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We introduce an experimental procedure for the detection of quantum entanglement of an unknown

quantum state with a small number of measurements. The method requires neither a priori knowledge of

the state nor a shared reference frame between the observers and can thus be regarded as a perfectly state-

independent entanglement witness. The scheme starts with local measurements, possibly supplemented

with suitable filtering, which essentially establishes the Schmidt decomposition for pure states.

Alternatively we develop a decision tree that reveals entanglement within few steps. These methods

are illustrated and verified experimentally for various entangled states of two and three qubits.
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Introduction.—Entanglement is the distinguishing fea-
ture of quantum mechanics and it is the most important
resource for quantum information processing [1,2]. For
any experiment it is thus of utmost importance to easily
reveal entanglement, ideally with as little effort as
possible. Common methods suffer from disadvantages.
On the one hand, employing the Peres–Horodecki cri-
terion [3,4] or evaluating entanglement measures, one
can identify entanglement in arbitrary states; however,
it requires full state tomography. On the other hand,
various entanglement witnesses [4–10] can be deter-
mined with much fewer measurements, but they give
conclusive answers only if the state under investigation
is close to the witness state; i.e., they require a priori
knowledge.

Recently, it has been shown that the existence of entan-
glement can be inferred from analyzing correlations among
the measurement results on the subsystems of a quantum
state. The properly weighted sum of correlations will over-
come characteristic thresholds only if the state is entangled
[11]. Here we further develop this approach to obtain a
simple and practical method to detect entanglement of all
pure states and some mixed states by measuring only a
small number of correlations. Since the method is adaptive,
it does not require a priori knowledge of the state nor a
shared reference frame between the possibly remote ob-
servers, and thus it greatly simplifies the practical applica-
tion. We describe two schemes. The first one essentially
can be seen as a direct implementation of Schmidt decom-
position, which identifies the maximal correlation directly.
For bipartite pure systems, this approach can be divided
conceptually into two stages: (i) calibration that establishes
the experimental Schmidt decomposition [12,13] of a pure
state by local measurements and suitable filtering and
(ii) two correlation measurements to verify the entangle-
ment criterion. The second scheme shows how to use a

decision tree to obtain a rapid violation of the threshold,
thereby identifying entanglement.
Entanglement criterion.—For a two-qubit quantum state

�, Alice and Bob observe correlations between their local
Pauli measurements �k and �l, respectively. They are
defined as the expectation values of the product of the
two measurements, Tkl ¼ Tr½�ð�k � �lÞ�, with the so-
called correlation tensor elements Tkl 2 ½1;�1�. The local
values Tk0 (T0l), with �0 being the identity operator, form
the local Bloch vector of Alice (Bob). Using these mea-
surements, a sufficient condition for entanglement can
be formulated as [11,14]:

X
k;l¼x;y;z

T2
kl > 1 ) � is entangled: (1)

For pure states this is also a necessary condition, while for
mixed states care has to be taken. For mixed states, the
likelihood of detecting the entanglement decreases with
purity [15]. An extension of (1) can generally identify
entanglement of an arbitrary mixed state, however, then
losing the state independence [11,16]. Note two important
facts. First, Eq. (1) can be seen as a state-independent
entanglement witness, derived without any specific family
of entangled states in mind. Second, to test whether the
state is entangled, it is sufficient to break the threshold;
i.e., it is neither required to measure all correlations nor to
compute the density matrix [17]. Rather, it is now the goal
to find strategies that minimize the number of correlation
measurements. We show how this can be done by a
particularly designed decision tree, or by identifying a
Schmidt decomposition from local results and filtering
when necessary.
Schmidt decomposition.—Consider pure two-qubit

states. Any such state has a Schmidt decomposition
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jc Si ¼ cos�jaijbi þ sin�ja?ijb?i; � 2
�
0;
�

4

�
; (2)

where the coefficients are real and the local bases fjai,
ja?ig and fjbi, jb?ig are called the Schmidt bases. Once the
bases are known, Alice constructs her local measurements
�z0 ¼ jaihaj � ja?iha?j and �y0 ¼ ija?ihaj � ijaiha?j,
and so does Bob in analogy. They can now detect entan-
glement with only two correlation measurements because
T2
z0z0 þ T2

y0y0 ¼ 1þ sin22� > 1 for all pure entangled

states. Note, the laboratories are not required to share a
common reference frame.

