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We show that, for a continuous set of entangled four-partite states, the task of maximizing the payoff in
the symmetric-strategy four-player quantum Minority game is equivalent to maximizing the violation of a
four-particle Bell inequality. We conclude the existence of direct correspondences between (i) the payoff
rule and Bell inequalities, and (ii) the strategy and the choice of measured observables in evaluating these
Bell inequalities. We also show that such a correspondence is unique to minority-like games.
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1. Introduction

The experimentally observed violations of Bell inequalities re-
flect deep aspects of realism and locality in nature [1,2] support-
ing the quantum-mechanical description of correlations between
spatially separated systems. Quantum game theory, on the other
hand, is an active branch of quantum information theory yet seems
far removed from such physical truths, recent implementations
notwithstanding [3,4]. In this work we show for the first time a
remarkable equivalence between aspects of these seemingly dis-
parate corners of quantum theory. While one may expect a cor-
respondence at some level between quantum game theory and
non-classical correlations through Bell inequalities [5], the exact
equivalence we have uncovered is rather surprising.

Using an entangled state resource that utilizes a superposi-
tion of the GHZ state and products of EPR pairs, we demon-
strate equivalence between the optimal symmetric strategy payoffs
for a quantum Minority game (QMG) and the violation of the
Mermin–Ardehali–Belinskii–Klyshko (MABK) inequality [6–8] for
the initial state. Previous publications have explored the relation-
ship between Bell inequalities and various formulations of quan-
tum games [9–15]. Comparison have also been drawn between
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so-called non-local games and Bell inequalities [16–18]. Non-local
games are cooperative tasks for teams of remote players and not
games in the von Neumann sense, since in non-local games the
players have convergent rather than conflicting interests, though it
may be possible to reformulate some non-local tasks as competi-
tive quantum games [11]. However, our results are the first direct
equivalence over a continuous set of entangled states between the
payoffs in a competitive quantum game and violation of Bell in-
equalities.

The classical Minority game [19] is a simple multi-player game
for studying coordination amongst a group of agents in the ab-
sence of communication. In each round, the agents must indepen-
dently select one of two options, labeled ‘0’ and ‘1’. Those that
select the option chosen by the minority win and are awarded
a payoff of one unit, while the others receive zero payoff. In a
one-off classical game the players can do no better than using the
mixed strategy of selecting each of the two options with equal
probability. When there are an even number of players this can
result in no minority and hence zero payoff to all players.

While game theory is the mathematical language of competitive
(classical) interactions, quantum game theory is the natural lan-
guage to consider competitive situations in a quantum information
setting. One exploits the classical framework as a base for finding
new ways of understanding and using entanglement in this con-
text. Although playing a game using entanglement as a resource
is not the same as playing the underlying classical game, sharing
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Fig. 1. Schematic showing the equivalences between (left) a four-player quantum
Minority game (QMG) and (right) a four-partite Bell inequality. In the QMG, each
player acts on one qubit from an entanglement resource |ψin〉 with a local (unitary)
strategy M̂i , followed by a projective measurement in the computational basis. The
payoff matrix and the chosen strategies determine a payoff polynomial. In the Bell
inequality, observers choose local observables { Â1, Â2} to make measurements on
each qubit of the same entanglement resource. Optimizing the payoff in the game
is equivalent to maximizing the violation of the MABK-type Bell inequality.

entanglement is less strong than explicit cooperation. In quantum
versions of the Minority game [20–23], for even numbers of play-
ers it has been shown [20,21] that the probability of getting no
winners in the final state can be reduced, to the benefit of all play-
ers. For small numbers of players the QMG is amenable to experi-
mental implementation using multi-photon entangled states [4].

