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Experimental procedures are presented for the rapid detection of entanglement of unknown arbitrary quantum
states. The methods are based on the entanglement criterion using accessible correlations and the principle of
correlation complementarity. Our first scheme essentially establishes the Schmidt decomposition for pure states,
with few measurements only and without the need for shared reference frames. The second scheme employs a
decision tree to speed up entanglement detection. We analyze the performance of the methods using numerical
simulations and verify them experimentally for various states of two, three, and four qubits.
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I. INTRODUCTION

Entanglement is one of the most fundamental features
of quantum physics and is considered to be the key re-
source for quantum information processing [1–3]. In order
to detect entanglement, highly efficient witness operators
are widely used nowadays [4–10]. However, these operators
give conclusive answers only for states close to the target
state. To detect entanglement of arbitrary states, positive,
but not completely positive, maps [1,4] are the most uni-
versal entanglement identifiers. However, they are laborious
to use as they require full state tomography. Therefore,
more efficient schemes to detect entanglement are most
desired.

It has been recently shown that the presence of entangle-
ment in a quantum state is fully characterized by suitable
combinations of experimentally accessible correlations and
expectation values of local measurements [11]. This enables
a simple and practical method to reveal entanglement of all
pure states and some mixed states by measuring only few
correlations [12]. Since the method is adaptive, it does not
require a priori knowledge of the state nor a shared reference
frame between the possibly remote observers, and thus greatly
simplifies the practical application.

Here we extend these results and analyze in detail the
possible performance of two schemes for entanglement
detection. The first one can be seen as an experimental
implementation of Schmidt decomposition, which identifies
the maximal correlations through local measurements only.
The second scheme shows how to deduce a strategy (decision
tree) to find the maximal correlations of an unknown state
and obtain a rapid violation of the threshold, identifying
entanglement even for an arbitrary number of qubits. The
physical principle behind both of our schemes is correlation
complementarity [13]. It makes use of trade-offs between
correlations present in quantum states. Once a measured
correlation is big, other related correlations have to be small,
and it is advantageous to move to measurements of the remain-
ing correlations. This simplifies the entanglement detection
scheme as a lower number of correlation measurements is
required.

II. ENTANGLEMENT CRITERION

A quantum state is entangled if the sum of squared measured
correlations exceeds a certain bound [11]. This identifier thus
neither requires the measurement of all correlations in a
quantum state nor the reconstruction of the density matrix.
Rather, it is now the goal to find strategies that minimize the
number of correlation measurements. We show how this can
be done in different ways described in the subsequent sections.
The first method is to identify a Schmidt decomposition
from local results and filtering when necessary; the second
is a particularly designed decision tree based on correlation
complementarity.

Any N -qubit density matrix can be expressed as

ρ = 1

2N

3∑
μ1,...,μN=0

Tμ1,...,μN
σμ1 ⊗ · · · ⊗ σμN

, (1)

where σμn
∈ {σ0,σx,σy,σz} is the respective local Pauli op-

erator of the nth party (σ0 being the identity matrix) and
the real coefficients Tμ1,...,μN

∈ [−1,1] are the components of
the correlation tensor T̂ . They are given by the expectation
values of the products of local Pauli observables, Tμ1,...,μN

=
Tr[ρ(σμ1 ⊗ · · · ⊗ σμN

)], and can be determined by local
measurements performed on each qubit.

For N -qubit states, pure or mixed, the following sufficient
condition for entanglement holds [11]:

3∑
i1,...,iN =1

T 2
i1,...,iN

> 1 ⇒ ρ is entangled. (2)

Note that to prove that a state is entangled, it is sufficient
to break the threshold, i.e., in general it is not necessary to
measure all correlations. Using fundamental properties of the
correlation tensor, we design schemes to minimize the number
of required correlation measurements.

III. SCHMIDT DECOMPOSITION

Any pure state of two qubits admits a Schmidt decomposi-
tion [14,15],

|ψS〉 = cos θ |a〉|b〉 + sin θ |a⊥〉|b⊥〉, θ ∈ [
0, π

4

]
, (3)
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where the local bases {|a〉,|a⊥〉} and {|b〉,|b⊥〉} are called the
Schmidt bases of Alice and Bob, respectively.

This is an elementary description of bipartite pure quantum
states, where the existence of a second term in the decom-
position directly indicates entanglement. In addition, in the
Schmidt bases, the correlation tensor of a two-qubit state takes
a particularly simple form and shows maximal correlations in
the state. Therefore, finding the Schmidt bases can be regarded
as a redefinition of the measuring operators relative to the state
and thus leads to rapid entanglement detection, in at most three
subsequent measurements of correlations.

Once the bases are known, Alice constructs her local
measurements, σz′ = |a〉〈a| − |a⊥〉〈a⊥| and σy ′ = i|a⊥〉〈a| −
i|a〉〈a⊥|, and so does Bob. They can now detect entanglement
by using the simple criterion (2) with only two correlation
measurements because T 2

z′z′ + T 2
y ′y ′ = 1 + sin2 2θ > 1 for all

pure entangled states. Note that since the bases of Alice and
Bob are determined on the fly, the laboratories are not required
to share a common reference frame.

In the next sections, we present how to find the Schmidt
bases (up to a global phase) from the experimental results
gathered on individual qubits. We split the discussion into
the two cases of nonvanishing and vanishing Bloch vectors,
i.e., local averages (Tx0,Ty0,Tz0), describing the states of the
individual qubits.

