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Nonclassical correlations between measurement results make entanglement the essence of quantum
physics and the main resource for quantum information applications. Surprisingly, there are n-particle
states which do not exhibit n-partite correlations at all but still are genuinely n-partite entangled. We
introduce a general construction principle for such states, implement them in a multiphoton experiment and
analyze their properties in detail. Remarkably, even without multipartite correlations, these states do violate
Bell inequalities showing that there is no classical, i.e., local realistic model describing their properties.
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Correlations between measurement results are the most
prominent feature of entanglement. They made Einstein,
Podolski, and Rosen [1] question the completeness of
quantum mechanics and are nowadays the main ingredient
for the many applications of quantum information like
entanglement based quantum key distribution [2] or
quantum teleportation [3].
Correlations enable us, e.g., when observing two max-

imally entangled qubits, to use a measurement result
observed on the first system to infer exactly the measure-
ment result on the second system. In this scenario, the two
particle correlations are formally given by the expectation
value of the product of the measurement results obtained by
the two observers. Note, the single particle correlation, i.e.,
the expectation value of the results for one or the other
particle are zero in this case. Consequently, we cannot
predict anything about the individual results. When study-
ing the entanglement between n particles, a natural exten-
sion is to consider n-partite correlations, i.e., the
expectation value of the product of n measurement results.
Such correlation functions are frequently used in classical
statistics and signal analysis [4], moreover, in quantum
information, almost all standard tools for analyzing multi-
partite systems like multiparty entanglement witnesses
[5,6] and Bell inequalities [7,8] are based on the n-partite
correlation functions.
Recently, Kaszlikowski et al. [9] pointed at a particular

quantum state with vanishing multiparty correlations
which, however, is genuinely multipartite entangled.
This discovery, of course, prompted vivid discussions on
a viable definition of classical and quantum correlations
[10,11]. Still, the question remains what makes up such
states with no full n-partite correlations and how non-
classical they can be, i.e., whether they are not only
entangled but whether they also violate a Bell inequality.

Here, we generalize, highlight, and experimentally test
such remarkable quantum states. We introduce a simple
principle how to construct states without n-partite cor-
relations for odd n and show that there are infinitely many
such states which are genuinely n-partite entangled. We
implement three and five qubit no-correlation states in a
multiphoton experiment and demonstrate that these states
do not exhibit n-partite correlations. Yet, due to the
existence of correlations between a smaller number of
particles, we observe genuine n-partite entanglement.
Using our recently developed method to design n-partite
Bell inequalities from lower order correlation functions
only [12,13], we show that these states, despite not having
full correlations, can violate Bell inequalities.
Correlations.—The quantum mechanical correlation

function Tj1…jn is defined as the expectation value of the
product of the results of n observers

Tj1…jn ¼ hr1…rni ¼ Trðρσj1 ⊗ … ⊗ σjnÞ; ð1Þ

where rk is the outcome of the local measurement of the kth
observer, parametrized by the Pauli operator σjk with
jk ∈ fx; y; zg. Evidently, besides the n-partite correlations,
for an n-partite state, one can also define l < n fold
correlations Tμ1…μn ¼ Trðρσμ1 ⊗ … ⊗ σμnÞ with μi ∈
f0; x; y; zg and jfμi ¼ 0gj ¼ n − l. Nonvanishing l-fold
correlations indicate that we can infer (with higher proba-
bility of success than pure guessing) an lth measurement
result from the product of the other ðl − 1Þ results [see
Supplemental Material [14]]. Only in the two particle
scenario can we directly use the result from one measure-
ment to infer the other result. For an n-qubit no-correlation
state, the vanishing n-partite correlations do not imply
vanishing correlations between a smaller number of observ-
ers, thus not necessarily destroying predictability. We will
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see also in the experimentally implemented example that the
various individual results still enable some possibility for
inference, which is then largely due to bipartite correlations.
Constructing no-correlation states.—For any state jψi

with an odd number n of qubits, we can construct an
“antistate” jψ̄i, i.e., the state whose n-partite correlations
are inverted with respect to the initial one. By evenly
mixing these states

