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A genuinely N -partite entangled state may display vanishing N -partite correlations measured for arbitrary
local observables. In such states the genuine entanglement is noticeable solely in correlations between subsets
of particles. A straightforward way to obtain such states for odd N is to design an “antistate” in which all
correlations between an odd number of observers are exactly opposite. Evenly mixing a state with its antistate
then produces a mixed state with no N -partite correlations, with many of them genuinely multiparty entangled.
Intriguingly, all known examples of “entanglement without correlations” involve an odd number of particles.
Here we further develop the idea of antistates, thereby shedding light on the different properties of even and
odd particle systems. We conjecture that there is no antistate to any pure even-N -party entangled state making
the simple construction scheme unfeasible. However, as we prove by construction, higher-rank examples of
entanglement without correlations for arbitrary even N indeed exist. These classes of states exhibit genuine
entanglement and even violate an N -partite Bell inequality, clearly demonstrating the nonclassical features of
these states as well as showing their applicability for quantum information processing.

DOI: 10.1103/PhysRevA.95.062331

I. INTRODUCTION

Quantum entanglement is present in quantum states that
cannot be obtained from uncorrelated states by local operations
and classical communication [1,2]. It turns out that for pure
states the existence of entanglement is fully captured by
N -partite correlation functions only: A pure state is entangled
if and only if the sum of squared N -partite correlation functions
exceeds certain bounds [3–7]. One may then wonder if similar
detection methods could exist for mixed states, i.e., whether
appropriate processing of only N -partite correlation functions
detects entanglement in all mixed states. The states we consider
here demonstrate vividly that such a universal entanglement
criterion does not exist. Despite vanishing N -partite correla-
tion functions in all possible local measurements, these states
can be even genuinely N -partite entangled. As a matter of fact
the genuine N -partite entanglement is due to nonvanishing
correlations between less than N particles, the so-called
lower-order correlations.

The first example of such a state was given in Ref. [8]
and consists of an even mixture of two W states between an
odd number of qubits. The two states have exactly opposite
N -partite correlations such that they average out in the
even mixture. More recently it was shown that any pure
quantum state has an “antistate” where all correlation functions
have opposite signs, but only between an odd number of
observers [9,10]. Then, the equal mixture of a pure state of
odd number of qubits and its antistate produces a mixed state
with vanishing N -partite correlation functions. Many of such

“no-correlation” states are genuinely N -partite entangled and
even an infinite family of such states with two continuous
parameters could be constructed [10].

Here we generalize the notion of antistates and study their
relations to entanglement without correlations. A number of
problems were raised in Refs. [8–10] which have now been
solved. In particular, we provide an analytical plausibility
argument (Sec. V) and strong numerical evidence (Conjec-
ture 1) that there is no antistate to any genuinely multiparty
entangled pure state of an even number of qubits. This explains
why previous relatively simple examples of entanglement
without correlations could be constructed for only an odd
number of qubits. Therefore, in the case of an even number of
particles, this phenomenon requires mixing of at least three
pure quantum states. We provide here analytical examples of
rank-4 mixed states that are both genuinely N -partite entangled
and have vanishing all N -partite correlation functions, for
arbitrary even N (Sec. III A). Up to numerical precision also
rank-3 mixed states with this property exist. Remarkably, they
violate a suitably designed Bell-type inequality (Sec. III B).
In order to further emphasize that entanglement without
correlations is not very unusual, we extend the previous
example of the infinite family with two continuous parameters
to exponentially many in N continuous parameters (Sec. IV).
This is achieved with the help of a simple identifier of
genuine multipartite entanglement that also illustrates limits
to entanglement detection with only bipartite correlation
functions [11–16].
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II. BASIC NOTIONS

A. Genuine multipartite entanglement

A mixed quantum state of N particles is genuinely N -partite
entangled if it cannot be written as

ρ �=
∑

j

pjρ
j

Aj
⊗ ρ

j

Bj
, (1)

where Aj : Bj is a partition of the N particles and pj

are probabilities. Note that different terms in this convex
decomposition may involve different partitions. The states
ρ

j

Aj
⊗ ρ

j

Bj
can always be chosen pure, in which case they

are called biproduct states. All our examples will exploit the
fact that if the support of ρ does not contain a single biproduct
state, then ρ must be genuinely N -partite entangled.