This systematic procedure to verify entanglement in a pure
two-qubit state is represented in Fig. 1, with the sections
describing the particular steps.

A. From nonvanishing Bloch vectors to Schmidt bases

Consider first the case of nonzero Bloch vectors. The
Schmidt bases of Alice and Bob are related to the standard
bases as follows:

|a〉 = cos ξA|0〉 + eiϕA sin ξA|1〉,
|a⊥〉 = sin ξA|0〉 − eiϕA cos ξA|1〉,

(4)
|b〉 = cos ξB |0〉 + eiϕB sin ξB |1〉,

|b⊥〉 = eiδ(sin ξB |0〉 − eiϕB cos ξB |1〉).
The global phase of |b⊥〉 is relevant and required for the
characterization of an arbitrary pure state, as can be seen
from parameter counting. An arbitrary pure two-qubit state
is parametrized by six real numbers (four complex amplitudes
minus normalization condition and an irrelevant global phase).
By plugging Eqs. (4) into the Schmidt decomposition (3), we
indeed find the six relevant real parameters.

Any two-qubit state written in the standard bases of Alice
and Bob can be brought into the Schmidt basis of Alice by the
transformation

U (ξA,ϕA) = |0〉〈a| + |1〉〈a⊥|
= cos ξA|0〉〈0| + e−iϕA sin ξA|0〉〈1|

+ sin ξA|1〉〈0| − e−iϕA cos ξA|1〉〈1|. (5)

The coefficients ξA and ϕA of this transformation can be read
from a nonvanishing normalized Bloch vector,

	α ≡
	T A

| 	T A| = (sin 2ξA cos ϕA, sin 2ξA sin ϕA, cos 2ξA). (6)

FIG. 1. The systematic way to experimentally verify entangle-
ment of an arbitrary pure two-qubit state without any a priori
knowledge and in the absence of a common reference frame. The
steps of this diagram are described in detail in the main text.

Finally, the coefficients of the Schmidt basis in the stan-
dard basis are functions of components of vector 	α =
(Tx0,Ty0,Tz0)/

√
T 2

x0 + T 2
y0 + T 2

z0 built out of experimentally
accessible, local expectation values of Pauli measurements:

cos ξA =
√

1 + αz

2
, sin ξA =

√
1 − αz

2
,

(7)
cos ϕA = αx√

1 − α2
z

, sin ϕA = αy√
1 − α2

z

.

If Tz0 = ±1, the standard basis is the Schmidt basis. Note that
instead of transforming the state, we can as well transform the
measurement operators σn′ = U †σnU . The new operators are
given by

σx ′ = −αxαzσx − αyαzσy + (
1 − α2

z

)
σz√

1 − α2
z

,

(8)
σy ′ = αyσx + αxσy√

1 − α2
z

, σz′ = αxσx + αyσy + αzσz,

and the Schmidt basis is the z′ basis, i.e., σz′ = |a〉〈a| −
|a⊥〉〈a⊥|.

The equivalent analysis has to be done for the Schmidt
basis of Bob. In summary, the Schmidt bases are defined by
the direction of the Bloch vectors of the reduced states, up to a
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global phase. The global phase of |b⊥〉 shows up as a relative
phase in the Schmidt decomposition. As it is not obtainable
by local measurements, it influences entanglement detection
using operators (8).

B. Entanglement detection

Let us denote the basis established by local measurements
of Bob by {|b̃〉,|b̃⊥〉}, i.e., |b〉 = |b̃〉 and |b⊥〉 = eiδ|b̃⊥〉. Using
the locally determined bases, the Schmidt decomposition takes
the form

|ψS〉 = cos θ |a〉|b̃〉 + eiδ sin θ |a⊥〉|b̃⊥〉. (9)

The correlations that Alice and Bob observe in the measure-
ments related to locally determined bases are Tz′z′ = 1 and
Tx ′x ′ = sin 2θ cos δ, Ty ′y ′ = − sin 2θ cos δ, Tx ′y ′ = sin 2θ sin δ,
Ty ′x ′ = sin 2θ sin δ. Note that the correlation Ty ′y ′ would vanish
for cos δ = 0 and the two measurements Tz′z′ and Ty ′y ′ are no
longer sufficient (they were sufficient if the full knowledge
about the Schmidt bases had been available). In such a
case, however, the other two correlations, Tx ′y ′ and Ty ′x ′ ,
are nonzero and can be used to reveal entanglement. If the
first two measurements are not sufficient to overcome the
entanglement threshold of (2), then the third measurement of
Tx ′y ′ correlations will definitely allow exceeding the threshold
for every pure entangled state.

