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Loophole-free Bell test with one atom and less than one photon on average
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We consider the entanglement between two internal states of a single atom and two photon number states
describing either the vacuum or a single photon and thus containing, on average, less than one photon. We
show that this intriguing entanglement can be characterized through substantial violations of a Bell inequality by
performing homodyne detections on the optical mode. We present the experimental challenges that need to be
overcome to pave the way toward a loophole-free Bell test.
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I. INTRODUCTION

Is quantum physics a complete theory, or does the descrip-
tion of nature’s laws require local-hidden-variable theories?
The answer to this question, which was asked by Einstein,
Podolsky, and Rosen in 1935, can be found by realizing
a Bell test [1]. On the one hand, two distant observers,
who have performed appropriate measurements on entangled
photon pairs, have observed correlated results violating a Bell
inequality even though the measurement choices were made
long after the pair creation [2] and even though the photons
were too far from each other to agree on the results once
they knew the measurement basis [3]. On the other hand,
two ions close to each other have also exhibited the violation
of a Bell inequality even though they were forced to give a
result at each trial [4]. But to constitute a definitive answer, it
would be necessary to close all the loopholes in the same Bell
experiment, i.e., to perform a Bell test both at a distance and
with high detection efficiencies.

Closing the detection loophole for the Clauser-Horne-
Shimony-Holt (CHSH) inequality [5] requires overall detec-
tion efficiencies larger than 82.8% for a maximally entangled
state and larger than 66.7% using partially entangled states
[6] in the absence of other imperfections. This threshold
detection efficiency can further be lowered using states with
a dimension higher than qubits. For example, in Ref. [7], it
has been shown that a detection efficiency of 61.8% can be
tolerated using four-dimensional states and a four-setting Bell
inequality. However, considering realistic noise, achievable
coupling into the quantum channel (usually an optical fiber),
and detection efficiencies, one rapidly becomes aware that
closing the detection loophole in an optical Bell test is
extremely challenging.

The problem of the single-photon detection efficiency might
be circumvented by using homodyne measurements, which
are known to be very efficient [8–10]. In this framework,
theoretical proposals leading to substantial violations of Bell’s
inequalities and combining feasible states and measurements
have been put forth recently [11].

An attractive alternative is to use an asymmetric con-
figuration involving, e.g., atom-photon entanglement. Since
the atom can be detected with an efficiency close to 1, the
detection efficiency on the photon side is lower than the case
wherein the detections at both sides are inefficient [12,13]—
as low as 50% for the CHSH inequality and 43% for a

three-setting inequality. Furthermore, the photon is naturally
used to distribute entanglement over long distances so that the
choice of the measurement on one side and the measurement
result on the other side can easily be spacelike separated. Note
that the entanglement between internal states of an atom and
the polarization degree of freedom of a photon have already
been observed experimentally [14–16]. Such entanglement
has further been used to entangle remote atoms from an
entanglement-swapping operation [17]. We focus on the
entanglement between internal states of an atom and a partially
filled optical mode, containing on average less than one photon,
as described in detail in Sec. II. We propose Bell-type scenarios
either combining a homodyne detection and a photon counting
on the optical mode or using homodyne detections only to
characterize this special entanglement. Although homodyne
detections are used, we show in Sec. III that unexpectedly large
violations of the CHSH inequality can be observed. We also
present a feasibility study in Sec. IV. We provide the minimal
entanglement generation and photon-counting efficiencies that
are required to close the detection loophole. We then give the
typical distance that is necessary to close the locality loophole.
We also take the branching ratios into account, we analyze the
effect of the atomic motion, and we present the requirement
on the optical-path-length stability. The last section is devoted
to the conclusion.

II. ENTANGLEMENT CREATION BETWEEN ONE ATOM
AND LESS THAN ONE PHOTON

Let us start with a description of the methods enabling
the creation of entanglement between two atomic states
and a single optical mode containing on average less than
one photon. Consider an atom with a lambda-type level
configuration (as depicted in Fig. 1), initially prepared in the
state g. A pump-laser pulse with the Rabi frequency � partially
excites the atom in such a way that it can spontaneously decay
to the level s by emitting a photon [18]. Long after the decay
time of the atom, the atom-photon state is given by

ψφ = cos θ |g,0〉 + eiφ sin θ |s,1〉, (1)

where θ = 1
2

∫
ds�(s) refers to the area of the pump pulse.