B. Correlation functions

The correlation function is a standard statistical quantifier
defined as the expectation value of a product of measurement
results. Consider dichotomic observables, i.e., the measure-
ment results are ±1, conducted on multiple qubits. Such
observables are parametrized by unit vectors on a sphere.
We denote by �mn the vector encoding the observable of the
nth party. If such observables are measured on every particle
from an N -partite quantum system in state ρ, one obtains the
N -partite (quantum) correlation function:

E( �m1, . . . , �mN ) = Tr(ρ �m1 · �σ ⊗ · · · ⊗ �mN · �σ ), (2)

where �σ = (σx,σy,σz) is the vector of Pauli operators. We shall
also write σx,σy,σz as σ1,σ2,σ3, respectively. It is customary to
introduce correlation tensor T or, respectively, its coefficients

Tj1...jN
(ρ) = Tr(ρ σj1 ⊗ · · · ⊗ σjN

), (3)

for the N -partite correlation functions measured explicitly
along the �x,�y,�z axes. Here jn = 1,2,3. By writing ρ in the
basis of tensor products of Pauli operators, one easily verifies
the tensor transformation law:

E( �m1, . . . , �mN ) =
3∑

j1,...,jN =1

Tj1...jN
( �m1)j1 . . . ( �mN )jN

, (4)

where ( �mn)jn
is the component of the vector �mn along the jnth

axis. In the present context this implies that it is sufficient to
ensure that Tj1...jN

= 0 for all j1, . . . ,jN = 1,2,3 to guarantee
that N -partite correlation functions vanish for arbitrary local
measurements.

One could of course also measure subsets of all N particles,
in which case the resulting correlation functions are called
lower-order correlations. We will be only interested in these
correlations along the �x,�y,�z axes, in which case they can be
calculated as follows:

Tμ1...μN
(ρ) = Tr

(
ρ σμ1 ⊗ · · · ⊗ σμN

)
, (5)

where index μn = 0,1,2,3, i.e., additionally to Pauli operators
it also includes σ0, the identity operator, for those parties
who do not conduct measurements. For example, bipartite
correlation functions between the first two observers are
denoted by Tj1j20...0.

C. Antistates

Given a pure or mixed state ρ, with the N -partite correlation
functions Tj1...jN

, we define its antistate ρ̄ by the requirement
that all its N -partite correlation functions have opposite
sign, i.e., Tj1...jN

(ρ̄) = −Tj1...jN
(ρ) for all indices jn = 1,2,3.

No assumptions are made about the lower-order correlation
functions.

Reference [10] presented a method to build an antistate to an
arbitrary pure state with an odd number N of qubits. However,
this method does not apply to cases where N is even. We
therefore need to use different approaches depending on the
parity of N , as we will discuss in the next sections.

III. N EVEN

Let us begin with the problem of existence of antistates
for an even number of qubits. We argue that most likely
all genuinely N -partite entangled pure states of even N

do not admit antistates. Nevertheless, this does not imply
impossibility of entanglement without correlations. It just says
that more than two pure states have to be present in the mixture.
Indeed, we will provide such examples for every even N � 4.

We start with bipartite systems where one can easily exclude
existence of an antistate to arbitrary pure entangled state.

Theorem 1. There is no antistate to an arbitrary, entangled
pure state of two qubits.

Proof. Any pure state can be written in the Schmidt form
|ψ〉 = a|00〉 + b|11〉, with real coefficients. In this basis, the
only nonzero elements of the correlation tensor are

Tzz(ψ) = 1, (6)

Txx(ψ) = −Tyy(ψ) = 2ab. (7)

Therefore, the hypothetical antistate (mixed states allowed) has
to have Tzz = −1, and hence it lies in the subspace spanned by
|01〉 and |10〉. Since all such states have Txx = Tyy , only the
product state with ab = 0 has an antistate. �

There is strong numerical evidence that a pure genuinely
N -partite entangled state of N = 4 and N = 6 qubits does
not admit an antistate. We are therefore conjecturing this in
general.