C. Vanishing Bloch vectors: Filtering

If the two-qubit state is maximally entangled, i.e., in the
Schmidt decomposition |κ〉 = 1√

2
(|a〉|b〉 + |a⊥〉|b⊥〉), then the

Bloch vector is of zero length, | 	T A| = 0, and the whole system
admits infinitely many Schmidt decompositions. For every
unitary operation of Alice, U , there exists an operation of
Bob, U ′, such that the state is unchanged,

U ⊗ U ′|κ〉 = |κ〉. (10)

Therefore, any basis of, say, Alice can serve as the Schmidt
basis as soon as we accordingly update the basis of Bob. Our
strategy to reveal the corresponding basis of Bob is to filter
in the chosen Schmidt basis of Alice. It is best to explain it
with an example. Assume Alice chooses the standard basis
as her Schmidt basis. Due to the mentioned invariance of the
maximally entangled state, there exists a Schmidt basis of Bob
such that

|κ〉 = 1√
2

(|0〉|b′〉 + |1〉|b′
⊥〉). (11)

The basis of Bob can be found by the filtering of Alice,
F = ε|0〉〈0| + |1〉〈1| with ε ∈ [0,1). We implemented this
operation experimentally and provide the details later. In short,
we use devices which are transparent to the |1〉 state, but
probabilistically “reflect” the |0〉 state. If we imagine that a
perfect detector is observing a port of this device where the
reflected particle travels, and we see no detection, the filter
operation is performed on the initial state. If Alice applies the
filtering on her qubit and informs Bob that the filtering was
successful, the initial state becomes

(F ⊗ 1)|κ〉 → 1√
1 + ε2

(ε|0〉|b′〉 + |1〉|b′
⊥〉). (12)

The result of filtering is that for Bob, a Bloch vector emerges
and we can again use the method described above to find his
Schmidt basis.

D. Performance

Summing up all required steps, we see that to experimen-
tally verify entanglement of any pure two-qubit state without
any further a priori knowledge requires at least 2 × 3 local
measurements to determine the Schmidt bases and, sometimes,
filtering requiring three local measurements more. Finally, two
more (or three if δ = π/2) correlation measurements allow one
to verify the entanglement criterion.

IV. DECISION TREE

Our second algorithm for entanglement detection does not
even require any initial measurements and directly applies also
to mixed states. We will split the presentation into bipartite
and multipartite cases. The decision tree provides an adaptive
method to infer the next measurement setting from previous
results.

A. Two qubits

Alice and Bob choose three orthogonal local directions
x, y, and z independently from each other and agree to only
measure correlations along these directions. In Fig. 2, we show
exemplarily which correlations should be measured in order
to detect entanglement in a small number of steps. Starting
with a measurement of Tzz, one continues along the solid
(dotted) arrow, if the correlation is higher (lower) than some
threshold value t . We performed detailed numerical analysis on
how the efficiency of entanglement detection depends on the
threshold value. The efficiency is quantified by the percentage
of entangled states detected at various steps of the decision

No.

FIG. 2. (Color online) Decision strategies to detect entanglement.
Start with a measurement of the correlation Tzz and proceed with the
correlation along the solid (dotted) arrow if the measured correlation
is higher (lower) than the chosen threshold value; here of t = 0.4. Due
to correlation complementarity, there is a good chance of detecting
entanglement in a small number of steps. The measurements in the
blue shaded area suffice to detect all maximally entangled pure states
with Schmidt-basis vectors x, y, or z.
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tree. It turns out that the efficiency does not depend much
on the threshold value and the best results are obtained for
t = 0.4. We therefore set this threshold value in all of our
simulations.

The construction of the tree is based on the principle of
correlation complementarity [13,16–18]: in quantum mechan-
ics, there exist trade-offs for the knowledge of dichotomic
observables with corresponding anticommuting operators. For
this reason, if the correlation |Tzz| is big, then correlations
|Tzx |,|Tzy |,|Txz|, and |Tyz| have to be small because their
corresponding operators anticommute with the operator σz ⊗
σz. Therefore, the next significant correlations have to lie in
the xy plane of the correlation tensor and the next step in the
tree is to measure the Tyy correlation.

In cases in which going through the whole tree did
not reveal entanglement, we augmented it with additional
measurements of correlations that were not established until
that moment. The order of the additional measurements
also results from the correlation complementarity. With
every remaining measurement, we associate the “priority”
parameter

Pij =
∑
k =i

Pij (Tkj ) +
∑
l =j

Pij (Til), (13)

which depends on the measurements of the decision tree in the
following way:

Pij (Tmn) =
{

T 2
mn if Tmn was performed before,

0 otherwise.
(14)

According to the correlation complementarity, if the value of
the corresponding parameter is small, there is a bigger chance
that this correlation is significant. Therefore, the correlations
Tij with lower values of Pij are measured first.

Let us illustrate this with the following example. The
measured correlations of the decision tree are as follows: Tzz =
0.7, Tyy = 0.6, and Txx = 0.1. Therefore, Pxy = Pyx = T 2

xx +
T 2

yy = 0.37, Pxz = Pzx = T 2
xx + T 2

zz = 0.5, and Pyz = Pzy =
T 2

zz + T 2
yy = 0.85. Accordingly, the order of the remaining

measurements is as follows: first measure xy, then yx, and
next xz,zx,yz, and zy.

B. Many qubits

Correlation complementarity, which holds also in the mul-
tipartite case, states that for a set {α1, . . . ,αk} of dichotomic
mutually anticommuting multiparty operators, the following
trade-off relation is satisfied by all physical states:

T 2
α1

+ · · · + T 2
αk

� 1, (15)

where Tα1 is the expectation value of observable α1, and so
on. Therefore, if one of the expectation values is maximal,
say Tα1 = ±1, then the other anticommuting observables
have vanishing expectation values and do not have to be
measured. In this way, we exclude exponentially many, in
number of qubits, potential measurements because that many
operators anticommute with α1, and we apply correlation
complementarity pairwise to α1 and one of the anticommuting
operators. This motivates taking only sets of commuting
operators along the branches of the decision tree that should
be followed if the measured correlations are big.

