the scales of the graphs

§Please contact J.D. if you desire access to the raw experimental data for this plot as well
as for all other plots.

in Fig. 4, Upper such that the signals of all interactions, 〈x 〉A,
〈θy〉A, and 〈Θ〉A, have the same size. We were trying to avoid
shifts in conjugate variables as much as possible. Our measure-
ment results, red dashed lines in the plots from the Fig. 4, Lower,
show that the tuning was good, although not perfect.

Continuous violet lines on these graphs provide theoreti-
cal predictions based on the weak value (PA)w given by [12],
and the interactions in the single arms are presented as red
and blue dashed lines in the graphs. The intensities obtained
by measuring arm A and arm B alone yield tanα= 1.3323±
0.0002. From the visibility measurement, V = 95.09± 0.02%,
we obtained η= 0.9904± 0.0003. For these parameters, we
observed amplifications with factors up to 4 and −3. The
very good agreement between experimental data and theoreti-
cal predictions, shown in Fig. 4, demonstrates the universality
of the modification of several fundamentally distinct forms of
interactions for couplings with a preselected and postselected
system.

To evaluate the dependence of the weak value on the coher-
ence between the two arms parametrized by η, we measured the
effect of the displacement in x on the output beam. For this
run, we kept the phase fixed at ϕ=π and varied the amplitude
ratio tanα covering another region of the parameter space from
Fig. 2. We changed the coherence by varying the polarization
misalignment, leading to a smaller overlap between the photon
states passing through the two arms. The modification of the shift
in the x direction presented in Fig. 5 follows nicely the weak
value [12].

Alignment Method
In the previous sections, we considered a scenario in which the
path state of a photon in an arm of an interferometer is cou-
pled to its other degrees of freedom, in particular, its spatial
degrees of freedom in the x and y direction. This scenario exactly
represents a situation encountered in real experimental interfer-
ometric setups—namely, when the arms of the interferometer
are misaligned. The differences in position δ~r ≡ (δx , δy) and
angle ~δθ≡ (δθx , δθy) between the photons passing through dis-
tinct arms of the interferometer can be considered as results
of interactions in one arm, which change the initially identical
spatial states of the particle.
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Fig. 4. Observed universality. (Upper) The introduced displacements of arm A in x direction, angle around the x axis, and angle of polarization Θ (δx, δθx ,
and δΘ) can be seen from the single red datapoints plotted at an arbitrary phase position. The blue datapoints corresponding to arm B are taken as a
reference and thus show zero shift. The axes are scaled such that the readings of A agree for the three external systems. For each of these three, the same
behavior of the interference signal (black datapoints) is observed for the shifts of the variables δ̃〈x〉, δ̃〈θx〉, and δ̃〈Θ〉: The effect seen from the measurement
of the single arm is multiplied with the phase-dependent real part of the weak value. (Lower) The analogous plots for the shift of the respective conjugate
variables represented by δ̃〈θy〉, δ̃〈y〉, and δ̃〈Υ〉 show nicely the dependence on the imaginary part of the weak value. The violet theoretical curves represent
the rescaled real and imaginary parts of the weak value (no fit).

It is well known that the picture generated by the interference
of the beams from a misaligned interferometer displays a strong
phase dependence. Fig. 6A shows the centroid trajectory during

the phase scan of a misaligned interferometer. We demonstrate
that it is possible to quantitatively determine the exact mis-
alignment parameters of the interferometer by analyzing this

Fig. 5. Modification of weak value due to decoherence. The colored dots represent the measured values for the modification of the shift δx in the
interference signal when varying the weak value via the relative amplitudes of the paths A and B (tanα in Eq. 12) and fixed ϕ=π. The four datasets
correspond to four different values of the overlap η, which quantifies the coherence between the states of the external systems from the two arms. The
lines are theoretical curves as highlighted by the colored lines in Fig. 2 C and E. Respective average error bars are shown for each η on one of the first data
points. For comparison, also the theoretical line with η= 1 (Fig. 2A) is shown.
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Fig. 6. (A) Trajectories of beam centroids in output C for misaligned MZI. The blue and red spots correspond to the measurements of the beams from the
single arms when the other arm is blocked. While the blue spot at the origin corresponds to beam B without interaction, the red spot corresponds to the
misaligned beam A. The elliptic trajectory of the interference pattern is represented by the black points. (B) Fits onto x and y projections of trajectory. By
fitting the vector function [38] to the x and y projections of the interference ellipse, we determine the parameters of the misalignment.