Conjecture 1.There is no antistate to an arbitrary genuinely
N -partite entangled pure state of even-N qubits.

Evidence. Our aim is to verify to a high precision whether
an antistate exists to a preselected state |ψ〉. In our numerical
approach we parametrize a candidate state |φ〉 and use
simulated annealing [17] to globally minimize the length of
correlation [6] of the even mixture ρ = 1

2 |ψ〉〈ψ | + 1
2 |φ〉〈φ|.

The length of correlation is defined as

L(ρ) =
3∑

j1,...,jN =1

T 2
j1...jN

(ρ). (8)

If antistates to |ψ〉 exist, then L(ρ) will converge to 0 while
|φ〉 converges to an antistate.

We tested this algorithm on states of N = 3 and N = 5
qubits, using the genuinely N -partite entangled input state
|ψ〉. The candidate state |φ〉 converged to an approximate
antistate, in accordance with what is known about antistates of
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an odd number of qubits. For N = 4 and N = 6 we tested
both the states for which it is known that they have no
antistate, the Greenberger-Horne-Zeilinger states [10], the W
states, and the Dicke states as well as a thousand randomly
chosen states. We found that their length of correlation always
converged to a finite value larger than 0, which indicates that
there is no antistate.

On the other hand, in addition to |φ〉 we also varied the state
|ψ〉 as we minimized the length of correlation. In this case, for
all choices of initial states, the algorithm quickly converged
to a pair of state–antistate. However, all such states were not
genuinely N -partite entangled. Instead, each pair was of the
form {|ψN−1〉 ⊗ |φ1〉,|ψN−1〉 ⊗ |φ1〉}, i.e., a biproduct of a
state or antistate between (odd) N − 1 qubits and a common
single-qubit state. This strongly suggests that a genuinely
multipartite entangled state of N = 4 and N = 6 qubits does
not have an antistate. �

A. Entanglement without correlations

Although antistates to pure N -partite entangled states
most likely do not exist, one can find antistates to mixed
entangled states. These can subsequently be used to construct
examples of states with no N -partite correlation functions
yet containing genuine N -partite entanglement. The simplest
such example involves four qubits. For two qubits, while
antistates to mixed entangled states can easily be constructed,
all states with vanishing correlation functions are separable. A
simple antistate example can be seen as follows. Consider the
state ρ = 1

2 |ψ+〉〈ψ+| + 1
2 |11〉〈11|. Being a mixture of a pure

entangled state and a product state, ρ is entangled [18,19]. Its
antistate is given by ρ̄ = 1

2 |ψ−〉〈ψ−| + 1
2 |11〉〈11| as can be

directly verified. The antistate is also entangled by the same
argument, but the even mixture of the two states, 1

2 (ρ + ρ̄), is
separable.

The following theorem proves in general the absence of
entanglement in bipartite states without bipartite correlation
functions.

Theorem 2. Two-qubit states with vanishing bipartite
correlation functions are separable.

Proof. The most general bipartite state with vanishing
bipartite correlation functions is of the form

ρ = 1
4 (1 + �a · �σ ⊗ σ0 + σ0 ⊗ �b · �σ ), (9)

where 1 denotes the identity operator in the space of two
qubits, |�a| � 1, and similarly |�b| � 1. It has eigenvalues 1

4 (1 ±
||�a|2 ± |�b|2|) with all four sign combinations allowed. The
same eigenvalues are obtained after partially transposing ρ.
Hence all of such states are separable [20,21]. �

Theorem 2 does not generalize to N > 2. A similar code
to the one used in the evidence for Conjecture 1 returned
a rank-3 genuinely four-party entangled state of four qubits
with no four-partite correlation functions. Here we provide an
analytical example of the rank-4 state for arbitrary even N � 4,
giving rise to entanglement without correlations. Consider a
mixed state

