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We report on the experimental observation and characterization of a six-photon entangled Dicke state.

We obtain a fidelity as high as 0:654� 0:024 and prove genuine six-photon entanglement by, amongst

others, a two-setting witness yielding�0:422� 0:148. This state has remarkable properties; e.g., it allows

obtaining inequivalent entangled states of a lower qubit number via projective measurements, and it

possesses a high entanglement persistency against qubit loss. We characterize the properties of the six-

photon Dicke state experimentally by detecting and analyzing the entanglement of a variety of multipartite

entangled states.
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Multipartite entangled states have been intensively
studied during recent years. Still, the experimental realiza-
tion of entangled states of more than four particles imposes
a considerable challenge, and only a few experiments have
yet demonstrated such states [1,2]. So far, many experi-
ments have focused on the observation of graph states [3]
like the Greenberger-Horne-Zeilinger (GHZ) states or the
cluster states [1], which are, e.g., useful for one-way
quantum computation [4]. Dicke states form another im-
portant group of states, which were first investigated with
respect to light emission from a cloud of atoms [5] and
have now come into the focus of both experimental real-
izations [2,6–8] and theoretical studies [9–12]. W states
[13], a subgroup of the Dicke states, first received attention
triggered by the seminal work on three-qubit classification
based on stochastic local operations and classical commu-
nication (SLOCC) by Dür, Vidal, and Cirac [13]. Recently
it turned out that other symmetric Dicke states also offer
important features. Particularly, by applying projective
measurements on a few of their qubits, states of different
SLOCC entanglement classes are obtained [8,12]. These
Dicke states can act as a rich resource of multipartite
entanglement as required for quantum information
applications.

In our Letter we experimentally implement and analyze
a symmetric six-qubit entangled Dicke state. The entangle-
ment of the Dicke state results from symmetrization and
cannot be achieved in a simple way by pairwise interaction,
in contrast to, e.g., GHZ states. In order to efficiently
characterize the experimentally observed state, we devel-
oped optimized methods to determine the fidelity, detect
entanglement, and characterize further properties. In par-
ticular, we analyze representatives from the variety of

multipartite entangled states obtained after projection or
loss of qubits.
Generally, Dicke states are simultaneous eigenstates of

the total angular momentum, J2N ¼ J2N;x þ J2N;y þ J2N;z, and

the angular momentum component in the z direction, JN;z,

where JN;i ¼ 1
2

P
k�

k
i with, e.g., �3

i ¼ 1 � 1 � �i � 1 �
1 � 1 for N ¼ 6 qubits, i 2 fx; y; zg and �i the Pauli spin
matrices. A subgroup of the Dicke states is symmetric
under permutation of particles and given by

jDðlÞ
N i ¼ N

l

� ��1=2X

i

P iðjH�ðN�lÞV�liÞ; (1)

where
P

iP ið. . .Þmeans the sum over all distinct symmetric
permutations and l is the number of excitations in the usual
notation of polarization encoded photonic qubits. In our
experiment we focus on the symmetric six-qubit Dicke
state with three excitations,

jDð3Þ
6 i ¼ ð1= ffiffiffiffiffiffi

20
p ÞX

i

P iðjHHHVVViÞ: (2)

To realize the necessary 20 permutations, three horizon-
tally and three vertically polarized photons in a single
spatial mode are distributed by polarization-independent

beam splitters into six modes, where j Dð3Þ
6 i is observed

under the condition of detecting a single photon in each of
these modes. This scheme can be seen as a continuation of

experiments on Dð1Þ
2 [6] and Dð2Þ

4 [8] and obviously can be

extended to higher even photon numbers.

The experimental observation of jDð3Þ
6 i (Fig. 1) is

achieved by utilizing a novel source of collinear type II
spontaneous parametric down-conversion (SPDC) based
on a femtosecond UV-enhancement resonator [14]. The
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resonator allows pumping of the SPDC crystal with femto-
second pulses with an average UV power of 5.3 W at a
repetition rate of 81 MHz [14]. The SPDC photons are
coupled out of the cavity by a dichroic mirror transparent at
780 nm, are spatially filtered by a single-mode fiber, and
are subsequently distributed in free space by polarization-
independent beam splitters. Asymmetry in the splitting
ratios of the beam splitters reduces the probability of

registering jDð3Þ
6 i (0.0126 compared to the optimal value

of 5=324 � 0:0154, yielding a six-photon count rate of 3.7

events per minute), but does not influence the state quality.
For all data the errors are deduced from Poissonian count-
ing statistics and errors of independently determined rela-
tive detector efficiencies.