Quantization of the Minority game proceeds as follows and is
shown schematically on the left-hand side of Fig. 1. Each of N
players receives one qubit from a known entangled state. The play-
ers’ strategy is their choice of local unitary operator to apply to
their qubit,

M̂(θ,β1, β2) =
(

eiβ1 cos(θ/2) ieiβ2 sin(θ/2)

ie−iβ2 sin(θ/2) e−iβ1 cos(θ/2)

)
, (1)

where θ ∈ [0,π ], β1, β2 ∈ [−π,π ]. No communication between
the players is permitted and coherence is maintained until after
the players’ actions. Then the qubits are measured in the com-
putational basis and payoffs are awarded using the usual payoff
scheme. If the initial state is a GHZ state, the scheme described is
equivalent to the protocol of Eisert et al. [24], since the unentan-
gling gate in Eisert’s protocol has no effect on the payoffs for the
Minority game [20]. The scheme is also consistent with the gen-
eralized quantum game formalisms of Lee and Johnson [25] and
Gutoski and Watrous [26].

2. Pareto optimal strategies and Bell inequalities

In the current context we will be concerned with the Pareto-
optimal (PO) strategy profile, one from which no player can im-
prove their result without another being worse off. We only con-
sider the situation where all players use the same strategy, since
asymmetric strategy profiles are problematic to achieve in the ab-
sence of communication. The symmetric PO result gives the maxi-
mal payoff that is fair to all players.

Existing works have concentrated on using a GHZ state as the
entanglement resource for the game, however, we shall consider
the more general initial state

|ψin〉 = α|GHZ〉 +
√

1 − α2 |EPR〉AB ⊗ |EPR〉CD, (2)

where |GHZ〉 ≡ (|0000〉+|1111〉)/√2, |EPR〉 ≡ (|01〉+|10〉)/√2, and
α ∈ [0,1]. This state can be created experimentally for arbitrary α
using photons produced from down conversion [4,27].
Fig. 2. Left scale: Pareto optimal payoffs 〈$<〉 (region I) and 〈$>〉 (region II) in a
four-player quantum Minority game with the initial states |ψin〉 [Eq. (2)] and |φin〉
[Eq. (15)]. Right scale: Maximal violation of the MABK Bell equality (10) for the same
states. For measurement schemes, see text. The quantum fulcrum between regions I

and II occurs at α =
√

2
3 for |ψin〉 and α =

√
3
4 for |φin〉.

Below we show that the payoff observable for the Minority
game, when transformed by the PO strategy profile, gives rise to
a Bell-like polynomial that, when evaluated for the initial state (2),
is identical for all α (up to an arbitrary scaling factor) to the max-
imal value of the MABK Bell polynomial.

In the game, the state prior to measurement is |ψfinal〉 = M̂1 ⊗
M̂2 ⊗ M̂3 ⊗ M̂4|ψin〉, where the M̂i are the strategies chosen by
the players. For symmetric strategy profiles only the difference be-
tween the phases β1, β2 of Eq. (1) is relevant. We shall therefore,
without loss of generality, set β ≡ β1 = −β2. A necessary and suf-
ficient condition for M̂(θ∗, β∗,−β∗) to be a symmetric PO strategy
is 〈$(M̂(θ∗, β∗,−β∗)⊗4)〉 � 〈$(M̂(θ,β,−β)⊗4)〉 ∀θ,β , where $ rep-
resents the payoff to any one of the four players for the indicated
strategy profile. When all players select the strategy M̂(θ,β,−β)

for some θ, , β to be determined, the average payoff to each player

is 〈$〉 = sin2 θ
32 [8 − 2α2 + 8α

√
2 − 2α2 cos 4β − 2α2 cos 8β + 2(4 −

3α2) cos 2θ + 8α
√

2 − 2α2 cos 4β cos 2θ + 2α2 cos 8β cos 2θ ]. A lo-
cal maximum or minimum in the value of the payoff will have
d〈$〉/dθ = d〈$〉/dβ = 0. From these conditions we find the strategy
that maximizes the payoff to be

M̂> = 1√
2

(
eiπ/8 ie−iπ/8

ieiπ/8 e−iπ/8

)
for α �

√
2

3
, (3a)

M̂< =
(

cos(π/8) i sin(π/8)

i sin(π/8) cos(π/8)

)
for α �

√
2

3
, (3b)

with expected payoffs 〈$>〉 = 1
4 α2 and

〈$<〉 = 1

16︸︷︷︸
Î Î Î Î,...

+ 1

16

(
1 − α2︸ ︷︷ ︸

−Ŷ Ŷ Ẑ Ẑ ,...