ρ0 = 1
4 |ψ1〉〈ψ1| + · · · + 1

4 |ψ4〉〈ψ4|, (10)

which mixes the following pure states:

|ψ1〉 = 1√
2
(|0 . . . 0〉|ψ〉 + |ψ〉|0 . . . 0〉),

|ψ2〉 = 1√
2
(|1 . . . 1〉|ψ̄〉 − |ψ̄〉|1 . . . 1〉),

|ψ3〉 = |φ〉|ψ〉,
|ψ4〉 = |ψ〉|φ〉, (11)

where we take the |ψ〉 state and its antistate |ψ̄〉 as generalized
W states of N/2 qubits

|ψ〉 = α1|10 . . . 0〉 + α2|01 . . . 0〉 + · · · + αN/2|00 . . . 1〉,
|ψ̄〉 = α1|01 . . . 1〉 + α2|10 . . . 1〉 + · · · + αN/2|11 . . . 0〉.

It is assumed that all the coefficients are real and strictly
positive, i.e., αn > 0. The state |φ〉 is any product state
containing an odd number of excitations, i.e., ones. To show
that ρ0 is genuinely multipartite entangled, one may attempt to
seek suitable entanglement witnesses. Here we present a much
simpler approach. For that, we need the following theorem.

Theorem 3. If a state ρ lies in the subspace spanned by
{|ψ1〉,|ψ2〉,|ψ3〉,|ψ4〉} given in Eq. (11) and ρ is biseparable,
then ρ is orthogonal to |ψ1〉, i.e.,

Tr(ρ|ψ1〉〈ψ1|) = 0. (12)

Proof. We first prove that all biproduct pure states in this
subspace are orthogonal to |ψ1〉. Suppose there exists a
biproduct state |ξ 〉A|η〉B ∈ span{|ψ1〉, . . . ,|ψ4〉}, i.e.,

|ξ 〉A|η〉B = c1|ψ1〉 + c2|ψ2〉 + c3|ψ3〉 + c4|ψ4〉. (13)

Here A,B form an arbitrary bipartition of all N qubits.
We emphasize that, say, A contains any subset of qubits,
not even neighboring ones. Denote a0 = 〈00 . . . 0|ξ 〉A and
b0 = 〈00 . . . 0|η〉B . Since the discussed subspace is orthogonal
to the |0 . . . 0〉 state of all N qubits, by taking the inner product
with both sides of Eq. (13), we conclude that

a0b0 = 0. (14)

Now consider the vector 〈00 . . . 0|A〈10 . . . 0|B , where the
excitation 1 is in the first qubit of the subsystem B. Since
this vector has only one excitation, it is orthogonal to |ψ2〉
(which has N − 1 excitations) and both |ψ3〉 and |ψ4〉 (they
have an even number of excitations). The inner product with
both sides of Eq. (13) gives

a0b1 = c1 αk, (15)

where b1 = 〈10 . . . 0|η〉B and index k depends on which
bipartition is chosen. For example, if A contains first half of
the qubits, then comparison with Eq. (11) shows that k = 1, or
if A contains first N − 1 qubits, then the same analysis reveals
that k = N . Since we assume that all αn > 0, the state |ψ1〉
is a superposition of one excitation on every qubit and hence
for arbitrary bipartition there exists index k such that Eq. (15)
holds. Similarly, by taking the inner product with the vector
〈10 . . . 0|A〈00 . . . 0|B , we obtain

a1b0 = c1 αl, (16)

where a1 = 〈10 . . . 0|ξ 〉A and αl is the suitable coefficient of
|ψ1〉. Multiplying Eq. (15) by (16) shows that a0b0a1b1 =
c2

1αkαl . The left-hand side of this equation is zero, as we
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have shown in Eq. (14). Since both αk and αl are strictly
positive numbers, we conclude that c1 = 0. In other words, all
biproduct states in the discussed subspace are orthogonal to
|ψ1〉. Hence, arbitrary mixture of such states is also orthogonal
to |ψ1〉 and the theorem follows. �

According to this theorem, if a general state ρ has
nonzero overlap with |ψ1〉, then either ρ is genuinely N -qubit
entangled or it does not belong to the subspace spanned
by {|ψ1〉, . . . ,|ψ4〉} or both. Since the state ρ0 presented in
Eq. (10) clearly belongs to this subspace, it has to be genuinely
N -qubit entangled. Furthermore, we prove in the Appendix
that this state has no N -partite correlation functions. This
concludes construction of entanglement without correlations
for any even N � 4.