The first characteristic feature of the state jDð3Þ
6 i is its

structure in the z, x, and y bases (Fig. 2); i.e., when
analyzing the photons in the six outputs all either along

jH or Vi, j�i ¼ ð1= ffiffiffi
2

p ÞðjHi � jViÞ (linear polarization

under 45�) and jL or Ri ¼ ð1= ffiffiffi
2

p ÞðjHi � ijViÞ (left or
right circular polarization), which, in our notation, are
the eigenvectors of �z, �x, and �y, respectively. For the

z basis [Fig. 2(a)] we find the pronounced 20 terms that are

expected for jDð3Þ
6 i. However, we also detect coincidences

for HHVVVV, HHHHVV, and permutations thereof.
These originate from higher orders of the SPDC process,
in particular, from the fourth order emission, where, due to
the finite detection efficiency, two of these photons can get
lost and the remaining six photons will be registered as a

sixfold detector click in the output modes. Thus, jDð3Þ
6 i is

mixed with highly colored noise, which exhibits different
types of entanglement itself depending on the loss type.
Insight into the coherence between the observed co-
incidences can be obtained from measurements in the x

[Fig. 2(b)] and y [Fig. 2(c)] bases. The state jDð3Þ
6 i trans-

forms in these bases to
ffiffiffiffiffiffiffiffi
5=8

p jGHZ�
6 i þffiffiffiffiffiffiffiffiffiffiffi

3=16
p ðjDð4Þ

6 i � jDð2Þ
6 iÞ with jGHZ�

N i ¼ ð1= ffiffiffi
2

p Þ�
ðj0i�N � j1i�NÞ and 0 ¼ fþ; Lg, 1 ¼ f�; Rg. We observe
the GHZ contribution as pronounced coincidence counts
for the left- and rightmost projector. The residual counts
from other terms [insets of Figs. 2(b) and 2(c)] make the
decisive difference to a GHZ state as they are in a super-
position with the GHZ terms. Apart from this, noise on top
of all counts is also apparent. Most importantly, while the
GHZ state shows its two terms only in a single basis, we
observe these features now for two bases, which is directly

related to the symmetry of jDð3Þ
6 i.

A quantitative measure, indicating how well we pre-

pared jDð3Þ
6 i experimentally, is given by the fidelity

F
Dð3Þ

6

ð�Þ ¼ TrðjDð3Þ
6 ihDð3Þ

6 j�Þ. Its determination would re-

quire 183 correlation measurements in the standard Pauli
bases. However, employing the permutational symmetry of

FIG. 2 (color online). Experimentally measured coincidences for the bases (a) z, (b) x, and (c) y with eigenvectors jH or Vi, j�i, and
jL or Ri, respectively. Theoretical predictions are shown as pale gray bars normalized to the total number of coincidences. The insets
in (b) and (c) are magnified views of a part of all coincidences, where for clarity expected counts are shown next to experimental ones.

FIG. 1 (color online). Schematic experimental setup for the

observation of the Dicke state jDð3Þ
6 i. SPDC photons generated in

the 1 mm thick �-barium borate (BBO) crystal inside the UV-
enhancement cavity pass a half-wave plate (HWP) and a 0.5 mm
thick BBO crystal to compensate beam walk-off effects. Their
spatial mode is defined by coupling into a single-mode (SM)
fiber. Spectral selection is achieved by a band-pass filter (RG)
and a 3 nm interference filter (IF) at 780 nm. Birefringence of
beam splitters BS1–BS5 (BS1–BS4 have a splitting ratio of
0:58:0:42 and BS5 of 0:52:0:48) is compensated for by pairs of
birefringent Yttrium-vanadate (YVO4) crystals in the six output
modes a, b, c, d, e, f. Polarization analysis (PAj) in each mode

is performed via a HWP and a quarter-wave plate (QWP) in front
of a polarizing beam splitter (PBS). The photons are detected by
single-photon avalanche photodiodes (APDs). The detection
signals of the 12 detectors are fed into a FPGA controlled
coincidence logic allowing histograming of the 212 possible
detection events between the 12 detectors.
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the state jDð3Þ
6 i leads to a reduction to only 21 measurement

settings [15,16]. We have determined F
Dð3Þ

6

¼ 0:654�
0:024 with a measurement time of 31.5 h. This allows
the application of the generic entanglement witness [10]
hW gi ¼ 0:6� F

Dð3Þ
6

¼ �0:054� 0:024 and thus proves

genuine six-qubit entanglement of the observed state
with a significance of 2 standard deviations (Fig. 4).