+2
√

2α
√

1 − α2︸ ︷︷ ︸
−Ŷ Ẑ Ŷ Ẑ ,...

)
, (4)

where the contributions from the corresponding measurement cor-
relations 〈ψin| · · · |ψin〉 are explicitly given under the braces [see
Eq. (7)]. The payoffs as a function of α are shown in Fig. 2. At

α =
√

2
3 , we find that, disregarding phases, the states M̂⊗4

> |ψin〉
and M̂⊗4

< |ψin〉 contain exactly the same terms, all with identical

prefactors. Hence α =
√

2
3 is the boundary between the EPR- and

the GHZ-dominated regions. This point is a fulcrum in the quantum
state where there is a switch in optimal strategy from M̂< to M̂> .

Let us write down a payoff observable $̂ as a sum of projection
operators on the winning states,

$̂ = 1 (
P̂ (1)

0 ⊗ P̂ (2)
1 ⊗ P̂ (3)

1 ⊗ P̂ (4)
1 + permutations
4
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+ P̂ (1)
0 ⊗ P̂ (2)

0 ⊗ P̂ (3)
0 ⊗ P̂ (4)

1 + permutations
)
, (5)

where P̂ (k)
j is the projector | j〉〈 j|, j = 0,1, for the kth qubit. The

average payoff is then given by

〈$〉 = 〈ψin|M̂†⊗4$̂M̂⊗4|ψin〉. (6)

Using M̂†
< P̂0/1M̂< = 1

2 ( Î ± B̂ zy) with B̂ zy ≡ 1√
2
( Ẑ − Ŷ ), the payoff

observable Eq. (5) transformed by the optimal strategy for α <

√
2
3

is

$̂< ≡ M̂†⊗4
< $̂M̂⊗4

<

= 1

32
(− Ẑ Ẑ Ẑ Ẑ + Ẑ Ẑ Ẑ Ŷ + Ẑ Ẑ Ŷ Ẑ − Ẑ Ẑ Ŷ Ŷ

+ Ẑ Ŷ Ẑ Ẑ − Ẑ Ŷ Ẑ Ŷ − Ẑ Ŷ Ŷ Ẑ + Ẑ Ŷ Ŷ Ŷ

+ Ŷ Ẑ Ẑ Ẑ − Ŷ Ẑ Ẑ Ŷ − Ŷ Ẑ Ŷ Ẑ + Ŷ Ẑ Ŷ Ŷ

− Ŷ Ŷ Ẑ Ẑ + Ŷ Ŷ Ẑ Ŷ + Ŷ Ŷ Ŷ Ẑ − Ŷ Ŷ Ŷ Ŷ )

+ 1

8
Î Î Î Î

= −1

8
(B̂ zy)

⊗4 + 1

8
Î⊗4. (7)

The first term can be considered to arise as a result of quan-
tum effects while the identity term is the classical part, since
1
8 is just the average payoff in a classical (unentangled) Minor-
ity game when the players select the optimal strategy. Similarly,

M̂†
> P̂0/1M̂> = Î±B̂xy

2 , with B̂xy = 1√
2
( X̂ − Ŷ ). This expression coin-

cides with that for the strategy M̂< with the simple substitution
Ẑ ↔ X̂ . Thus for $̂> we get expression (7) with Ẑ replaced by X̂ .

Because of the similarity between Eq. (7) and a four-particle
Bell polynomial we write Eq. (6) as a payoff polynomial

χpayoff = 4 − E(1111) + E(1112) + E(1121) − E(1122)

+ E(1211) − E(1212) − E(1221) + E(1222)

+ E(2111) − E(2112) − E(2121) + E(2122)

− E(2211) + E(2212) + E(2221) − E(2222), (8)

where we have scaled Eq. (6) by a factor of 32 for simplicity. Here
E(k1,k2,k3,k4) = 〈ψin| Âk1 ⊗ · · · ⊗ Âk4 |ψin〉 with ki ∈ {0,1}. In the

case of the QMG, the observables { Â1, Â2} ≡ { X̂, Ŷ } for α >

√
2
3

and { Ẑ , Ŷ } for α <

√
2
3 , give χpayoff = 8α2 and χpayoff = 4 − 2α2 +

4α
√

2 − 2α2, respectively, i.e., the payoffs scaled by the factor of
32, as expected.