The construction just given also sheds light on the kind
of operations required to produce an antistate. In particular,
one could consider a mixed state ρ = 1

2 |ψ3〉〈ψ3| + 1
2 |ψ4〉〈ψ4|,

which is clearly biseparable. By our construction, its antistate
is ρ̄ = 1

2 |ψ1〉〈ψ1| + 1
2 |ψ2〉〈ψ2|, which is genuinely N -partite

entangled. Hence, at least some of the antistates cannot be
obtained by local operations and classical communication
because this class of maps is not capable of producing
entanglement.

B. Violation of local realism

Another remarkable property of states in Eq. (10) is their
ability to violate a Bell inequality. The lack of N -partite
correlation functions makes many standard tools inapplicable
to these states. This was first pointed out in [8] and only
recently suitable Bell inequalities were found [9,10] and
were experimentally implemented to test the no-correlation
states of an odd number of qubits [10]. We present now a
Bell-type inequality which is violated by appropriate quantum
measurements on states (10) for arbitrary even N .

Consider the following Bell-type inequality introduced in
Ref. [22]:

0 � P (+ · · · + |A1 . . . AN−2) CH+···+
N−1,N , (17)

where P (+ · · · + |A1 . . . AN−2) is the probability that the first
N − 2 parties all detect +1 outcomes when they measure
observables A1, . . . ,AN−2, respectively; CH+···+

N−1,N denotes the
Clauser-Horne expression [23] between the last two parties,
which is calculated in the subensemble of experiments in
which the first N − 2 observers all obtain +1.

For simplicity let us choose |ψ〉 as the symmetric W
state of N/2 qubits, i.e., all αn = 1/

√
N/2. In order to

demonstrate a violation of Eq. (17), each of the first N − 2 ob-
servers performs measurement An = σz. Therefore, P (+ · · · +
|A1 . . . AN−2) = 1

4
2
N

with the sole contribution from the state
|ψ1〉. In the subensemble where all these N − 2 results are +1
the state of the last two qubits collapses to 1√

2
(|01〉 + |10〉).

The last two observers perform measurements that lead to
the maximal violation of the CH inequality given by −

√
2−1
2 .

Finally, the right-hand side of Eq. (17) is equal to −
√

2−1
4N

,
which violates the lower bound 0. We also verified, using the
software described in Ref. [24], that the above inequality is
optimal is the sense that it is violated for the highest admixture
of white noise to the state ρ.

We note that additionally to fundamental interest this also
demonstrates practical applicability of states (10). It is well-
known that such states reduce communication complexity,
improve security of cryptographic key distribution, or enable
device-independent protocols [25].

IV. N ODD

Reference [10] demonstrated a continuous family of mixed
states which are genuinely tripartite entangled and give rise
to vanishing tripartite correlation functions. In this section
we will extend this example to a larger family of states
described by exponentially many, in N , parameters. This
example will then be shown to elucidate limits on entanglement
detection with bipartite correlation functions only, such as
those discussed in Refs. [11–16].

Consider the family of generalized Dicke states of N qubits:

|De
N 〉 =

∑
P

αP(1...10...0)|P(1 . . . 1︸ ︷︷ ︸
e

0 . . . 0︸ ︷︷ ︸
N−e

)〉, (18)

where the sum is over all permutations of e excitations, i.e., in
every term in superposition we have e ones and N − e zeros.
We assume that all the coefficients are strictly positive and we
shall collectively denote them by αP , i.e., we take αP > 0.
Note that the highest number of terms in the superposition
is obtained for e = (N ± 1)/2 (recall that N is odd) and
according to the Stirling approximation it scales as 2N/

√
N .

We show that for all these exponentially many continuous
parameters, the following even mixture

ρ = 1
2

∣∣De
N

〉〈
De

N

∣∣ + 1
2

∣∣DN−e
N

〉〈
DN−e

N

∣∣ (19)

has vanishing all N -partite correlation functions and simulta-
neously it is genuinely N -partite entangled.