We are thus led to propose the following algorithm
generating one branch of the decision tree in which the first
measurement, called X ⊗ X ⊗ · · · ⊗ X, is assumed to have a
big expectation value.

(i) Generate all N -partite Pauli operators that commute with
X ⊗ X ⊗ · · · ⊗ X.

Such operators have an even number of local Pauli operators
different than X. Accordingly, their number is given by∑� N

2 �
j=1 22j ( N

2j ) = 1
2 (3N − 1) − Odd(N ), where Odd(N ) = 1 if

N is odd, and 0 otherwise. For example, in the three-qubit
case, the set of operators commuting with XXX consists of
12 operators: XZZ, ZZX, ZXZ, XYY , YYX, YXY , XYZ,
XZY , YXZ, YZX, ZXY , and ZYX.

(ii) Group them in strings of mutually commuting operators
that contain as many elements as possible.

We verified for N up to eight qubits (and conjecture, in
general) that the length of the string of mutually commuting
operators is L = 2N−1 + Even(N ), where Even(N ) = 1 if N is
even, and 0 otherwise. In our three-qubit example, we have the
following strings: {XXX, YXZ, XZZ, YZX}, {XXX, YYX,
XYZ, YXZ}. {XXX, XZY , YZX, YXY }, {XXX, XZZ,
ZXZ, ZZX}, {XXX, XYZ, ZXZ, ZYX}, {XXX, YXY ,
YYX, XYY }, {XXX, XYY , ZXY , ZYX}, and {XXX, ZZX,
XZY , ZXY }. We denote the number of such strings by M .

(iii) Arrange the operators within the strings and sort the
strings such that they are ordered with the same operator in the
first position, then, if possible, second, third, etc.

In this way, we produce a set of strings {S1,S2, . . . ,SM}
such that in the first position of every string, we have
Sj,1 = X ⊗ X ⊗ · · · ⊗ X; in the second position, the number
of different operators is smaller or equal to the number of
different operators in the third position, etc. After applying
that operation in the three-qubit example, we obtain {XXX,
XZZ, ZXZ, ZZX}, {XXX, XZZ, YXZ, YZX}, {XXX,
XZY , YZX, YXY }, {XXX, XZY , ZZX, ZXY }, {XXX,
XYZ, YXZ, YYX}, {XXX, XYZ, ZXZ, ZYX}, {XXX,
XYY , YXY , YYX}, and {XXX, XYY , ZXY , ZYX}.

(iv) Connect the operators of the string S1 with continuous
arrows,

S1,1 −→ S1,2 −→ · · · −→ S1,L. (16)

(v) For all other strings Sj , with j = 2, . . . ,M , check on
which position string Sj differs from Sj−1. Let us denote this
position by d. At these positions, strings are connected with
another type of arrow, yielding the tree as

Sj−1,d ��� Sj,d −→ Sj,d+1 −→ · · · −→ Sj,L. (17)

By using the strings of operators from step (iii) and
choosing some threshold as to whether to follow one or
the other string, we can now build up a decision tree, as
shown in Fig. 3. Its essential feature is that an operator with
big expectation value is followed only by the measurements
of commuting operators, irrespectively of their expectation
values.
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ijk

No.

FIG. 3. (Color online) One branch of the decision tree for three
qubits, starting with a measurement of the correlation Txxx assumed
to be big. The best efficiency is obtained for the threshold t = 0.5.

C. Bloch correlations

Finally, it would be useful to establish a measurement
suitable as a starting point of the decision tree, i.e., such that
the measured correlations have a good chance of being big. A
natural candidate is to connect both methods discussed here
and check whether the correlation measured along the Bloch
vectors of every observer (we denote it as Bloch correlations)
gives values close to the maximal correlation in a pure state. We
verified this numerically and found that the Bloch correlations
are larger than 3

4 of maximal correlations in a pure state in
100% of two-qubit states and 69% of three-qubit states, but
only in 27% of four-qubit states and 3% of five-qubit states.
Therefore, the Bloch correlations give a very good starting
point of the decision tree only for two and three qubits. We
leave it as an open question whether a simple and reliable
method exists that identifies the maximal correlations of a
pure multiqubit state.

D. Performance

Let us analyze the results on the entanglement detection ef-
ficiency for different classes of two-qubit states. As explained
in Sec. III B, at maximum, three correlation measurements are
sufficient to detect entanglement once the local Schmidt bases
of Alice and Bob are known. Here, in contrast, we study how
many correlation measurements are needed when the decision
tree is applied to an unknown entangled state.

The dependence of the efficiency of the algorithm on the
number of steps involved can be seen in Fig. 4. The efficiency
is defined by the fraction of detected entangled states with
respect to all randomly generated entangled states. For nine
steps, the algorithm detects all pure entangled states. This is
expected because Eq. (2) is a necessary and sufficient condition
for entanglement in the case of pure states. In the case of mixed
states, Fig. 4 shows how the efficiency of the algorithm scales
with the purity of the tested state. Since condition (2) is similar
to the purity of a state, obviously, the scheme succeeds the
faster a state becomes more pure.

Figure 4 also shows that the efficiency of the decision
tree grows with the amount of entanglement in a state as

No.

No.