The phase term is defined by φ = kprp − ksrs , where kp

(and ks) correspond to the wave vector of the pump (and the
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FIG. 1. Basic level scheme for the creation of entanglement
between one atom and one optical mode containing on average less
than one photon. The branching ratio is such that when the atom is
excited, it decays preferentially in s.

spontaneous photon) and rp (and rs) are the atom position
when the pump photon is absorbed (and the spontaneous
photon is emitted). Note that φ may vary in practice, e.g., due
to atom-position variations. The requirements for the phase
stability are studied in detail below, but we first answer this
question: can the entanglement between an atom and a partially
filled optical mode be measured from the violation of a Bell
inequality?

III. HOMODYNE DETECTIONS IN AN ASYMMETRIC
BELL TEST

A. Principle of the Bell test

First, let us recall the principle of a Bell-CHSH test. Two
distant observers, usually named Alice and Bob, share a
quantum state. Each of them randomly chooses a measurement
among two projectors, {Xi} for Alice and {Yj } for Bob, where
i,j ∈ [1,2], and each obtains a binary result, {ai} and {bj }
for Alice and Bob, respectively. By repeating the experiment
several times, Alice and Bob can compute the conditional
probabilities p(aibj |XiYj ). They can then easily deduce the
value of the CHSH parameter

S = EX1Y1 + EX1Y2 + EX2Y1 − EX2Y2 , (2)

where E(XiYj ) = p(ai = bj |XiYj ) − p(ai �= bj |XiYj ).
Alice and Bob will conclude that the observed correlations
cannot be described by local-hidden-variable theories if they
find measurement settings such that S > 2. Note that all
possible states leading to a violation of a Bell inequality are
entangled. Therefore, a Bell test can be seen not only as a test
of the laws of nature but also as a witness of entanglement.

B. Bell test with one atom and less than one photon

Now, consider the specific case in which Alice and Bob
share a state of the form (1). Alice applies projective measure-
ments on the atomic states and can freely choose projections on
arbitrary vectors −→vj = cos αj

2 |g〉 + eiϕj sin αj

2 |s〉 of the Bloch
sphere. For each measurement Xj, j = 1,2, and Alice sets
aj = +1 if she gets a result along −→vj and aj = −1 if the
result is directed along −→vj

⊥. Bob applies measurements on the
optical mode and chooses either to count the photon number
Y1 = n or to measure the quadrature Y2 = cos ζ X̂ + sin ζ P̂ .

When he measures n, he naturally sets b1 = +1 if the result is

positive and b1 = −1 if there is no photon. When he performs
the quadrature measurement, he gets a real number x. He then
has to process this result to get binary outcomes. He decides
to attribute the results b2 = −1 if the result is negative (x � 0)
and b2 = +1 otherwise.

We now show that Alice and Bob can obtain a substantial
violation of the CHSH inequality for appropriate settings. But
let us first detail the calculation of probability distributions
p(aibj |XiYj ) for the four pairs of measurements separately.
When Bob measures n, he gets b1 = −1 with the probability
cos2 θ , and Alice’s qubit is projected into |g〉. Therefore,

p(+1, − 1|XjY1) = cos2 θ |〈−→vj |g〉|2 = cos2 θ

(
1 + cos αj

2

)
.

Similarly,

p(−1, − 1|XjY1) = cos2 θ |〈−→vj
⊥|g〉|2

= cos2 θ

(
1 − cos αj

2

)
.