The former statement follows immediately from the results
in Ref. [10]. Namely, one verifies that |DN−e

N 〉 is the antistate
to the generalized Dicke state |De

N 〉. Any state of odd number
of qubits equally mixed with its antistate has no N -partite
correlation functions. The following theorem proves genuine
multipartite entanglement.

Theorem 4. For all αP > 0 the state (19) is genuinely N -
partite entangled.

Proof. We shall prove that no biproduct state exists in
the subspace spanned by {|De

N 〉,|DN−e
N 〉} if all αP > 0. The

following simple observation will be utilized: correlation
functions of a biproduct state across the A : B partition satisfy

T0...0xx0...0T0...0yy0...0 = T0...0xy0...0T0...0yx0...0, (20)

where the first nonzero index is for the last particle in A, and
the second nonzero index is for the first particle in B. We now
prove that this condition is not satisfied by any pure state in
the considered subspace. Hence it contains no biproduct states
and it follows that also all the mixed states with this support
are genuinely N -partite entangled.

An arbitrary pure state in the considered subspace can be
written as

|φ〉 = a
∣∣De

N

〉 + b
∣∣DN−e

N

〉
, (21)

where a and b are normalized complex coefficients. Without
loss of generality we focus on the correlation functions
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between the last two particles:

T0...0jk = |a|2T0...0jk

(
De

N

) + |b|2T0...0jk

(
DN−e

N

)
+ a∗b

〈
De

N

∣∣σ0 ⊗ · · · ⊗ σ0 ⊗ σj ⊗ σk

∣∣DN−e
N

〉
+ ab∗〈DN−e

N

∣∣σ0 ⊗ · · · ⊗ σ0 ⊗ σj ⊗ σk

∣∣De
N

〉
, (22)

for j,k = x,y. Note that applying σj ⊗ σk to the states |De
N 〉

and |DN−e
N 〉 does not change their excitation parity. Since N

is odd, |De
N 〉 and |DN−e

N 〉 have opposite excitation parity. Thus
the last two terms in Eq. (22) vanish. Furthermore, the bipartite
correlation functions of the antistate to the generalized Dicke
state are the same as in the original state. We conclude that
the bipartite correlations of any state |φ〉 are the same as those
of the generalized Dicke state |De

N 〉. One now readily verifies
that for the generalized Dicke state we have

T0...0xy = T0...0yx = 0,

T0...0xx = T0...0yy =
∑
P

αP(1...10...0)01αP(1...10...0)10, (23)

where the sum is over all permutations of e − 1 excitations on
N − 2 positions. Since all αP > 0, Eq. (20) is never satisfied.
The same argument holds for arbitrary partitions A : B. �

A. Limits on entanglement witnesses based
on bipartite correlations

Note that the proof of genuine N -partite entanglement of the
state in Eq. (19) uses solely its bipartite correlation functions.
Furthermore, it relies on the fact that some of these correlations
vanish, as in Eq. (23). Naturally one would wonder if it is
possible to conclude the genuine multipartite entanglement
from only nonzero bipartite correlation functions. This is
important especially in view of entanglement witnesses which
are combinations of correlation functions and therefore are
insensitive to the vanishing correlation functions [11–16].

We now show that in general the vanishing bipartite
correlation functions are important for revealing genuine
N -partite entanglement. Without taking them into account
even entanglement of some manifestly genuinely N -partite
entangled Dicke states is not detectable. The Dicke state with e

excitations is defined by all the coefficients αP = 1/

√(
N

e

)
. It is

a permutation-invariant state with the following nonvanishing
bipartite correlation functions:

TP(xx0...0) = TP(yy0...0) = 2(
N

e

)
(

N − 2

e − 1

)
, (24)

TP(zz0...0) = 1(
N

e

)
{(

N − 2

e

)
+

(
N − 2

e − 2

)
− 2

(
N − 2

e − 1

)}
.