ρncψ ¼ 1

2
jψihψ j þ 1

2
jψ̄ihψ̄ j; ð2Þ

we obtain a state ρncψ without n-partite correlations.
The antistate jψ̄i of a state jψi described in the computa-

tional basis by

jψi ¼
X1

k1;…;kn¼0

αk1;…;kn jk1…kni; ð3Þ

with normalized coefficients αk1;…;kn ∈ C, is given by

jψ̄i≡ X1
k1;…;kn¼0

ð−1Þk1þ���þknα�1−k1;…;1−kn jk1…kni; ð4Þ

where the asterisk denotes complex conjugation. This state
has inverted correlations with respect to those in jψi for
every odd number of observers, whereas all the correlation
function values for an even number of observers remain
unchanged.
jψ̄i is mathematically obtained from jψi by applying

local universal-not gates [24]. These gates introduce a
minus sign to all local Pauli operators. Therefore, for odd n,
the correlations of jψ̄i have opposite sign to those of jψi.
Representing the universal-not gate by N ¼ σzσxK,
where K is the complex conjugation operating in the com-
putational basis, i.e., Kðαj0i þ βj1iÞ ¼ α�j0i þ β�j1i,
indeed, we obtain NσxN† ¼ −σx, NσyN† ¼ −σy, and
NσzN† ¼ −σz. Applying N to all the n subsystems, we
find the anticipated result N ⊗ � � � ⊗ Njψi ¼ jψ̄i.
Although N is antiunitary, jψ̄i is always a proper

physical state and can be obtained by some global trans-
formation of jψi. In general, N can be approximated [25],
but if all the coefficients αk1…kn are real, complex con-
jugation can be omitted and no-correlation states can be
generated by local operations.
This construction principle can be generalized to mixed

states using ρ̄ ¼ N⊗nρðN⊗nÞ†, which changes every pure
state in the spectral form to the respective antistate. Evenly
mixing ρ and ρ̄ therefore produces a state with no l-party
correlations for all odd l.
One may then wonder whether the principle of Eq. (2)

can also be applied to construct a no-correlation state for
every state with an even number of qubits. The answer is
negative as shown by the following counterexample.
Consider the Greenberger-Horne-Zeilinger state of an even
number of qubits jψi ¼ ð1= ffiffiffi

2
p Þðj0…0i þ j1…1iÞ. It has

nonvanishing Tz…z, 2n−1 multipartite correlations in the xy
plane, and also, 2n−1 − 1 correlations between a smaller
number of subsystems, all equal to �1. However, for a state
with inverted correlations between all n parties (making no
assumptions about the correlations between smaller numbers
of observers), the fidelity relative to the GHZ state, given by
1
2n

P
3
μ1;…;μn¼0 T

GHZ
μ1…μnT

anti
μ1…μn , is negative because more than

half of the correlations are opposite. Hence, this state is
unphysical and there is no such “antistate”. In fact, so far we
were unable to find an antistate to any genuinely multiqubit
entangled state of even n.
Entanglement without correlations: infinite family.—

Consider a three-qubit system in the pure state

jϕi¼ sinβcosαj001iþsinβsinαj010iþcosβj100i; ð5Þ
where α; β ∈ ð0; π=2Þ (which includes the state jWi with
α ¼ π=3 and β ¼ cos−1ð1= ffiffiffi

3
p Þ). Together with any local

unitary transformation thereof, this defines a three dimen-
sional subspace of genuinely tripartite entangled states
within the eight dimensional space of three qubit states. To
show that all the respective no-correlation states ρncϕ are
genuinely entangled, we use a criterion similar to the one
in [6], i.e.,

max
Tbi-prod

ðT;Tbi-prodÞ< ðT;TexpÞ⇒ρexp is not biseparable; ð6Þ

where maximization is over all biproduct pure states and
ðU;VÞ≡P

3
μ;ν;η¼0UμνηVμνη denotes the inner product in

the vector space of correlation tensors. Condition
[Eq. (6)] can be interpreted as an entanglement
witness W ¼ α1 − ρncϕ , where α ¼ L=8 and L ¼
maxTbi-prodðT; TbiproductÞ is the left-hand side of Eq. (6). In
the ideal case of preparing ρexp perfectly, Texp ¼ T, the
right-hand side of our criterion equals four for all the states
of the family, and thus, the expectation value of the witness
is given by TrðWρncϕ Þ ¼ ðL − 4Þ=8.
A simple argument for ρncϕ being genuinely tripartite