FIG. 4. (Color online) Efficiency of the decision tree for two-
qubit random mixed states. The states were uniformly sampled
according to the Haar measure. The efficiency increases with the
purity of the state (top panel) as well as with the amount of
entanglement in a tested state (bottom panel). Note that all pure
entangled states are detected after nine steps, as well as all the states
with negativity of more than 0.2 independently of their purity. Solid
lines show the results when using the decision tree; dotted lines show
the results when using random choices for the measurements.

characterized by the negativity [19]. It turns out that the tree
detects all the states that have negativity of more than 1

5 .
We also compared the efficiency of the decision tree

algorithm to entanglement detection based on a random order
of measurements. In the first step of this protocol, Alice and
Bob randomly choose one of nine measurements that also enter
the decision tree. In the second step, they randomly measure
one of the eight remaining measurements, and so on. At each
step, condition (2) is checked for entanglement detection. Of
course, the two methods converge for higher number of mea-
surements. For a small number of measurements, the decision
tree detects entanglement roughly one step faster than the
random-measurement method. The advantage of the decision
tree with respect to a random choice of the correlations is more
pronounced for a higher number of qubits (see Sec. IV D3).

Condition (2) alone, i.e., without considering specific, state-
dependent metrics (see [11]), cannot detect all mixed entangled
states. As an illustration of how the decision tree works for
mixed states, we first consider Werner states. It turns out that
not all entangled states of this family can be detected, whereas
the following example shows a family of mixed states for
which all of the states are detected.

1. Werner states

Consider the family of states

ρ = p|ψ−〉〈ψ−| + (1 − p) 1
41, (18)

where |ψ−〉 = 1√
2
(|01〉 − |10〉) is the Bell singlet state, 1

41
describes the completely mixed state (white noise), and p is
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a probability [20]. Its correlation tensor, written in the same
coordinate system for Alice and Bob, is diagonal with entries
Txx = Tyy = Tzz = −p, arising from the contribution of the
entangled state. The states (18) are entangled if and only if
p > 1

3 , whereas the decision tree reveals the entanglement
only for p > 1√

3
≈ 0.577.

2. Entanglement mixed with colored noise

An exemplary class of density operators for which the
decision tree detects all entangled states is provided by

γ = p|ψ−〉〈ψ−| + (1 − p)|01〉〈01|, (19)

i.e., the maximally entangled state is mixed with colored noise
|01〉 bringing anticorrelations along the local z axes. For this
case, quite common for type-II parametric down-conversion
sources, we obtain the following nonvanishing elements of its
correlation tensor: Txx = Tyy = −p and Tzz = −1. Therefore,
the decision tree allows detection of entanglement in this class
of states in two steps. Note that the state is entangled already
for an infinitesimal admixture of the Bell singlet state. We also
verified numerically that for a hundred random choices of local
coordinate systems, the decision tree detects entanglement
even for p > 10−3.

3. Three and more qubits

Similarly to the two-qubit case, we also studied the
efficiency of the three-qubit decision tree of Fig. 3, as well as
similar trees for higher number of qubits. The results for three
qubits are presented in Fig. 5 and reveal that the decision tree
is roughly two steps ahead of the protocol with a random order
of measurements for small number of steps. In general, the
number of steps the decision tree is ahead of the protocol with
a random order of measurements grows exponentially with the
number of qubits (see Fig. 6). The intuition behind this is that
once big correlations are measured using the decision tree, a
set of measurements exponential in size is excluded, whereas
these measurements would still be randomly sampled in the
other protocol.

No.

FIG. 5. (Color online) Efficiency of one branch of the decision
tree for three-qubit random pure states. The states were uniformly
sampled according to the Haar measure.

No.

N
o.

FIG. 6. (Color online) Efficiency of one branch of the decision
tree for many qubits compared with a random choice of measure-
ments. The plot shows the gain in the number of measurements
provided by the decision tree. Pure states were uniformly sampled ac-
cording to the Haar measure and the percentage of detected entangled
states was calculated for different number of steps (measurements)
in the tree as well as for the random order of measurements that start
with X ⊗ · · · ⊗ X for a fair comparison. We then compare the number
of measurements for which the percentage of detected entangled
states using the decision tree is the same as using the randomized
measurements and plot here the maximal difference between them.
The improvement provided by the tree grows exponentially with the
number of qubits.

V. EXPERIMENTS

The entanglement detection schemes introduced above are
experimentally evaluated by analyzing a variety of multiqubit
entangled states. These states were created by spontaneous
parametric down conversion (SPDC). Here, for the preparation
of two-qubit entangled states, a type-I source with two crossed
optically contacted β-barium-borate (BBO) crystals of 1 mm
thickness is used; see Fig. 7 [21]. The computational basis
|0〉 and |1〉 as introduced before is encoded in the polarization
state |H 〉 and |V 〉, respectively. A continuous-wave laser diode
(Nichia Corporation) at 402 nm is used to pump the BBO
crystals with approximately 60 mW. The polarization of the

Alice

Bob

BBO

AnalysisPreparation
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PBSSM

QWP HWP

PBS

BP C
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nc
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F

F
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φ
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FIG. 7. (Color online) Scheme of the experimental type-I SPDC
source used to prepare the state 1√

2
(|HH 〉 + eiφ |V V 〉). The phase φ

can be set by an yttrium-vanadate crystal (YVO4). Spectral filtering
is performed by means of interference filters (F) and spatial filtering
by single mode fibers (SM). Half- (HWP) and quarter-wave plates
(QWP) are used for state preparation and analysis. Brewster plates
(BP) enable the performance of the filter operation and the preparation
of asymmetric states.
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pump light is oriented at 45◦, allowing one to equally pump
both crystals and to emit HH and V V polarized photon pairs
with the same probability. However, a delay longer than the
pump photon coherence length is acquired between the photon
pairs generated in the first or second crystal over the length
of the crystals, reducing their temporal indistinguishability.
Therefore, an yttrium-vanadate (YVO4) crystal of 200 μm
thickness is introduced in front of the BBOs to precompensate
for the delay and to set the phase φ between HH and
V V . Using this configuration, entangled states of the form
|�〉 = 1√

2
(|H 〉|H 〉 + eiφ|V 〉|V 〉) are generated [22].