In order to extract the Schmidt bases from experimental
data, one starts with local measurements, determining the

local Bloch vectors ~�ð ~�Þ of Alice (Bob). (Those vectors

are related to the correlation tensor coefficients via �i ¼
Ti0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
x0 þ T2

y0 þ T2
z0

q
.) We consider two cases. First, sup-

pose that a pure state has nonvanishing local Bloch vectors.
Their directions define the Schmidt bases of Alice and Bob
up to a global phase�. Writing these bases in the computa-
tional basis

jai ¼ cos�Aj0i þ ei’A sin�Aj1i;
ja?i ¼ sin�Aj0i � ei’A cos�Aj1i;
jbi ¼ cos�Bj0i þ ei’B sin�Bj1i;

jb?i ¼ ei�ðsin�Bj0i � ei’B cos�Bj1iÞ; (3)

we see that the required coefficients can be inferred di-
rectly from the local Bloch vectors, ~� ¼ ðsin2�A cos’A;
sin2�A sin’A; cos2�AÞ on Alice’s side, and similarly for
Bob. The global phase of jb?i shows up as the relative

phase in the decomposition (2); i.e., jc Si ¼ cos�jaijbi þ
sin�ei�ja?ij~b?i (with jb?i ¼ ei�j~b?i). It can be deter-

mined, for example, from the Tyy correlation as cos� ¼
Tyy=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T2

x0 � T2
y0 � T2

z0

q
. If Bob would use the basis

fjbi; j~b?ig to build his observables �z00 and �y00 , the corre-

sponding correlations Ty0y00 ¼ sin2� cos�would vanish for

cos� ¼ 0 and the two measurements Tz0z00 and Ty0y00 would

not suffice to detect entanglement. In such a case, however,
the other two correlations, Tx0y00 and Ty0x00 , are nonzero, and

can be used to reveal entanglement. Therefore, the deter-
mination of � in the calibration is not essential if one
accepts possibly one more correlation measurement.

Second, in the case of vanishing local Bloch vectors, the
pure state under consideration jc mi is maximally en-
tangled and admits infinitely many Schmidt decomposi-
tions. In order to truly prove entanglement, Bob can thus
freely choose some basis, say computational basis, for
which the state will now be of the form jc mi ¼ 1ffiffi

2
p �

ðjaij0i þ ja?ij1iÞ. The basis of Alice can be found after
filtering by Bob in his Schmidt basis: F ¼ j0ih0j þ "j1ih1j.
(For an actual implementation, see the experimental

section.) When Bob informs Alice that his detector behind
the filter clicked, the initial state becomes

ð1 � FÞjc mi ! 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ "2

p ðjaij0i þ "ja?ij1iÞ: (4)

Note that, due to filtering, a nonvanishing local Bloch
vector emerges for Alice. Thus, the respective Schmidt
basis can be found with the method described above and
used for the evaluation of T2

z0z þ T2
y0y.