phase-dependent movement. In fact, the misalignment parame-
ters δ~r and ~δθ could be calculated from measurements described
in the previous section. Disregarding the polarization analysis,
it was a measurement of the misalignment parameters based on
position measurements of centroids of the beams on two detec-
tors at different locations. But the method is more powerful and
can be implemented with only a single position-sensitive detector
as well.

The basis for our alignment method are Eqs. 25A and 25B
which, somewhat surprisingly, remain precise, even for large mis-
alignment. The shift observed on the single detector δ̃~R is the
sum of the position shift δ̃~r and the position shift due to the shift
in direction ~δθ× ~L, where ~L= (0, 0, z ) is the vector parallel to
the beam with the length equal to the distance z along the beam
between the waist and the detector. Thus, the position shift of
the centroid on the detector δ̃~R is given by

δ̃~R = (δx + zδθy , δy − zδθx )Re[(PA)w ]+(
z

zR
δx − zRδθy ,

z

zR
δy + zRδθx

)
Im[(PA)w ]. [38]

The weak value is given by [12]. The parameters tanα, η, z ,
and zR are found experimentally as in the previous section. The
function [38] corresponds to the trajectory of the beam centroid
on the detector, as shown in Fig. 6A. Even small misalignments,
which otherwise might be difficult to resolve, become detectable
due to the effect of weak amplification.

Fig. 6B shows the x and y components of δ̃~R as functions of
ϕ. A least-squares fit of this function provides the four unknown
misalignment parameters δ~r and ~δθ. It is remarkable that a fit
function with so few parameters accurately models the experi-
mental results. For the data shown, the fit provided δ~r = (49±
2, 7± 2)µm and ~δθ= (12.7± 0.4, 0.2± 0.4)µrad.

We have performed corrections according to these parame-
ters and repeated our procedure (Fig. 7). The stability of the

centroid shows excellent alignment, and a subsequent fit proce-
dure provides the parameters δ~r = (−1± 2, 2± 2)µm and ~δθ=
(0.2± 0.4,−0.6± 0.4)µrad.

In our method to obtain the misalignment parameters, we rely
on the knowledge of the beam parameters—i.e., Rayleigh range
zR and longitudinal position of the detector relative to the waist
z . In some situations, the reversed task might be of interest. If
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Fig. 7. Trajectories of beam centroids after one alignment step. It can be
clearly seen how the size of the ellipse and the distance between the cen-
troids of the single beams A (red) and B (blue) are significantly reduced in
comparison with Fig. 6A.
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we control the misalignment parameters, we can also use our
algorithm with the fit to obtain the beam parameters.

In fact, the general idea of alignment using weak values was
already used in alignment of the interferometer demonstrating
the past of a particle in nested interferometers (50), and, since
then, it was significantly developed and improved (51, 52) until
it reached the efficiency presented in the present work when a
single scan led to a very good alignment.

Trace and Presence
A generic property of weak measurements is the possibility to
perform several weak measurements on the same system. Thus,
we can interpret our experiment as multiple weak measurements
of the projection operator which all yield the same result, the
weak value of the projection on the arm of the interferometer.
However, it also implies a broader meaning with respect to the
discussion of the local presence of quantum particles.

A classical particle can either be in a particular location or
not. The presence of a quantum particle in a certain location,
however, is a subtle issue, and its analysis strongly depends on
the adopted interpretation of quantum mechanics. To avoid con-
troversial interpretational issues, we do not discuss ontological
aspects of the concept of the presence of a particle and instead
argue within the operational approach.