In order to reduce the spectral bandwidth of the photon
pairs, interference filters centered at 805 nm with a bandwidth
of 7 nm are used. Spatial filtering is accomplished by coupling
the photons at corresponding points of their emission cones
into a pair of single-mode fibers. Polarization controllers allow
for the compensation of the polarization rotation of the fibers.
Then, the photons are transmitted through a set of quarter-
(QWP) and half-wave plates (HWP), allowing an arbitrary
transformation of the polarization state in each path. A set
of Brewster plates with a loss rate up to ≈60% for V and
high transmission for H polarized light can be introduced in
front of the wave plates to enable preparation of states. For
the analysis, both Alice and Bob are provided with HWP and
QWP as well as a filter (another Brewster plate) for Bob.
Photons are then projected onto |H 〉 and |V 〉 implemented by
a polarizing beam splitter (PBS) and respective detectors. Note
that local filtering can also be accomplished by a polarizer. The
output modes of the analyzing PBS are coupled into multimode
fibers connected to avalanche photon detectors (SPCM-AQ4C,
Perkin-Elmer module) with a photon detection efficiency of
≈50%. A coincidence logic is applied to extract the respective
coincidence count rates within a time accuracy of <10 ns.
The observed coincidence rate is approximately 200 s−1 and
a measurement time of 10 s per basis setting allows one to
register about 2000 events.

A. Schmidt decomposition

In order to perform the measurement in the Schmidt basis,
we first have to determine basis vectors from the Bloch
vectors observed by Alice and Bob. Let us consider the
state depicted in Fig. 8(a). The table to the left shows the
correlation tensor elements Tij with the Bloch vectors of Alice
(Bob) in the leftmost column (top row). For the application
of the Schmidt decomposition method, Alice and Bob
measure first their respective Bloch vectors (measurements
actually to be performed are indicated by the blue shaded
fields). Since they are close to 0, 	TA = (0.002,0.043,0.017)
and 	TB = (0.109,−0.029,0.029), the next step of the
algorithm is to apply local filtering, as described by the
scheme of Fig. 1. The filtered state shown in Fig. 8(b) has
nonvanishing Bloch vectors, 	TA = (0.338,−0.186,−0.136)
and 	TB = (−0.074,0.147,0.299), which can be used to find the
corresponding Schmidt basis of the shared two-qubit state.1

1It should be noted that the Bloch vectors are determined from
coincidence measurements. This is due to the low detection efficiency
of correlated photons.
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FIG. 8. (Color online) Schmidt decomposition of a maximally en-
tangled unknown state. The correlation tensor and the density matrix
are determined (a) before and (b) after applying local filtering. (c) Af-
ter removing the filter, the state can be measured in its Schmidt basis.

If the phase φ is not determined by an additional correlation
measurement, there are infinitely many such bases. As shown
in Sec. III A, one possible choice is to redefine the local basis
of Alice and Bob according to Eq. (8). Measuring along σi ′

corresponds to a projection on its eigenstates |↓〉i ′ and |↑〉i ′ .
The task now is to find the angles for the wave plates of Alice
and Bob, θ i ′

A/φi ′
A and θ i ′

B/φi ′
B , respectively. Since the PBS of

the polarization analysis shown in Fig. 9 always projects on
|H 〉 and |V 〉, the angles are calculated under the condition that
|↓〉i ′ (|↑〉i ′ ) is rotated, up to a global phase τ , to |H 〉 (|V 〉), e.g.,

FIG. 9. (Color online) If Alice wants to measure in the basis
σi′ = |↓〉i′ 〈↓|i′ − |↑〉i′ 〈↑|i′ (i = x,y,x), then the HWP and the QWP
of the polarization analysis have to be aligned such that |↓〉i′ and |↑〉i′

are detected at different outputs of the PBS. The same holds for Bob.
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TABLE I. Wave-plate settings for Alice and Bob to measure the
maximally entangled state shown in Fig. 8(a) in the Schmidt basis
and the complementary directions.

Alice Bob
λ

2
λ

4
λ

2
λ

4

σx′ 22.6◦ 25.8◦ σx′ 6.6◦ 4.6◦

σy′ −15.8◦ 13.3◦ σy′ 7.2◦ −30.6◦

σz′ −9.9◦ −12.8◦ σz′ 34.7◦ 13.5◦

for Alice

UQWP
(
θ i ′
A

)
UHWP

(
φi ′

A

)|↓〉i ′ = eiτ1 |H 〉, (20)

UQWP
(
θ i ′
A

)
UHWP

(
φi ′

A

)|↑〉i ′ = eiτ2 |V 〉, (21)

where U labels the unitary operation of the corresponding
wave plate. The angles θ i ′

A/φi ′
A and θ i ′

B /φi ′
B can be found by

(numerically) solving the equation∣∣〈H |UQWP
(
θ i ′
A

)
UHWP

(
φi ′

A

)|↓〉i ′
∣∣2 = 1, (22)

and similarly for Bob. Using this scheme, we find the angles
for Alice’s and Bob’s wave plates, such that their qubits are
measured in the primed bases, presented in Table I.