entangled can be obtained from the observation that jϕi and
jϕ̄i span a two-dimensional subspace of the three qubit
Hilbert space [9]. As none of the states jΦi ¼ ajϕi þ bjϕ̄i
is a biproduct (for the proof see Supplemental Material
[14]), states in their convex hull do not intersect with the
subspace of biseparable states and thus all its states,
including ρncϕ are genuinely tripartite entangled. To evaluate
the entanglement in the experiment, we calculated L for all
states of Eq. (5). We obtain Ljϕi < 4 in general, with
LjWi ¼ 10=3. Similar techniques were used to analyze
five-qubit systems.
Quantum correlations without classical correlations?—

The cumulants and correlations were initially proposed
as a measure of genuinely multiparty nonclassicality in
Ref. [26]. Kaszlikowski et al. [9], however, showed that
such a quantification is not sufficient as the state ρncW has

PRL 114, 180501 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
8 MAY 2015

180501-2



vanishing cumulants, yet contains genuinely multiparty
entanglement. They suggested that the vanishing cumulants
or standard correlation functions [Eq. (1)] indicate the lack
of genuine multiparty “classical” correlations. This initi-
ated a vivid discussion on a proper definition and measure
of genuine multipartite “classical” and quantum correla-
tions. Bennett et al. proposed a set of axioms for measures
of genuine multipartite correlations [11]. They showed that
the correlation function [Eq. (1)] does not fulfill all the
requirements, but also still strive for computable measures
that satisfy these axioms [15,27]. An information-theoretic
definition of multipartite correlations was given by Giorgi
et al. [15]. Their measure combines the entropy of all sizes
of subsystems. Applying their definitions to ρncW , we obtain
genuine classical tripartite correlations of 0.813 bit and
genuine quantum tripartite correlations of 0.439 bit result-
ing in total genuine tripartite correlations of 1.252 bit (see
Supplemental Material [14] for calculations for all ρncϕ ).
While this approach does assign classical correlations in the
context of Giorgi et al. [15] to ρncW , it does not fulfill all
requirements of [11] either.
Experiment.—The three photon state jWi can be

observed either using a multiphoton interferometer setup
[28] or by suitably projecting the fourth photon of a
4-photon symmetric Dicke state [29]. The latter scheme
has the advantage that it also offers the option to prepare the
states jW̄i and ρncW . The states jWi and jW̄i are particular
representatives of the symmetric Dicke states, which are
defined as

jDðeÞ
n i ¼

�
n
e

�
−1=2X

i

PiðjH⊗ðn−eÞi ⊗ jV⊗eiÞ; ð7Þ

where jH=Vi denotes horizontal (vertical) polarization and
Pi all distinct permutations, and with the three photon
states jWi ¼ jDð1Þ

3 i and jW̄i ¼ jDð2Þ
3 i. We observed four-

and six-photon Dicke states using a pulsed collinear type II
spontaneous parametric down conversion source together
with a linear optical setup (see Fig. 1) [30,31]. The jDðeÞ

n i
states were observed upon detection of one photon in each
of the four or six spatial modes, respectively. We charac-
terized the state jDð2Þ

4 i by means of quantum state tomog-
raphy, i.e., a polarization analysis in each mode, collecting
for each setting 26 minutes of data at a rate of 70 events per
minute. The fidelity of the experimental state jDð2Þ

4 iexp was
directly determined from the observed frequencies together
with Gaussian error propagation as 0.920� 0.005, which
due to the high number of detected events [16] is com-
patible with the value 0.917� 0.002 as obtained from a
maximum likelihood (ML) reconstruction and nonpara-
metric bootstrapping [14,20]. The high quality achieved
here allowed a precise study of the respective states. The
fidelities of the observed three qubit states with respect
to their target states are 0.939� 0.011 for jWiexp,
0.919� 0.010 for jW̄iexp, and 0.961� 0.003 for ρnc;expW .