(25)

Using the property of the binomial coefficients
(

n − 1
k − 1

)
+(

n − 1
k

)
=

(
n

k

)
, one verifies that

Txx0...0 + Tyy0...0 + Tzz0...0 = 1. (26)

Therefore, as long as the correlation functions in Eq. (26)
are non-negative, we can always construct a pure single-qubit
state |φ〉, with Bloch vector (

√
Txx0...0,

√
Tyy0...0,

√
Tzz0...0), so

that the tensor product |φ〉 ⊗ · · · ⊗ |φ〉 mimics all the nonzero
bipartite correlations of the Dicke state. The non-negativity of
all the terms in Eq. (26) is satisfied for

N �
⌈

1
2 (1 + 4e + √

1 + 8e)
⌉
, (27)

where 
x� denotes the smallest integer greater than or equal to
x. For example, the nonzero bipartite correlation functions of
the |W 〉 state, i.e., Dicke state with e = 1, are compatible
with the correlation functions of the product state for all
N � 4, hence practically for all the |W 〉 states. For such states
the nonzero bipartite correlations alone are not able to reveal
genuine N -partite entanglement. However, when combined
with the vanishing bipartite correlations a suitable proof may
be found as we illustrated above.

V. GENERAL N

We would like to present here an observation which in a
simple way characterizes all known facts about the existence
of antistates for both N even and odd. It provides yet another
piece of evidence that arbitrary genuinely N -partite entangled
pure state of even number of qubits does not admit an antistate.

Consider a state |ψ〉 endowed with correlation tensor
Tj1...jN

. Recall that its antistate is defined by having correlation
tensor elements given by −Tj1...jN

, for all indices jn = x,y,z.
One way of obtaining an antistate would be to apply onto an
odd number of qubits a local operation which maps

�x → −�x, �y → −�y, �z → −�z. (28)

However, it is well known that such a local operation, called
a universal-NOT gate [26], is not present within quantum
formalism because it is antiunitary. On the level of multiple
qubits one can to some degree overcome this restriction.
Namely, note that mathematically one obtains Eq. (28) by
applying the σy operation and partial transposition. The effect
of σy is to invert �x → −�x and �z → −�z, and the effect of
partial transposition is to flip the remaining axis �y → −�y.
If partial transposition is applied on a subsystem A of a
pure state entangled across A : B it results in a matrix with
negative eigenvalues [20,21]. Hence, this method leads to a
physically meaningful antistate only for original states with
odd total number of qubits (as applying partial transposition
on every individual qubit results in a transposition, which is
a completely positive map) or having a subsystem A with
an odd number of qubits in a product state. For example, by
applying σy and partial transposition on every single qubit
or by taking A as the first qubit this procedure will produce
an antistate to the three-qubit |0〉|ψ−〉 state, but no antistate
to a four-qubit |ψ−〉|ψ−〉 state, and indeed any genuinely
multipartite entangled pure state of even number of qubits.
Of course global operations may exist that produce antistates
in a completely different way, but nevertheless it is appealing
that this simple procedure recovers all that is presently known
about antistates.

A. Impossibility of inverting all correlation functions
between even number of observers

We would like to finish with one more observation
contrasting even and odd lower-order correlation functions
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in an antistate for general N . The antistates constructed in
Ref. [10] have opposite correlation functions between arbitrary
odd number of observers, as compared to the original state.
The correlation functions between an arbitrary even number
of observers are the same as in the original state. In contrast,
there is no state in which all the correlation functions between
arbitrary even number of observers are opposite.

Theorem 5. Any pure state |ψ〉 of N qubits does not admit
state |ψ ′〉 in which all the k-partite correlation functions, for
all even k, are opposite.

Proof. By contradiction. Let us build an antistate to the
hypothetical state |ψ ′〉 according to prescription of Ref. [10].
Denote it |ψ̄ ′〉 and note that it has opposite all the correlation
functions between even and odd number of observers, as
compared to the original state |ψ〉. Therefore the even mixture

ρ = 1
2 |ψ〉〈ψ | + 1

2 |ψ̄ ′〉〈ψ̄ ′| (29)

has no correlations whatsoever, including expectation values
of local observables, i.e., ρ is a white noise I/2N . However,
this is not possible since the rank of ρ is 2, while the white
noise must have rank 2N . �

VI. CONCLUSIONS

We provided nontrivial examples of genuinely multiparty
entangled states of even number N of qubits that simulta-
neously have vanishing N -partite correlation functions. We
showed that they violate suitable Bell-type inequalities. The
states have rank 4 and rank 3, respectively, and we gave
compelling evidence supporting the conjecture that rank-2
examples do not exist. This is in contrast to multipartite
systems with odd number of qubits and explains why only
such cases were considered up to date. We also extended
previously known examples using techniques that show limits
to entanglement detection with bipartite correlation functions
only.