When the wavefunction of a quantum particle is well localized
in a particular location, the trace is specified in a unique way by
the local interaction in that location in analogy to the trace of
a classical particle when it is present (Eq. 1). Given that there
are only local interactions in nature, there is no trace when the
wavefunction vanishes. Similarly, there is no trace in a classical
channel when the particle is absent.

Scenarios when the wavefunction does not vanish, but is also
not fully localized at this location, are no longer understandable
from a classical perspective. The universal relation between the
trace in these scenarios and the trace of a fully localized parti-
cle which we found in our work can be considered as a basis of
an operational concept of presence of a particle. It goes beyond
defining the particle as present when it leaves a trace and not
present when it does not (53).

According to our operational approach, the “presence” of a
preselected and postselected particle in the arm A of an inter-
ferometer is defined according to the way it affected the external
systems to which it was coupled and is quantified by the com-
plex number (PA)w . This definition yields presence 1 when the
forward-evolving wavefunction of the particle is solely inside the
arm A independently of postselection, but presence 1 can happen
also when neither the preselected nor the postselected states are
eigenstates of the local projection on arm A. The presence 0 or
“absence” of the particle is ensured when the forward-evolving
wavefunction of the particle vanishes in arm A, but it is not a
necessary condition. The postselected particle might have been
absent in arm A (no effect on local external systems can be
observed), even when the forward-evolving wavefunction did not
vanish there.

Our concept provides a quantification and characterization of
presence by describing the modification of effects of the par-

ticle’s interactions with external systems. It can be increased,
decreased, or changed in a particular, well-defined way, and this
change is the same for all local interactions—it is universal.

Conclusions
We have analyzed theoretically and experimentally the modi-
fications of the effect of weak interactions on preselected and
postselected particles. We have shown that there is a universal
description of the modification of these couplings for all weak
interactions given by a single complex number, the weak value of
the projection on the corresponding location.

Our approach is based on expressing the effect on external
systems in terms of the orthogonal components which appear
due to the interactions. This allows us to formalize the meaning
of the weak value without reference to a specific form of cou-
pling. The weak value not only modifies a shift of expectation
values as usual, but also the relative amplitudes of the orthogo-
nal components of all external quantum systems interacting with
the particle.

The experiment shows for three different couplings that each
of the effects is modified in exactly the same way. This is shown
for not just a few cases of preselected and postselected particles,
but for a continuum of parameters with a large range of weak
values of projection.

The approach derives the general expression [12] which
allows us to apply the concept of weak values for several cou-
plings which are not necessarily weak. These findings enable
one to understand seemingly complicated dependencies seen in
experiments—for example, ref. 37—and can facilitate multipa-
rameter precision measurements in the future.

We define an operational paradigm for the presence of a
preselected and postselected particle according to the trace it
leaves. It is more intricate than the dichotomic concept of the
presence of a classical particle, which can only be present or
not. This complexity is surprising in light of the fact that in all
scenarios, the external systems are in a superposition or a mix-
ture of the undisturbed state with a single particular orthogonal
component.

Our demonstration of the universality of the modification of
the interactions led us to an alignment method. Its effectiveness
relies on the unexpected robustness of the modification of Gaus-
sian pointers, where the weak value expressions remain precise,
even for strong couplings. In our method, a single phase scan
suffices to recover all misalignment parameters from the anal-
ysis of the position of the centroid of a single output beam,
clearly reducing the effort in an often-tedious task, while at
the same time potentially harnessing the benefits of weak value
amplification.

ACKNOWLEDGMENTS. This work has been supported in part by Israel
Science Foundation Grant 1311/14; German–Israeli Foundation for Scien-
tific Research and Development Grant I-1275-303.14; DFG Beethoven 2
Project WE2541/7-1; and the German Excellence Initiative Nanosystems
Initiative Munich. J.D. was supported by the international Max-Planck-
Research School for Quantum Science and Technology. L.K. was sup-
ported by the international Ph.D. program ExQM from the Elite Network
of Bavaria. J.M. was supported by a Ludwig-Maximilians-Universität research
fellowship.

1. Knill E, Laflamme R, Milburn GJ (2001) A scheme for efficient quantum computation
with linear optics. Nature 409:46–52.
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