Analogously, starting with a six-photon Dicke state jDð3Þ
6 i

[32], we could also analyze the properties of the five photon
state ρnc

Dð2Þ
5

. The five-qubit fidelity of ρnc;exp
Dð2Þ

5

is determined

via a ML reconstruction from fivefold coincidences to
be 0.911� 0.004 (for the detailed characterization see
Supplemental Material [14]).
For the experimental analysis of the states, we start by

determining Tzzz for the three states jWiexp, jW̄iexp, and
ρnc;expW . As the first two have complementary structure of
detection probabilities (with Tzzz ¼ −0.914� 0.034 and
Tzzz ¼ 0.904� 0.034, respectively), weighted mixing of
these states leads to ρnc;expW with Tzzz ¼ 0.022� 0.023, i.e.,
a correlation value compatible with 0 (see Supplemental
Material [14]). Figure 2 presents experimental data for all
possible tripartite correlations of the observed states.
Assuming a normal distribution centered at zero with a
standard deviation given by our experimental errors, the
observed correlations have a p value of 0.44 for the
Anderson-Darling test, which shows that indeed one can
adhere to the hypothesis of vanishing full correlations.
Similarly, the five qubit state ρnc;exp

Dð2Þ
5

exhibits strongly

suppressed, almost vanishing correlations. For details on
the five qubit state, please see Supplemental Material [14].
We want to emphasize that the vanishing tripartite

correlations of ρnc;expW are no artifact of measuring in the
Pauli bases. In fact, all states obtained via local unitary
transformations do not exhibit any n-partite correlations.
To illustrate this property, we considered correlation
measurements in non-standard bases. As an example, we
chose measurements in the zy plane σθ ¼ cos θσz þ sin θσy
with θ ∈ ½0; 2π� (σϕ ¼ cosϕσy þ sinϕσz with ϕ ∈ ½0; 2π�)
for the first (second) qubit resulting in the correlations
Tθj2j3 ¼ Trðρσθ ⊗ σj2 ⊗ σj3Þ (Tj1ϕj3). Indeed, as shown in

SM

IF

BS1

QWP

HWP PBS
PAj

APD

SPDC source

aPA

cPA

dPA

fPA

3BS

BS2

3S
bPA

ePA

BS4 BS5

FIG. 1 (color online). Schematic of the linear optical setup used
to observe symmetric Dicke states from which states with
vanishing 3- and 5-partite correlations can be obtained. The
photons are created by means of a cavity enhanced pulsed
collinear type II spontaneous parametric down conversion source
pumped at 390 nm [31]. Distributing the photons symmetrically
into six modes by five beam splitters (BS) enables the observation
of the state jDð3Þ

6 i. Removing beam splitters BS2 and BS4 reduces

the number of modes to four and thus the state jDð2Þ
4 i is obtained.

State analysis is enabled by sets of half wave (HWP) and quarter-
wave plates (QWP) together with polarizing beam splitters (PBS)
in each mode. The photons are measured by fiber-coupled single
photon counting modules connected to a coincidence logic [30].
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Fig. 3, Tθj2j3 (Tj1ϕj3) vanishes independently of the choice
of θ (ϕ). In contrast, the bipartite correlations Tθz0 (Tyϕ0)
between qubit 1 and 2 do not vanish at all and clearly
depend on θ (ϕ). By means of those even number
correlations, one is still able to infer the result of another
party from ones own result with probability 2=3 > 1=2. For
example, the values of Tzz0 ¼ −1=3 (Tz0z ¼ −1=3) indi-
cate that knowing, e.g., result “0” for the first qubit, we can
infer that the result will be “1” with p ¼ 2=3 on the second
(third) qubit, etc.