The states discussed here opened a debate on rigorous
quantification of genuine multipartite classical and quantum
correlations that led to the formulation of the natural postulates
such quantifiers should satisfy [27]. We hope that the examples
provided here will be a useful test bed for candidate identifiers
and will help to find computable measures that will enable a
deeper analysis of multipartite experiments.
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APPENDIX

Theorem 6. All N -partite correlation functions of the state
in Eq. (10) vanish.

Proof. To simplify notation we divide all N observers into
Alice and Bob, each in possession of N/2 qubits. The N -partite
quantum correlation functions are written as TAB(ρ), with A

and B being sequences, each of length N/2, of indices x,y,z.
For example,

2 TAB(ψ2) = 〈ψ2|σA ⊗ σB |ψ2〉 (A1)

= 〈1 . . . 1|σA|1 . . . 1〉〈ψ̄ |σB |ψ̄〉
+ 〈ψ̄ |σA|ψ̄〉〈1 . . . 1|σB |1 . . . 1〉
− 〈1 . . . 1|σA|ψ̄〉〈ψ̄ |σB |1 . . . 1〉
− 〈ψ̄ |σA|1 . . . 1〉〈1 . . . 1|σB |ψ̄〉. (A2)

Note that |ψ̄〉 = σX ⊗ σX|ψ〉, where each σX ≡ σx ⊗ · · · ⊗ σx

operates on all the qubits of Alice and Bob. Furthermore, for
Alice we have σXσAσX = (−1)aσA, where a is the number of
x indices appearing in the sequence A. Similarly, σXσBσX =
(−1)bσB , where b is the number of x indices appearing in
the sequence B. Therefore, if a + b is even the N -partite
correlation functions of ρ read

TAB(ρ) = 1

4

4∑
i=1

TAB(ψi) (A3)

= 〈00 . . . 0|σA|00 . . . 0〉〈ψ |σB |ψ〉
+ 〈ψ |σA|ψ〉〈00 . . . 0|σB |00 . . . 0〉
+ 〈φ|σA|φ〉〈ψ |σB |ψ〉+ 〈ψ |σA|ψ〉〈φ|σB |φ〉. (A4)

But due to an odd number of excitations in |φ〉 we have that
〈00 . . . 0|σA|00 . . . 0〉 and 〈φ|σA|φ〉 are either both zero or
have opposite sign (and the same for Bob). We thus arrive
at vanishing N -partite correlation functions of ρ.

If a + b is odd, we instead have

TAB(ψ1) + TAB(ψ2) = 〈0 . . . 0|σA|ψ〉〈ψ |σB |0 . . . 0〉
+ 〈ψ |σA|0 . . . 0〉〈0 . . . 0|σB |ψ〉. (A5)

Since by our assumption |ψ〉 is a superposition of states with
only one excitation, both terms above vanish unless A and B

each has only one x or y index. Hence together they must have
in total an even number of x and y indices. But the number of
x indices, i.e., a + b is assumed to be odd, so the number of
y indices must also be odd. Therefore both terms in Eq. (A5)
are imaginary and since they are complex adjoints of each
other the sum TAB(ψ1) + TAB(ψ2) vanishes. Meanwhile, the
contribution from |ψ3〉 is

TAB(ψ3) = 〈φ|σA|φ〉〈ψ |σB |ψ〉. (A6)

For this to be nonzero, σA must be σz ⊗ · · · ⊗ σz, and therefore
has no x in the sequence: a = 0. Since a + b is odd, b must
be odd. But 〈ψ |σB |ψ〉 is nonzero only if B contains an even
number of x and y indices in total. Thus the number of y

indices must be odd leading to an imaginary TAB (ψ3). Since the
correlation function is defined as the average of real numbers
it is always read valued. We conclude that TAB(ψ3) = 0. The
same argument applies to |ψ4〉. �
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