After removing the filter, Alice and Bob can now measure
in their new bases and reveal entanglement by measuring
Tz′z′ , followed by Ty ′y ′ , and possibly Ty ′x ′ . Here, the two
measurements suffice to reveal entanglement as T 2

z′z′ + T 2
y ′y ′ =

1.665 ± 0.05 > 1.
In full analogy to the previous example, it is also possible

to apply the Schmidt decomposition scheme to a nonmax-
imally entangled state, e.g., as presented in Fig. 10(a). For
using the Schmidt decomposition strategy, first both parties
agree on measuring their respective Bloch vectors, 	TA =

−0.852

0.006 0.103 −0.326

−0.045 −0.902 0.268 0.049

−0.025 −0.311 −0.145

0.286 0.002 −0.9480.186
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X´ Y´ Z´

Schmidt decomposition(b)

1

1 B
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Re( )
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−0.026 0.431 −0.571

−0.213 0.638 −0.312−0.681
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X Y Z
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a
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a b

−
−

−

FIG. 10. (Color online) Schmidt decomposition of a nonmaxi-
mally entangled state. (a) The correlation tensor and density matrix
are displayed for an unknown asymmetric state. (b) The state has
nonzero Bloch vectors enabling one to determine the corresponding
Schmidt basis for which the measured correlations are maximal.

TABLE II. Wave-plate settings for Alice and Bob to measure the
asymmetric state shown in Fig. 10(a) in the Schmidt basis and the
complementary directions.

Alice Bob
λ

2
λ

4
λ

2
λ

4

σx′ 0.7◦ 0.8◦ σx′ 21.9◦ 9.4◦

σy′ −13.5◦ 17.9◦ σy′ 40.0◦ −55.0◦

σz′ −35.2◦ −27.0◦ σz′ 42.0◦ 3.3◦

(0.072,−0.026,−0.213) and 	TB = (−0.201,0.279,0.012). As
they already can be distinguished from noise, Alice and
Bob can find the Schmidt bases without applying the filter
operation. The angle settings of the wave plates for analyzing
in the Schmidt bases are again calculated using (22) and are
shown in Table II. Again, the state is proved to be entangled
after only two correlation measurements since T 2

z′z′ + T 2
y ′y ′ =

1.624 ± 0.047 > 1; see Fig 10(b).

B. Decision tree

1. Two qubits

Let us first consider the two states analyzed above using
Schmidt decomposition. For the first state (Fig. 8), we
see that a direct application of the decision tree shown in
Fig. 2 would require four correlation measurements to reveal
entanglement, namely, T 2

zz + T 2
yy + T 2

xz + T 2
zx = (−0.350)2 +

0.6402 + 0.5992 + 0.6152 = 1.33 ± 0.03 > 1. Similarly, the
analysis of the second state (Fig. 10) would re-
quire four correlation measurements to determine en-
tanglement, namely, T 2

zz + T 2
yy + T 2

xx + T 2
xz = (−0.312)2 +

0.5822 + 0.5792 + 0.6222 = 1.158 ± 0.030 > 1. This shows
that quite a few more correlation measurements are needed
when using the decision tree. Yet, it saves measuring the Bloch
vectors and filtering operations. To illustrate the entanglement
detection scheme, we further apply it to a selection of
maximally entangled states (Fig. 11) and to nonmaximally
entangled states (Fig. 12).

For didactical reasons, the full correlation tensors are
depicted, in both cases. In order to reveal entanglement,
the decision tree requires the measurement of a number of
correlations much smaller than needed to reconstruct the full
density matrix. Following the lines as described in Sec. IV,
only correlation measurements shaded red are required to
detect entanglement. As an example, let us consider the state

1√
2
(|RR〉 + |LL〉) [Fig. 11(g)], for which a measurement of

the two correlations Tzz = 0.905 and Tyy = 0.977 suffices to
reveal entanglement since T 2

zz + T 2
yy = 1.773 ± 0.039 > 1. In

contrast, for the state 1√
2
(|RP 〉 + i|LM〉) [Fig. 11(e)], the

algorithm only stops after six steps, as the measurements
of Tzz = −0.089, Tyy = −0.091, Txx = 0.099, Tzx = −0.194,
Txz = 0.941, and Tyx = 0.961 are required to beat the thresh-
old, i.e., 1.872 ± 0.058 > 1. A similar reasoning is applied to
reveal entanglement of other two-qubit states.

The entanglement detection scheme is further applied to
a selection of nonmaximally entangled states (Fig. 12). As
an example, let us consider the state 0.83|LH 〉 + 0.56i|RV 〉
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FIG. 11. (Color online) Application of the decision tree on a selection of maximally entangled states, allowing one to determine the
entanglement of the state by measuring the correlations marked in red. As an alternative, local filtering is applied in order to extract the
correlations with maximal value (blue correlations).

[Fig. 12(c)], for which our method reveals entanglement after
four steps, as the measurements of Tzz = 0.007, Tyy = 0.069,
Txx = −0.801, and Tyz = −0.968 give a value of 1.583 ±
0.067 > 1. Similarly, as expected, for a separable state such
as |HH 〉 [Fig. 12(f)], our entanglement criterion delivers a
value of

∑3
k,l=1 T 2

kl = 0.964 ± 0.062 < 1 for measuring all
correlations, not revealing entanglement clearly. These states,
of course, can be analyzed also using Schmidt decomposition.