Although the three qubits are not tripartite correlated, the
bipartite correlations shown above give rise to genuine
tripartite entanglement. This can be tested for the exper-
imental states employing Eq. (6). We observe

ðT; Tnc;exp
W Þ ¼ 3.858� 0.079 > 3.333̄;

ðT; Tnc;exp

Dð2Þ
5

Þ ¼ 13.663� 0.340 > 12.8;

both above the respective biseparable bound of 10=3 ¼
3.333̄ (12.8) by more than 6.6 (2.4) standard deviations,
proving that in spite of vanishing full correlations the states
are genuinely tripartite (five-partite) entangled [14].
The observed five-photon state has one more remarkable

property [13]. For this state, every correlation between a
fixed number of observers, i.e., bipartite correlations,
tripartite correlations, etc. admits description with an
explicit local hidden-variable model [8]. However, some
of the models are different and thus cannot be combined in
a single one. Using linear programming to find joint
probability distributions reproducing quantum predictions
[12], we obtain an optimal Bell inequality using only two-
and four-partite correlations [13]. From the observed data,
we evaluate the Bell parameter to be B ¼ 6.358� 0.149
which violates the local realistic bound of 6 by 2.4 standard
deviations [33]. This violation confirms the nonclassicality
[14] of this no-correlation state and also offers its appli-
cability for quantum communication complexity tasks.
Contrary to previous schemes, here, the communication
problem can be solved in every instance already by only a
subset of the communicating parties [35].
Conclusions.—We introduced a systematic way to

define and to experimentally observe mixed multipartite
states with no n-partite correlations for odd n, as
measured by standard correlation functions. For the first
time, we experimentally observed a state which allowed the
violation of a Bell inequality without full correlations,
thereby proving both the nonclassicality of no-correlation
states as well as their applicability for quantum commu-
nication protocols. The remarkable properties of these
states prompt intriguing questions. For example, what
might be the dimensionality of these states or their
respective subspaces, or whether we can even extend the
subspace of states and antistates which give genuinely
entangled no-correlation states? Moreover, can no-
correlation states be used for quantum protocols beyond
communication complexity, and, of course, whether these
remarkable features can be cast into rigorous and easily
calculable measures of genuine correlations satisfying
natural postulates [11]?

We thank the EU-BMBF Project No. QUASAR and the
EU Project No. QWAD and No. QOLAPS for supporting
this work. T. P. acknowledges support by the National
Research Foundation, the Ministry of Education of
Singapore Grant No. RG98/13, Start-up Grant of the

XX
X

XX
Y

XX
Z

XY
X

XY
Y

XY
Z

ZZ
X

ZZ
Y

ZZ
Z

0

0.4

0.8

-0.4

-0.8

0

0.4

0.8

-0.4

-0.8

0

0.04

-0.04

0.08

-0.08

noitalerro
C

W
nc,exp

W exp

W exp

FIG. 2 (color online). Experimental tripartite correlations (red)
for jWiexp, jW̄iexp, and (green) ρnc;expW in comparison to the
theoretically expected values (gray). Note that the correlations of
the state ρnc;expW are magnified by a factor of 10. The plot presents
measured values of Tj1j2j3 for the observables listed below the
plot. Obviously, the states jWiexp and jW̄iexp have opposite
tripartite correlations canceling each other when they are mixed.

Phase Phase

Tr( )z

Tr( )zz

Tr( )z

Tr( )y

Tr( )yy

Tr( )y

0

0.2

0.6

0.4

-0.2

-0.6

-0.4

noitalerro
C

FIG. 3 (color online). Vanishing tripartite correlations for
arbitrary measurements and non-vanishing bipartite correlations.
Observable σθ (σϕ) was measured on the first (second) qubit and
σz (σy) measurements were performed on both other qubits (green
curves) or one of them (red and black curves). The solid lines
show the theoretically expected curves.

PRL 114, 180501 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
8 MAY 2015

180501-4



Nanyang Technological University, and NCN Grant
No. 2012/05/E/ST2/02352. C. S. and L. K. thank the
Elite Network of Bavaria for support (Ph.D. Programs
QCCC and ExQM).

*tomasz.paterek@ntu.edu.sg
[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777

(1935).
[2] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres,

and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
[4] K. C. Chua, V. Chandran, U. R. Acharya, and C. M. Lim,

Medical Engineering and Physics 32, 679 (2010); J. M.
Mendel, Proc. IEEE 79, 278 (1991).