Decision tree.—Our second algorithm for entanglement
detection does not even require calibration and also applies
directly to mixed states. Alice and Bob choose three or-
thogonal local directions x, y, and z independently from
each other and agree to only measure correlations along
these directions. In Fig. 1 we show exemplarily which
correlations should be measured in order to detect entan-
glement in a small number of steps. Starting with a mea-
surement of Tzz, one continues along the solid (or dotted)
arrow if the correlation is higher (or lower) than some
threshold value (e.g., 1=2 in Fig. 1). The tree is based on
the principle of correlation complementarity [19–22]: in
quantum mechanics there exist trade-offs for the knowl-
edge of dichotomic observables with corresponding anti-
commuting operators. For this reason, if the correlation
jTzzj is big, correlations jTzxj, jTzyj, jTxzj, and jTyzj have to
be small, because their corresponding operators anticom-
mute with the operator �z � �z. Therefore, the next
significant correlations have to lie in the xy plane of the
correlation tensor, and thus the tree continues with a
measurement of the Tyy correlation. This concept can be

FIG. 1 (color online). The decision tree for efficient two-qubit
entanglement detection. No shared reference frame is required
between Alice and Bob; i.e., they choose their local x, y, z
directions randomly and independently, which effectively gives
rise to a basis fxA; yA; zAg for Alice and fxB; yB; zBg for Bob
(not detailed in the figure or the main text). The scheme starts
with measuring Tzz and follows at each step along the dashed
arrow if the modulus of correlation is less than 1

2 and otherwise

along the continuous arrow. The algorithm succeeds as soon asP
T2
ij > 1. The measurements in the blue shaded area suffice to

detect all maximally entangled pure states with Schmidt-base
vectors along x,y, or z.
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generalized to multiqubit states. A decision tree for three
qubits is given in the Supplemental Material [15]. The
number of detected states grows with the number of steps
through the decision tree. Since condition (1) is similar to
the purity of a state, the scheme succeeds faster the more
pure a state is (see Supplemental Material [15] for detailed
analysis). Varying the threshold value does not lead to any
significant changes in the statistic of detected states.

Finally, we connect both methods discussed here for the
analysis of multiqubit states. A numerical simulation for
pure states reveals that the correlation measurement along
local Bloch vectors gives correlations close to the maximal
correlations in more than 80% of cases. Therefore, these
local directions give an excellent starting point for the
decision tree.

Experiment.—For the demonstration of these new sim-
ple analysis methods we first use two photon-polarization
entangled states. In the following, we will thus replace the
computational basis states by horizontal (j0i ! jHi) and
vertical (j1i ! jVi) linear polarization, respectively. The
photon source (Fig. 2) is based on the process of sponta-
neous parametric down-conversion (SPDC), using a pair of
crossed type I cut�-barium-borate (BBO) crystals pumped
by a cw laser diode at a wavelength of 	pump ¼ 402 nm,

with linear polarization of 45�. It emits pairs of horizon-
tally and vertically polarized photons that superpose to the
state j�i ¼ 1ffiffi

2
p ðjHijHi þ ei
jVijViÞ [23]. The spectral

bandwidth of the photons is reduced to 5 nm using inter-
ference filters, and two spatial emission modes are selected
by coupling the photon pairs into two separate single-mode
fibers.

For the purpose of preparing any pure two-qubit state,
the polarization of each photon can be rotated individually
by a set of quarter- (QWP) and half-wave plates (HWP) in
each mode. By tilting an yttrium vanadate crystal (YVO4)
in front of the BBOs, the relative phase 
 among the
photon pairs can be set. Additionally, the state can be
made asymmetric by removing a portion of vertically
polarized light in one spatial mode with a Brewster plate

(BP). In the last step of the experiment, the polarization
of each photon is analyzed with additional quarter- and
half-wave plates and projection on jHi and jVi using a
polarizing beam splitter (PBS). The local filtering of a
maximally entangled state can be accomplished by placing
a Brewster plate in front of the analysis wave plates. This
Brewster plate reflects with a certain probability vertically
polarized photons and, together with detection of a photon
behind the Brewster plate, implements the filtering opera-
tion (4). Finally, the photons are detected by fiber-coupled
single-photon detectors connected to a coincidence logic.
Experimental Schmidt decomposition.—Let us consider

the state shown in Fig. 3(a). The protocol starts with Alice
and Bob locally measuring the polarization of the photons,
enabling them to individually determine the local Bloch
vectors. For high efficiencies, which are possible in experi-
ments with atoms or ions, the local measurements can
indeed be done independently [24]. If nonvanishing local
Bloch vectors can be identified, one can proceed to the next