Following similar lines for b1 = +1, one finds

p(aj , + 1|XjY1) = sin2 θ

(
1 − aj cos αj

2

)
,

leading to

EXj Y1 = − cos αj . (3)

When Bob measures Y2 and obtains b2 = −1, Alice’s state is
projected into

ρA
b2=−1 = cos2 θ

∫ 0

−∞
dx |
0(x)|2 |g〉〈g|

+ 1

2
sin 2θe−iφeiζ

∫ 0

−∞
dx
∗

1(x)
0(x)|g〉〈s|

+ 1

2
sin 2θeiφe−iζ

∫ 0

−∞
dx
∗

0(x)
1(x)|s〉〈g|

+ sin2 θ

∫ 0

−∞
dx |
1(x)|2 |s〉〈s|,

where 
0(x) = 〈x|0〉 and 
1(x) = 〈x|1〉 are the probability-
amplitude distributions for the vacuum and single-photon Fock
states, respectively [
n(x) = 1

(2nn!
√

π )1/2 Hn(x)e−x2/2, where
Hn(x) is the Hermite polynomial]. p(+1, − 1|XjY2) is merely
deduced from 〈−→v j |ρA

b2=−1|−→v j 〉 and p(−1, − 1|XjY2) from

〈−→v ⊥
j |ρA

b2=−1|−→v ⊥
j 〉. One can check that p(aj , + 1|XjY2) has

the same expression as p(aj , − 1|XjY2), but where the
integration over dx runs from 0 to +∞, one finds

EXj Y2 =
√

2

π
sin αi sin 2θ cos(ϕj − φ + ζ ).

Interestingly, this expression is the same, up to a factor of√
2/π , as the expression of the correlator when Bob applies

a perfect qubit measurement along cos ζσx + sin ζσy . This
invites us to interpret the homodyne measurement above (with
the binning x � 0 → b2 = −1 and x > 0 → b2 = +1 in the
{|0〉,|1〉} subspace) as a noisy qubit measurement in the xy

plane of the Bloch sphere with visibility
√

2/π as was also
noticed in Ref. [19].
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Substituting the correlators by their expressions into Eq. (2),
one obtains a value of the CHSH polynomial for any state of
the form (1) and for any measurement of Alice. We found
the maximal violation S = −2 cos α1 + 2

√
2/π sin α1 ≈ 2.56

for θ = π/4 and φ = 0, i.e., the φ+ state and for ϕ1 = ϕ2 =
ζ = 0, and α1 = −α2 = 2 arctan(

√
π+√

2+π√
2

). This violation is
the largest that we know in a scenario involving a homodyne
detection in which both the measurements and the state can
be realized experimentally (see Ref. [11] and the references
therein).

C. Bell test with homodyne detections only on the optical mode

A natural question is whether a violation of the CHSH
inequality can also be observed by measuring the optical mode
with homodyne detections only. It turns out that a violation
S = 4/

√
π ≈ 2.26 can indeed be obtained if Alice and Bob

share a maximally entangled state of the form (1) with θ = π/4
and φ = 0, provided that Bob’s measurements are performed
in complementary quadratures Y1 = X̂ and Y2 = P̂ and that
Alice’s measurements correspond to projections along vectors
spanning the (xy) plane with angles ±45◦ between them. This
result can easily be understood using the analogy previously
mentioned. If Bob uses either σx or σy, the CHSH parameter
would be saturated (S = 2

√
2). Since X̂ and P̂ correspond to

such measurements but with the reduced visibility
√

2/π, S is
reduced by the corresponding factor.

IV. IMPERFECTIONS

So far, we have shown that an ideal realization would lead
to significant violations of the CHSH inequality. However,
the story would not be complete without a discussion taking
experimental imperfections into account.

A. Transmission inefficiency

Let ηt be the transmission efficiency which accounts
for all the coupling inefficiencies from the atom to Bob’s
location. The probability amplitude associated with |s,1〉
is now multiplied by

√
ηt , and Alice and Bob can share

the state ψφ
ηt

= 1√
N

(cos θ |g,0〉 + eiφ sin θ
√

ηt |s,1〉) with the

probability N = cos θ2 + sin θ2ηt . Alternatively, the photon
can be lost. Tracing out the lost photon, the resulting state
is |s,0〉, and it contributes to the global state with a weight
sin2 θ (1 − ηt ). To know the sensitivity of the CHSH inequality
with respect to the transmission inefficiency, we thus have to
compute S from the overall state