[5] G. Tóth and O. Gühne, Phys. Rev. A 72, 022340 (2005); B.
Lücke, J. Peise, G. Vitagliano, J. Arlt, L. Santos, G. Tóth,
and C. Klempt, Phys. Rev. Lett. 112, 155304 (2014); J. I. de
Vicente and M. Huber, Phys. Rev. A 84, 062306 (2011); B.
Jungnitsch, T. Moroder, and O. Gühne, Phys. Rev. Lett. 106,
190502 (2011).

[6] P. Badziąg, Č. Brukner, W. Laskowski, T. Paterek, and
M. Żukowski, Phys. Rev. Lett. 100, 140403 (2008); W.
Laskowski, M. Markiewicz, T. Paterek, and M. Żukowski,
Phys. Rev. A 84, 062305 (2011).

[7] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Phys. Rev. Lett. 23, 880 (1969); N. D. Mermin, Phys. Rev.
D 22, 356 (1980); H. Weinfurter and M. Żukowski, Phys.
Rev. A 64, 010102 (2001); R. F. Werner and M.M. Wolf,
Phys. Rev. A 64, 032112 (2001); K. Nagata, W. Laskowski,
and T. Paterek, Phys. Rev. A 74, 062109 (2006); W.
Laskowski, T. Paterek, M. Żukowski, and Č. Brukner, Phys.
Rev. Lett. 93, 200401 (2004); M. Ardehali, Phys. Rev. A 46,
5375 (1992); A. V. Belinskiı̆ and D. N. Klyshko, Phys. Usp.
36, 653 (1993); D. Collins and N. Gisin, J. Phys. A 37, 1775
(2004); T. Vértesi, Phys. Rev. A 78, 032112 (2008).

[8] M. Żukowski and Č. Brukner, Phys. Rev. Lett. 88, 210401
(2002).

[9] D. Kaszlikowski, A. Sen De, U. Sen, V. Vedral, and A.
Winter, Phys. Rev. Lett. 101, 070502 (2008).

[10] Z. Walczak, Phys. Lett. A 374, 3999 (2010); Z. Walczak,
Phys. Rev. Lett. 104, 068901 (2010); D. Kaszlikowski, A.
Sen De, U. Sen, V. Vedral, and A. Winter, Phys. Rev. Lett.
104, 068902 (2010); K. Modi, A. Brodutch, H. Cable, T.
Paterek, and V. Vedral, Rev. Mod. Phys. 84, 1655 (2012).

[11] C. H. Bennett, A. Grudka, M. Horodecki, P. Horodecki, and
R. Horodecki, Phys. Rev. A 83, 012312 (2011).

[12] J. Gruca, W. Laskowski, M. Żukowski, N. Kiesel, W.
Wieczorek, C. Schmid, and H. Weinfurter, Phys. Rev. A
82, 012118 (2010).

[13] W. Laskowski, M. Markiewicz, T. Paterek, and M.
Wieśniak, Phys. Rev. A 86, 032105 (2012).

[14] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.114.180501 for addi-
tional information on physical meaning of the correlation
functions, details about experimentally realized states,
derivations of entanglement criteria used, and correlation
content of the no-correlation states, which includes Refs.
[9,13,15–23].

[15] G. L. Giorgi, B. Bellomo, F. Galve, and R. Zambrini, Phys.
Rev. Lett. 107, 190501 (2011).

[16] C. Schwemmer, L. Knips, D. Richart, H. Weinfurter, T.
Moroder, M. Kleinmann, and O. Gühne, Phys. Rev. Lett.
114, 080403 (2015).

[17] G. Tóth, J. Opt. Soc. Am. B, 24, 275 (2007).
[18] C. Schwemmer, G. Tóth, A. Niggebaum, T. Moroder, D.

Gross, O. Gühne, and H. Weinfurter, Phys. Rev. Lett. 113,
040503 (2014).

[19] R. S. Bennink, Y. Liu, D. D. Earl, and W. P. Grice, Phys.
Rev. A 74, 023802 (2006); P. Trojek, Ph.D. thesis, Ludwig-
Maximilians-Universität München, 2007.