Now consider a four-particle MABK Bell polynomial, which can
be written as [6–8]

χMABK = −E(1111) − E(1112) − E(1121) + E(1122)

− E(1211) + E(1212) + E(1221) + E(1222)

− E(2111) + E(2112) + E(2121) + E(2122)

+ E(2211) + E(2212) + E(2221) − E(2222). (9)

A local realistic theory must satisfy the Bell inequality

|χMABK| � 4. (10)

This inequality is maximally violated (by a factor of 	χ = 2
√

2)
by the GHZ state if the first three observers measure in the
{ X̂, Ŷ } basis and the fourth observer in the { 1√

2
( X̂ − Ŷ ), 1√

2
( X̂ +

Ŷ )} basis. Alternately, following [28], maximal violation is ob-
tained if all observers measure in the basis {cos(−π/16) X̂ +
sin(−π/16)Ŷ , cos(7π/16) X̂ + sin(7π/16)Ŷ }. These measurement
schemes give maximal violation for the state in Eq. (2) provided

α �
√

2
3 . For α �

√
2
3 , maximal violation is obtained with the same

measurement scheme except with X̂ replaced with Ẑ . The viola-
tion 	χ of the MABK inequality (10) versus α is given in Fig. 2.

A comparison of Eqs. (8) and (9) shows a striking similarity be-
tween the two expressions. They only differ in the distribution of
relative signs (±) associated with each term E(. . .). Remarkably,
in the context of the rules and optimal strategies of the QMG,
the payoff polynomial Eq. (8) evaluated with the optimal-strategy

measurement schemes { X̂, Ŷ }⊗4 (for α �
√

2
3 ) and { Ẑ , Ŷ }⊗4 (for

α �
√

2
3 ) for the initial state (2) has the same value as the MABK

polynomial (9) evaluated with these schemes and this initial state.
In a local realistic theory, the absolute value of both polynomials
is always � 4. Since we have already shown that the strategies (3)
are optimal, we can infer that, for a symmetric strategy profile,

the dichotomic observables { X̂, Ŷ }⊗4 (if α �
√

2
3 ) and { Ẑ , Ŷ }⊗4 (if

α �
√

2
3 ) give the maximum violation of the Bell inequality de-

fined by Eq. (8), i.e., |χpayoff| � 4. Given the continuous spectrum
of initial states (2), optimizing the payoff in the QMG thus corre-
sponds to maximizing the violation of the Bell inequality defined
by Eq. (8). This observation directly relates the four-player QMG
discussed in this Letter to Bell inequalities.

We now show that the Minority game is effectively unique
amongst four-player, symmetric, binary-choice games in its con-
nection to Bell inequalities. We restrict ourselves to consider-
ing Bell polynomials with measurement in a single plane (i.e.,
X̂ Ŷ , X̂ Ẑ , Ŷ Ẑ ) though there are Bell inequalities defined on two
planes that may also give rise to a connection with quantum
games. We assume that all players choose the same strategy and
consider a general payoff observable

$̂ =
∑

j1, j2, j3, j4=0,1

c j1 j2 j3 j4

4⊗
k=1

P̂ (k)
jk

. (11)

Application of a strategy M̂(θ,β,−β) to each qubit transforms the
projection operators P̂ (k)

jk
as

M̂† P̂ j M̂ = 1

2
Î +

(
cos2 θ

2
− 1

2

)
Ẑ

+ (−1) j 1

2
sin θ(sin 2β X̂ − i cos 2β Ŷ ). (12)

To correspond to a single-plane Bell polynomial, we eliminate one
of the terms X̂ , Ŷ , Ẑ with an appropriate choice of θ , β . This can
be done by selecting,

Ẑ : θ = π

2
,

3π

2
, β arbitrary, (13a)

X̂: θ arbitrary, β = 0,
π

2
,π,

3π

2
, (13b)

Ŷ : θ arbitrary, β = 0,
π

4
,

3π

4
,

5π

4
. (13c)