ρηt
= N

∣∣ψφ
ηt

〉 〈
ψφ

ηt

∣∣ + sin2 θ (1 − ηt ) |s,0〉〈s,0| (4)

for all possible values of θ , φ, ϕ1, ϕ2, ζ , α1, and α2 as a function
of ηt . The result is shown in Fig. 2. In the scenario in which
Bob uses a photon counter and a homodyne detection with
unit efficiencies, a transmission efficiency of ηt = 61% can
be tolerated [see the solid (blue) curve of Fig. 2]. Although
this is certainly demanding, recent results suggest that this
might soon be within reach of experiments [20]. It is also
interesting to study the sensitivity of the violation with respect
to the detection inefficiency. The homodyne measurements
can fairly be considered to have unit efficiencies, but most
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FIG. 2. (Color online) Robustness of the CHSH violation with
respect to the transmission efficiency ηt . The dashed-dotted (purple)
line is associated with the case in which Bob uses two homodyne
detections (with unit efficiencies). The other lines correspond to the
cases in which Bob chooses either a photon counter or a measurement
of a field quadrature. The upper, solid (blue) curve is associated with
a photon detector with unit efficiency ηd = 1. The three dashed lines
are associated with inefficient counting (from ηd = 0.8 to 0.4).

of the single-photon detectors are inefficient. Let ηd be the
efficiency of the photon-counting detector. From an optimiza-
tion similar to the previous one, we find that a threshold
detection of ηd = 39% can be tolerated for a transmission
with unit efficiency. Our scheme is less sensitive to counting
inefficiency than transmission inefficiency since the former
affects only one of Bob’s measurements. The two previous
efficiency thresholds can be compared with a scheme that
exhibits the same asymmetry but uses the entanglement with
the polarization mode [13] and for which the violation of
the CHSH inequality requires ηtηd � 50%. (The effects of
detection and transmission imperfections are the same in this
case since Bob uses two photon-counting detectors.) The latter
is less sensitive to inefficiency in the transmission (for ideal
detectors with ηd = 1) while the scheme we propose is less
sensitive to the detector inefficiency (for transmission with
ηt = 1.) Note also that regarding the results presented in
Refs. [7,13] wherein the threshold efficiency has been lowered
using inequalities with more settings, one could have possible
improvements using inequalities different from the CHSH
inequality. However, we could not find better resistances with
additional binnings for Bob’s results and for more (up to three)
inputs.

In the case in which Bob uses only quadrature measure-
ments, the CHSH inequality can be violated provided that the
transmission efficiency is larger than 79%. This scenario is thus
more robust to the transmission inefficiency than the proposals
of Refs. [7,13] if the single-photon detectors required in the
latter have an efficiency smaller than 63%.

B. Required distance between Alice and Bob

In the previous section, we addressed efficiency issues
related to the photon detection and to the transmission. If we
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intend to close the locality loophole too, we have to determine
how long the state detection takes. It is likely reasonable to
believe that the detection time is limited by the atom [21]. If
the atomic states are read out on the basis of stimulated Raman
adiabatic passage, ultrafast laser ionization, and registration of
the correlated electron-ion pairs with coincident counting via
two opposing-channel electron multipliers [22], we can reach
a measurement time of less than 1 μs. Therefore, the locality
loophole can be closed if Alice and Bob are separated by
300 m. For 800-nm photons, the losses are of 2 dB/km. This
translates into a transmission of 93%.

C. Branching ratio

So far, we have considered that once the atom is excited,
it decays into the state s. Consider the more realistic case
in which the decay from e to s occurs with the probability
fs. Let fg be the probability of a decay into g and faux the
decay probability into other auxiliary states such that fs +
fg + faux = 1. Taking these branching ratios into account, the
state long after the interaction with the pump pulse is

ρf = N ′∣∣ψφ

fs

〉〈
ψ

φ

fs

∣∣ + sin2 θfg|g,0〉〈g,0|
+ sin2 θfaux|aux,0〉〈aux,0|.