[20] B. Efron and R. J. Tibshirani, An Introduction to the
Bootstrap (Chapman & Hall, London, 1994).

[21] N. Kiesel, Ph.D. thesis, Ludwig-Maximilians-Universität
München, 2007.

[22] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White,
Phys. Rev. A 64, 052312 (2001).

[23] J. Larsson, J. Phys. A 47, 424003 (2014).
[24] V. Bužek, M. Hillery, and R. F. Werner, J. Mod. Opt. 47, 211

(2000).
[25] F. de Martini, V. Bužek, F. Sciarrino, and C. Sias, Nature

(London) 419, 815 (2002); J. Bang, S.-W. Lee, H. Jeong,
and J. Lee, Phys. Rev. A 86, 062317 (2012).

[26] D. L. Zhou, B. Zeng, Z. Xu, and L. You, Phys. Rev. A 74,
052110 (2006).

[27] L. Zhao, X. Hu, R.-H. Yue, and H. Fan, Quantum Inf.
Process. 12, 2371 (2013).

[28] M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H.
Weinfurter, Phys. Rev. Lett. 92, 077901 (2004).

[29] T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, Phys.
Rev. A 66, 064301 (2002); W. Wieczorek, N. Kiesel, C.
Schmid, and H. Weinfurter, Phys. Rev. A 79, 022311
(2009).

[30] N. Kiesel, C. Schmid, G. Tóth, E. Solano, and H. Weinfurter,
Phys. Rev. Lett. 98, 063604 (2007); G. Tóth, W. Wieczorek,
D. Gross, R. Krischek, C. Schwemmer, and H. Weinfurter,
Phys. Rev. Lett. 105, 250403 (2010); R. Krischek, C.
Schwemmer, W. Wieczorek, H. Weinfurter, P. Hyllus, L.
Pezzé, and A. Smerzi, Phys. Rev. Lett. 107, 080504 (2011).

[31] R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P.
Michelberger, T. Udem, and H. Weinfurter, Nat. Photonics
4, 170 (2010).

[32] W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G.
Tóth, and H. Weinfurter, Phys. Rev. Lett. 103, 020504
(2009).

[33] Examples of Bell inequalities involving lower order corre-
lations can be found in [34], however, none of them is
violated by our state ρnc

Dð2Þ
5

.
[34] M. Wieśniak, M. Nawareg, and M. Żukowski, Phys. Rev. A

86, 042339 (2012); J. Tura, R. Augusiak, A. B. Sainz, T.
Vértesi, M. Lewenstein, and A. Acín, Science 344, 1256
(2014); J. Tura, A. B. Sainz, T. Vértesi, A. Acín, M.
Lewenstein, and R. Augusiak, J. Phys. A 47, 424024
(2014).

[35] Č. Brukner, M. Żukowski, J.-W. Pan, and A. Zeilinger,
Phys. Rev. Lett. 92, 127901 (2004); P. Trojek, C. Schmid,
M. Bourennane, Č. Brukner, M. Żukowski, and H.
Weinfurter, Phys. Rev. A 72, 050305 (2005); M. Wieśniak,
arXiv:1212.2388.