For maximally entangled states, the Bloch vectors after local
filtering are also shown (blue color; see Fig. 11), while for
nonmaximally entangled states (Fig. 12), no local filtering is
required since the Bloch vectors are already nonvanishing. In
all cases, only one entry of the respective Bloch vectors is
large compared to the others. Therefore, no realignment of
the analyzers is necessary. Due to Schmidt decomposition, the
decision tree should start with a correlation measurement along
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FIG. 12. (Color online) Application of the decision tree on a selection of nonmaximally entangled states, allowing one to determine the
entanglement of the state by measuring the correlations marked in red. Due to the asymmetry of the states, local filtering is unnecessary, and
the information on the Bloch vectors can be used to detect entanglement with a maximal number of three correlation measurements (blue
correlations). (f) For a product state, the full set of correlations does not reveal entanglement, as it should be.

a direction in which we see a big local expectation value. In
such a case, it is sufficient to cyclically relabel the required
measurements as defined for the original decision tree.
Following this method, it is possible to detect entanglement
with a maximum number of three steps. The first correlation to
be measured is determined by the Bloch vectors after applying
local filtering.

2. Many qubits

For the demonstration of multiqubit entanglement detec-
tion, we use a family of three-photon polarization entangled
Gdańsk (G) states [23] and the four-qubit Dicke state. The G
states are defined by

|G(α)〉 = cos(α)|W 〉 + sin(α)|W 〉, (23)

where |W 〉 = 1√
3
(|HHV 〉 + |HV H 〉 + |V HH 〉), and in or-

der to obtain |W 〉, one exchanges H and V . The four-qubit
Dicke state with two “excitations” reads

∣∣D(2)
4

〉 = 1√
6

(|HHV V 〉 + |HV HV 〉 + |V HHV 〉
+|HV V H 〉 + |V HV H 〉 + |V V HH 〉). (24)

Generalized three-qubit G state. In order to observe these
states, a collinear type-II SPDC source together with a linear

setup to prepare the four-photon Dicke state D
(2)
4 is used

[24,25]. The three-photon state is obtained if the
first photon is measured to be cos(α)|H 〉 + sin(α)|V 〉
polarized.

The protocol for entanglement detection starts with ob-
servers locally measuring the polarization of their respective
photons, enabling them to individually determine the Bloch
vectors.

(i) For the G(π/4) state, we obtain Ti00 = (0.636,

−0.008,−0.015), T0j0 = (0.623,−0.092,0.010), and T00k =
(0.636,0.070,0.022). The Bloch vectors suggest that the
correlation Txxx is big. Therefore, the decision tree starts with
the measurement of Txxx = 0.904 ± 0.025 and continues with
Txzz = −0.578 ± 0.025 (see Fig. 3). These two measurements
already prove entanglement because T 2

xxx + T 2
xzz = 1.152 ±

0.038 > 1.
(ii) For the W state, G(π/2), the Bloch vectors are Ti00 =

(0.016,−0.070,0.318), T0j0 = (−0.010,−0.073,0.308), and
T00k = (−0.011,−0.0547,0.319), which suggests that now the
correlation Tzzz is big. Indeed, we observe Tzzz = −0.882 ±
0.025. The decision tree is the same as above, but with local
axes renamed as follows: x → z → y → x. Therefore, the
second measurement has to be Tzyy . With Tzyy = 0.571 ±
0.025, we again prove entanglement as T 2

xxx + T 2
zyy = 1.104 ±

0.037 > 1.
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Four-qubit Dicke state. Here, we have vanishing
Bloch vectors, Ti000 = (−0.020,−0.016,0.007), T0j00 =
(−0.011,−0.029,0.014), T00k0 = (−0.018,−0.020,−0.004),
and T000l = (−0.009,−0.022,0.008). We construct a
set of mutually commuting operators, which form the
first branch of the four-qubit decision tree starting with
Tzzzz{zzzz → zzxx → zxzx → zxxz → xzxz → xxzz →
xzzx → xxxx → yyyy}. After measuring the correlations,
Tzzzz = 0.848 ± 0.025, Tzzxx = −0.533 ± 0.025, Tzxzx =
−0.552 ± 0.025, our algorithm succeeds since T 2

zzzz +
T 2

zzxx + T 2
zxzx = 1.3082 ± 0.041 > 1.

VI. CONCLUSIONS

The entanglement of arbitrary multiqubit states can be
efficiently detected based on two methods described here.
Both methods employ a criterion based on the sum of squared
correlations. Combining this with an adaptive determination
of the correlations to be measured allows one to succeed
much faster than standard tomographic schemes. The first
one, particularly designed for two-qubit states, determines
the Schmidt decomposition from local measurements only,

where at most three correlation measurements are sufficient
for entanglement detection. The second one employs a
decision tree to speed up the analysis. Its design is based on
correlation complementarity and prevents one from measuring
less informative correlations. The performance of the scheme
is numerically analyzed for arbitrary pure states and, in the
two-qubit case, for mixed states. The schemes succeed, on
average, at least one step earlier as compared with random
sampling on two-qubit states, with an exponentially increasing
speedup for a higher number of qubits. Our results encourage
the application of these schemes in state-of-the-art experiments
with quantum states of increasing complexity.
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