ψ
φ

fs
is defined from ψφ

ηt
, where ηt is replaced by fs and

N ′ = cos θ2 + sin θ2fs . We now present a strategy to make
S > 2 (calculated from this state) as soon as fs �= 0. If Alice
chooses to attribute the result aj = −1 when she measures the
atom in the state aux, the correlators calculated from |aux,0〉
are EXj Y1 = 1,EXj Y2 = 0 ∀j ∈ {1,2}, and the resulting S
value is equal to 2 in this case. Moreover, if she chooses
two measurements very close to σz, i.e., (α1 = π − ε,ϕ1 = 0)
and (α2 = −π + ε,ϕ2 = 0), one can check that the S value
computed from the component |g,0〉 is 2 − ε2. If she further
excites the atom so that θ = π/4 and φ = 0 and if Bob chooses
ζ = 0, the S value from ψ

φ

fs
is roughly 2 + 4 ε

1+fs

√
2fs√
π

. The
overall CHSH value is thus given by

S ≈ 2 + 4

√
fs√
2π

ε + o(ε2). (5)

Therefore, in the absence of errors, the only requirement on the
branching ratios to observe a violation of the CHSH inequality
is that once the atom is excited, the probability that it decays
into s has to be nonzero. This Bell test can thus be applied to
a large number of atomic species since it is very resistant to
branching-ratio variations. However, the larger the decay into
s is, the larger the violation.

D. Stability requirements

Let us now focus on the phase-stability constraints. The
phase term of the state (1) has to remain stable from trial to trial.
In practice, however, φ may vary, e.g., due to atom-position
variations. For wave vectors with the same norm ||−→k || =
||−→kp || = ||−→ks ||, the fidelity of the resulting entanglement

ρ = F |ψφ〉〈ψφ| + (1 − F )|ψφ+π 〉〈ψφ+π | (6)

is found to be

F = 1
2

[
1 + e−2a2(n̄+1/2)�k

]
(7)

in the weak-confinement regime [23,24]. a = √
h̄/(2mω) is

the size of the harmonic-trapping-potential ground state for an
atom of mass m within a trap of frequency ω. n̄ is the average
number of thermal quanta of motion, and �k = ||−→k ||(1 −
cos θ ), where θ is the angle between the pump beam and the
emission direction. Hence, the problem of the atomic motion
can not only be overcome by cooling the ions deeply within
the Lamb-Dicke limit (where n̄ is small) but more simply by
collecting the photons scattered in the forward direction where
θ = 0.

Let us also comment on the stability requirement on the
optical path lengths. The local oscillator that is required to
perform the homodyne detections at Bob’s location can be
obtained by removing a fraction of the pump beam with
a beam splitter. In this case, the setup is made of a large
Mach-Zehnder interferometer, and the path-length difference
between the two arms of the interferometer �L has to be
stable so that ||−→k ||�L � 1. Note that temperature variations
change both the refraction index (and thus ||−→k ||) and the
length of the fibers �L. For commercial fibers, several tens of
kilometers long, installed in an urban environment, the typical
time needed for a mean-phase change of 0.1 rad (corresponding
to a fidelity of 0.9) is of the order of 100 μs [25]. This lets
us believe that an active stabilization of the phase should be
possible even for very long interferometers using available
technologies. This is well confirmed by recent experimental
results [26].

V. CONCLUSION

We proposed different scenarios to measure the entangle-
ment between the internal state of an atom and an optical mode
containing, on average, less than one photon. We reported
large violations of a CHSH inequality for both the case
in which one homodyne detection and one-photon counting
are performed on the optical mode and for that involving
two homodyne detections. With homodyne detections only,
a minimal entanglement-generation efficiency of 79% can be
tolerated. This efficiency goes down to 61% if homodyne
detections are combined with unit-efficiency photon counting.
We have also shown that in principle, a violation of the CHSH
inequality can be obtained even for branching ratios favoring
photon emission in undesired modes. There is no need to
cool the atom deeply within the Lamb-Dicke regime if the
scattered photons are collected close to the forward direction
with respect to the pump propagation. Finally, the stability
requirements for the optical path lengths are within reach of
experiments.

We believe that our work could provide motivations for
several research groups. Much effort has already been devoted
to the characterization of single-photon Fock states with
homodyne detections [27]. Moreover, although the setup
recently developed by the Rempe group has been used to
address squeezed light [28], it is of particular interest for
our proposal as it combines a single atom embedded in a
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high-finesse cavity with a homodyne detection. Note also
that beyond its fundamental interest, our proposal might
find exciting applications in the framework of quantum-
information sciences, e.g., for device-independent quantum
cryptography [29].
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