Proving entanglement based on witness operators can be
much simpler in terms of the number of measurement set-

tings, as due to the symmetry of jDð3Þ
6 i already the two

measurements x and y are sufficient [8,10,18]. The generic
form of such a witness is given by W Nð�Þ ¼ � � 1�N �
ðJ2N;x þ J2N;yÞ, where � is obtained by numerical optimiza-

tion over all biseparable states. For the state jDð3Þ
6 i

W 6ð11:0179Þ [15] has a minimal value of �0:9821. In
our experiment we have obtained with the data shown in
Figs. 2(b) and 2(c) hW 6ð11:0179Þi ¼ �0:422� 0:148,
i.e., after a measurement time of only 17.1 h a higher
significance for proving six-qubit entanglement compared
to the generic witness (Fig. 4). A different witness, allow-
ing additionally to estimate the fidelity and requiring three
measurement settings only, can be obtained by considering

higher moments of the J6;i operators and is given as W ¼
1:5 � 1�6 �P

i¼x;y;z

P
3
j¼1 cijJ

2j
6;i [15], with cij ¼

ð�1=45; 1=36;�1=180;�1=45; 1=36;�1=180; 1007=360;
�31=36; 23=360Þ. Experimentally, using the three mea-
surements of Fig. 2 we obtain hW i ¼ �0:105� 0:040

yielding also a quite accurate bound on the fidelity [15]
of F

Dð3Þ
6

	 0:6� hW i=2:5 ¼ 0:642� 0:016 (Fig. 4).

Another method to reveal entanglement and additionally
the nonclassical nature of a quantum state are Bell inequal-
ities. Introduced with the aim to exclude a local-realistic
description of measurement results [19,20], they recently
became important tools in quantum information process-
ing, e.g., for security analysis [21] or for state discrimina-
tion [22,23]. A Bell operator well suited for the latter task

is given by B̂
Dð3Þ

6

¼ 4
5 ð�x �M5 þ �y �M0

5Þ, whereM5 and

M0
5 are five-qubit Mermin operators [20,23,24]. The asso-

ciated Bell inequality, jhB̂
Dð3Þ

6

iavgj 
 0:4, is maximally vio-

lated by the six-photon Dicke state (hB̂
Dð3Þ

6

i
Dð3Þ

6

¼ 1) and

much less, e.g., by any six-qubit GHZ state

(hB̂
Dð3Þ

6

iGHZ;max ¼ 0:85). This again is a consequence of

the symmetry of jDð3Þ
6 i. While an inequality based on any

of the two Mermin terms is maximally violated by a GHZ

state, the violation of their sum is only maximal for jDð3Þ
6 i

due to its symmetry and equal form in the x and y bases.

The experimental value of hB̂
Dð3Þ

6

iexpt ¼ 0:43� 0:02 shows

that there is no local-realistic model describing this state,
yet due to the higher order SPDC noise, it is not sufficient
to discriminate against GHZ states.

The characteristic symmetry and entanglement of jDð3Þ
6 i

enables one to observe a wealth of five- and four-qubit
entangled states that can be obtained by projective mea-
surements or qubit loss [12]. When we project one of the
qubits onto cos�jVi þ sin�e�i�jHi, we first obtain super-

positions of five-qubit Dicke states, j�5ð�;�Þi ¼
cos�jDð2Þ

5 i þ sin�ei�jDð3Þ
5 i with �, � real. These states

belong to two different SLOCC classes, one for the values
� ¼ 0 or � ¼ �=2 and the other one for the remaining
value range [12]. Figures 3(a) and 3(b) showmeasurements
in the z basis for a representative state of the two classes,
obtained by projecting a qubit either onto jHi
[j�5ð�=2; 0Þi ¼ jDð3Þ

5 i] or onto j�i [j�5ð�=4; �Þi ¼
ð1= ffiffiffi

2
p ÞðjDð2Þ

5 i � jDð3Þ
5 iÞ]. Figure 4 shows measured expec-

tation values of optimized entanglement witnesses for
detecting genuine N-qubit entanglement of these and the

following states. When a qubit of jDð3Þ
6 i is lost, one obtains

FIG. 4 (color online). Experimental results [dark gray (blue)]
and theoretical predictions (pale gray) are shown for the various
entanglement witnesses for different states (see text). Negative
values prove genuine N-partite entanglement.