Next, terms in the polynomial containing identity operators must
mutually cancel, save for an ineliminable but trivial term Î⊗4.
This gives fourteen constraints on the c j1 j2 j3 j4 s, with the last two
conditions in Eq. (13) having in addition

∑
c j1 j2 j3 j4 = 0. The con-

straints can be solved in terms of two parameters a and b:

c0001 = c0010 = c0100 = c1000

= c0111 = c1011 = c1101 = c1110 = a, (14a)

c0000 = c0011 = c0101 = c0110

= c1001 = c1010 = c1100 = c1111 = b. (14b)
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With a > 0 and b < 0 we have the Minority game, while revers-
ing the signs gives the complement, the anti-Minority game, where
each player scores 1

n when there is no strict minority, n being the
number of players. In the case where we use the first of the con-
ditions in Eq. (13) we can have a and b with the same sign, but
these games are the trivial ones where either everyone wins, or
everyone looses, depending on the sign of a.

3. Extensions

It is interesting to consider an initial state that, unlike Eq. (2), is
completely symmetric with respect to the interchange of any two
qubits,

|φin〉 = α|GHZ〉 +
√

1 − α2

3

(|EPR〉AB ⊗ |EPR〉CD

+ |EPR〉AC ⊗ |EPR〉BD + |EPR〉AD ⊗ |EPR〉BC
)
. (15)

The boundary between the EPR- and GHZ-dominated regions now

occurs at α =
√

3
4 , with expected payoffs 〈$>〉 = 1

4 α2 and

〈$<〉 = 1

16︸︷︷︸
Î Î Î Î,...

+ 3

16

(
2

3

(√
3α

√
1 − α2 + 1 − α2)︸ ︷︷ ︸

−Ŷ Ẑ Ŷ Ẑ ,...,−Ŷ Ŷ Ẑ Ẑ ,...

)
. (16)

For this higher-symmetry state, the correspondence between the
MABK inequality and the PO payoffs remains (dashed line in
Fig. 2).

The nature of the correspondence for a larger case is also of in-
terest. We have considered the particular case of a six-player QMG
using a state analogous to Eq. (15). We find that the switch of op-

timal strategy occurs at α =
√

6
19 , with payoffs

〈$>〉 = 2 + 3α2

16
; (17a)

〈$<〉 = 7(2 − α2)

64
. (17b)

Following [28], the symmetric measurement schemes that give
rise to maximal violation of the MABK inequality for this six-par-
ticle state [6–8] are {cos(π/24) X̂ + sin(π/24)Ŷ , cos(13π/24) X̂ +
sin(13π/24)Ŷ } for α �

√
5

13 , and the same with X̂ → Ẑ for α �√
5

13 . Although for this particular case the switch in optimal mea-

surement scheme does not occur at the same value of α as the
switch in optimal strategy, the payoff and violation curves are
qualitatively similar. It will be interesting to explore the trajectory
of initial-state entanglement, strategies, and inequalities which
may give rise to direct equivalence for higher-N cases.

4. Conclusions

We have demonstrated for the first time a direct equivalence
between Bell inequalities and quantum games. The symmetric
Pareto optimal payoff in a four-player quantum Minority game is
equivalent to the violation of the MABK-type Bell inequality for
an important class of four-partite entangled states that involve the
GHZ state and products of EPR pairs. The payoff scheme for the
quantum game combined with the strategies chosen by the players
leads to a payoff polynomial that is analogous to the Bell poly-
nomial. For both the optimal payoff in the quantum game and
for the Bell inequality there is a quantum fulcrum where there is
a switch in preferred strategy (quantum game) or measurement
scheme (Bell inequality) corresponding to a change from the EPR-
to GHZ-dominated region.

The equivalence uncovered here is important from the view
of both quantum game theory and Bell inequalities. Our result
shows that the four-player quantum (anti-)Minority game assumes
a special position, since it uses quantum nonlocality to achieve an
advantage over the classical case in precisely the same way non-
locality is evidenced through the violation of the Bell inequalities.
This also implies that the lessons learned from interpreting the na-
ture of nonlocality in quantum mechanics through the lens of Bell
inequalities can be readily applied to advancing our understanding
of the discerning features of quantum game theory over its classi-
cal counterpart.
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