FIG. 2 (color online). Scheme of the experimental setup. The
state j�i ¼ 1ffiffi

2
p ðjHijHi þ ei
jVijViÞ is created by type I SPDC

process. An yttrium vanadate crystal (YVO4) is used to manipu-
late the phase 
 of the prepared state. For preparation and
analysis of the state, half- (HWP) and quarter-wave plates
(QWP) are employed. Brewster plates (BP) can be introduced
to make the state asymmetric and to perform the filter operation,
respectively.
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FIG. 3 (color online). Demonstration of Schmidt decomposi-
tion of a maximally entangled state prepared in unknown bases.
The correlation tensor and corresponding density matrix are
depicted for (a) the unknown state, (b) the state after applying
local filtering, and (c) the state analyzed in the Schmidt bases. It
is important to note that only the blue shaded elements of the
correlation tensors will be measured, as this suffices to prove
entanglement. The full correlation tensors and the corresponding
states are only shown for completeness and didactic reasons.
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step. For the example here, the local expectation values are
close to zero and filtering has to be applied. By using a
Brewster plate in front of Bob’s analysis wave plate, local
Bloch vectors emerge as long as the filtering operation is
successful [Fig. 3(b)] [25]. In this case, we obtain T0l ¼
ð0:000; 0:040; 0:334Þ and Tk0 ¼ ð0:188;�0:034; 0:336Þ.

In the next step, Alice and Bob use their local Bloch
vectors to realign their analyzers to the new local Schmidt

bases fjai, ja?ig and fjbi, j~b?ig, respectively. This process
diagonalizes the correlation tensor, as depicted in Fig. 3(c).
Therefore, it is only necessary to measure Tz0z00 ¼ 0:922�
0:015 and Ty0y00 ¼ �0:864� 0:015 to prove entanglement,

since T2
z0z00 þT2

y0y00 ¼1:597�0:038>1. Hence, 2�3 local

measurements are needed in the first step of the algorithm,
three combined measurements are needed for filtering if
necessary, and finally only two correlation measurements
have to be performed for entanglement detection.

Application of the decision tree.—In order to demonstrate
the application of the decision tree, we will apply it to three
states. For the first state 1ffiffi

2
p ðjHijHiþjVijViÞ, whose corre-

lation tensor is depicted in Fig. 4(a), the decision tree (Fig. 1)
starts with the measurement of the correlation Tzz ¼
0:980� 0:015 and continues with Tyy¼�0:949�0:015.

These two measurements already prove entanglement
since T2

zz þ T2
yy ¼ 1:869� 0:041> 1. For a second state,

1ffiffi
2

p ðjRijRiþijLijLiÞ, we obtain a correlation of Tzz ¼
�0:056� 0:015, close to zero [Fig. 4(b)]. Consequently,
the next steps according to our algorithm (Fig. 1) are to
determine the correlation Tyy ¼ 0:978� 0:015, followed

by Txz ¼ �0:959� 0:015, with their squares adding up to

a value of 1:879� 0:041> 1 and hence proving entangle-
ment. As a last example, we consider the initial state of
Fig. 3. According to our decision tree, we need to measure
Tzz ¼ 0:768� 0:015, Tyy ¼ 0:018� 0:015, and Tyx ¼
�0:922� 0:015, thus giving a value of 1:440� 0:036> 1
and proving entanglement with only three steps.
Many qubits.—For the demonstration of multiqubit en-

tanglement detection,we use two three-photon, polarization-
entangled states: theW state [26] and theG state [27] (Fig. 5).
In order to observe these states, a collinear type II SPDC
source is used togetherwith a linear setup to prepare the four-

photon Dicke state Dð2Þ
4 [28,29]. Once the first photon is

measured to be vertically polarized, the other three photons
are projected into the W state. Similarly, the three-photon
G state is obtained if the first photon is measured to beþ45�
polarized.
The protocol for entanglement detection starts with