FIG. 3 (color online). Experimentally measured coincidence
counts in the z basis [(a)–(e)] and x basis (f) for projections of

jDð3Þ
6 i to obtain (a)–(b) five- and (d)–(f) four-qubit entangled

states. (c) �5 obtained after a loss of a qubit from jDð3Þ
6 i. Each

measurement took 279 min. Theoretical predictions are shown as
pale gray bars normalized to the total number of coincidences.

PRL 103, 020504 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
10 JULY 2009

020504-3



�5 ¼ 1
2 ð�Dð2Þ

5

þ �
Dð3Þ

5

Þ, i.e., an equal mixture of jDð2Þ
5 i and

jDð3Þ
5 i [Fig. 3(c)]. Remarkably and in sharp contrast to the

case of losing a qubit from aGHZ6 state, this mixed state is
also genuine five-qubit entangled (Fig. 4). This fact now
clearly provides, after all, a criterion to definitely distin-
guish these two prominent states and demonstrates the

entanglement persistency [25] of jDð3Þ
6 i.

By means of a second projective measurement we obtain
a variety of SLOCC-inequivalent four-qubit states. In
Fig. 3 we exemplarily show coincidences for three of those

states. The state jDð2Þ
4 i [8] [Fig. 3(d)] is obtained by pro-

jection of one qubit onto jVi and another one onto jHi. By
projecting two qubits onto the same polarization (here jVi)
for the first time the four-photon W state [11,26], i.e.,

jDð1Þ
4 i, could be observed in a linear optics experiment

[Fig. 3(e)]. Both states are clearly genuine four-partite
entangled [8,27] as depicted in Fig. 4. We have determined
fidelities of F

Dð2Þ
4

¼ 0:682� 0:022 and F
Dð1Þ

4

¼0:619�
0:043 using optimized measurement settings [15,17].

Possible applications of jDð1Þ
4 i and jDð2Þ

4 i comprise, for
example, quantum telecloning, teleportation, and secret
sharing [8,9,28,29]. Most remarkably, one can also obtain
a four-qubit GHZ state, which is suitable for, e.g., secret
sharing [29]. As mentioned before, there is a strong GHZ

component in the state jDð3Þ
6 i. Considering the representa-

tion in the y basis [Fig. 2(c)], a projection of one photon
onto jRi and another one onto jLi filters out just this GHZ
component, but the remaining terms coherently superim-

pose to a four-qubit GHZ state, jGHZ�
4 i ¼ ð1= ffiffiffi

2
p Þ�

ðjDð1Þ
4 i þ jDð3Þ

4 iÞ ¼ ð1= ffiffiffi
2

p Þðjþi�4 � j�i�4Þ. The fourfold
coincidence counts shown in Fig. 3(f) reveal the character-
istic GHZ structure. However, for this state a two-setting
witness measurement [30] resulted in a value of
hW GHZi ¼ �0:016� 0:162, which is not sufficient to
prove entanglement with the relevant significance and
can be attributed to the low fidelity of FGHZ ¼ 0:528�
0:042 and the asymmetric GHZ structure [Fig. 3(f)].

Altogether, we have experimentally demonstrated in this
Letter remarkable entanglement properties of the Dicke

state jDð3Þ
6 i. It exhibits a high symmetry with characteristic

correlations in various bases. As shown, this makes it a
perfect resource for observing a wealth of different
SLOCC-inequivalent states of a lower qubit number. The
novel setup presented here allows experiments with a
sufficient count rate and lays the foundations for demon-

strations of important applications of jDð3Þ
6 i, e.g., for phase-

covariant telecloning, multipartite quantum communica-
tion, or entanglement enhanced phase measurements.
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