PRL 114, 180501 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
8 MAY 2015

180501-5

http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1016/j.medengphy.2010.04.009
http://dx.doi.org/10.1109/5.75086
http://dx.doi.org/10.1103/PhysRevA.72.022340
http://dx.doi.org/10.1103/PhysRevLett.112.155304
http://dx.doi.org/10.1103/PhysRevA.84.062306
http://dx.doi.org/10.1103/PhysRevLett.106.190502
http://dx.doi.org/10.1103/PhysRevLett.106.190502
http://dx.doi.org/10.1103/PhysRevLett.100.140403
http://dx.doi.org/10.1103/PhysRevA.84.062305
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevD.22.356
http://dx.doi.org/10.1103/PhysRevD.22.356
http://dx.doi.org/10.1103/PhysRevA.64.010102
http://dx.doi.org/10.1103/PhysRevA.64.010102
http://dx.doi.org/10.1103/PhysRevA.64.032112
http://dx.doi.org/10.1103/PhysRevA.74.062109
http://dx.doi.org/10.1103/PhysRevLett.93.200401
http://dx.doi.org/10.1103/PhysRevLett.93.200401
http://dx.doi.org/10.1103/PhysRevA.46.5375
http://dx.doi.org/10.1103/PhysRevA.46.5375
http://dx.doi.org/10.1070/PU1993v036n08ABEH002299
http://dx.doi.org/10.1070/PU1993v036n08ABEH002299
http://dx.doi.org/10.1088/0305-4470/37/5/021
http://dx.doi.org/10.1088/0305-4470/37/5/021
http://dx.doi.org/10.1103/PhysRevA.78.032112
http://dx.doi.org/10.1103/PhysRevLett.88.210401
http://dx.doi.org/10.1103/PhysRevLett.88.210401
http://dx.doi.org/10.1103/PhysRevLett.101.070502
http://dx.doi.org/10.1016/j.physleta.2010.08.004
http://dx.doi.org/10.1103/PhysRevLett.104.068901
http://dx.doi.org/10.1103/PhysRevLett.104.068902
http://dx.doi.org/10.1103/PhysRevLett.104.068902
http://dx.doi.org/10.1103/RevModPhys.84.1655
http://dx.doi.org/10.1103/PhysRevA.83.012312
http://dx.doi.org/10.1103/PhysRevA.82.012118
http://dx.doi.org/10.1103/PhysRevA.82.012118
http://dx.doi.org/10.1103/PhysRevA.86.032105
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.180501
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.180501
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.180501
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.180501
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.180501
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.180501
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.180501
http://dx.doi.org/10.1103/PhysRevLett.107.190501
http://dx.doi.org/10.1103/PhysRevLett.107.190501
http://dx.doi.org/10.1103/PhysRevLett.114.080403
http://dx.doi.org/10.1103/PhysRevLett.114.080403
http://dx.doi.org/10.1364/JOSAB.24.000275
http://dx.doi.org/10.1103/PhysRevLett.113.040503
http://dx.doi.org/10.1103/PhysRevLett.113.040503
http://dx.doi.org/10.1103/PhysRevA.74.023802
http://dx.doi.org/10.1103/PhysRevA.74.023802
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1088/1751-8113/47/42/424003
http://dx.doi.org/10.1080/095003400148150
http://dx.doi.org/10.1080/095003400148150
http://dx.doi.org/10.1038/nature01093
http://dx.doi.org/10.1038/nature01093
http://dx.doi.org/10.1103/PhysRevA.86.062317
http://dx.doi.org/10.1103/PhysRevA.74.052110
http://dx.doi.org/10.1103/PhysRevA.74.052110
http://dx.doi.org/10.1007/s11128-013-0525-9
http://dx.doi.org/10.1007/s11128-013-0525-9
http://dx.doi.org/10.1103/PhysRevLett.92.077901
http://dx.doi.org/10.1103/PhysRevA.66.064301
http://dx.doi.org/10.1103/PhysRevA.66.064301
http://dx.doi.org/10.1103/PhysRevA.79.022311
http://dx.doi.org/10.1103/PhysRevA.79.022311
http://dx.doi.org/10.1103/PhysRevLett.98.063604
http://dx.doi.org/10.1103/PhysRevLett.105.250403
http://dx.doi.org/10.1103/PhysRevLett.107.080504
http://dx.doi.org/10.1038/nphoton.2009.286
http://dx.doi.org/10.1038/nphoton.2009.286
http://dx.doi.org/10.1103/PhysRevLett.103.020504
http://dx.doi.org/10.1103/PhysRevLett.103.020504
http://dx.doi.org/10.1103/PhysRevA.86.042339
http://dx.doi.org/10.1103/PhysRevA.86.042339
http://dx.doi.org/10.1126/science.1247715
http://dx.doi.org/10.1126/science.1247715
http://dx.doi.org/10.1088/1751-8113/47/42/424024
http://dx.doi.org/10.1088/1751-8113/47/42/424024
http://dx.doi.org/10.1103/PhysRevLett.92.127901
http://dx.doi.org/10.1103/PhysRevA.72.050305
http://arXiv.org/abs/1212.2388