observers locally measuring the polarization of the photons,
enabling them to individually determine the local
Bloch vectors. For the G state we obtain Ti00¼
ð0:636;�0:008;�0:015Þ, T0j0¼ð0:623;�0:092;0:010Þ, and
T00k¼ð0:636;0:070;0:022Þ. The local Bloch vectors suggest
that the correlation Txxx is big. Therefore, the decision tree
starts with the measurement of Txxx ¼ 0:904� 0:025 and
continues with Txzz ¼ �0:578� 0:025 (see Fig. 2 in the
Supplemental Material [15]). These two measurements al-
ready prove entanglement because T2

xxx þ T2
xzz ¼ 1:152�

0:038> 1. For the W state, the local Bloch vectors Ti00 ¼
ð0:016;�0:070; 0:318Þ, T0j0 ¼ ð�0:010;�0:073; 0:308Þ,
and T00k ¼ ð�0:011;�0:0547; 0:319Þ suggest that now the
correlation Tzzz is big. Indeed, we observe Tzzz ¼ �0:882�
0:025. The decision tree is the same as above but with local
axes renamed as follows: x ! z ! y ! x. Therefore, the
second measurement has to be Tzyy. With Tzyy ¼ 0:571�
0:025, we again prove entanglement as T2

xxx þ T2
zyy ¼

1:104� 0:037> 1.
Conclusions.—We discussed and experimentally imple-

mented two methods for fast entanglement detection for
states about which we have no a priori knowledge. They
are well suited for quantum communication schemes as the
parties do not have to share a common reference frame,
making the scheme insensitive to a rotation of the qubits
during their transmission to the distant laboratories.
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FIG. 4 (color online). Correlation tensors and density matrices
of the experimental realization of two different states. The imagi-
nary parts of the density matrices are negligible and therefore
skipped. Using the decision tree, only the blue shaded correlations
have to be measured for detecting entanglement. The errors of the
correlations are <0:015 for (a) and <0:023 for (b).

FIG. 5 (color online). Density matrices of the experimental
realization of the G andW state. The corresponding fidelities are
equal to 92.23% and 89.84%.
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The two methods use a particularly simple and practical
entanglement identifier [11]. One of them can be seen as
experimental Schmidt decomposition and the other estab-
lishes a sequence of correlation measurements, leading to
entanglement detection in a small number of steps.
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[19] P. Kurzyński, T. Paterek, R. Ramanathan, W. Laskowski,
and D. Kaszlikowski, Phys. Rev. Lett. 106, 180402 (2011).

[20] G. Toth and O. Gühne, Phys. Rev. A 72, 022340 (2005).
[21] S. Wehner and A. Winter, J. Math. Phys. (N.Y.) 49, 062105

(2008).
[22] S. Wehner and A. Winter, New J. Phys. 12, 025009 (2010).
[23] P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and

P. H. Eberhard, Phys. Rev. A 60, R773 (1999).
[24] Due to the low efficiency of the SPDC setup we have to

use coincidence counts here. Using only the single counts,
the local Bloch vector of Alice is slightly different. In this
example we obtain T0l ¼ ð�0:073;�0:091;�0:059Þ and
Tk0 ¼ ð0:031; 0:041; 0:037Þ.

[25] This in consequence means, that for the filtering Alice and
Bob have to communicate with each other and hence this
measurement is not local.

[26] jWi ¼ ðjHHVi þ jHVHi þ jVHHiÞ= ffiffiffi
3

p
; W. Dür, G.

Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314 (2000).
[27] jGi¼ ðjWiþj �WiÞ= ffiffiffi

2
p

, where j �Wi ¼ ðjVVHi þ jHVVi þ
jVHViÞ= ffiffiffi

3
p

; A. Sen(De), U. Sen, and M. Żukowski, Phys.
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