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Experimental tests of Bell’s inequality allow to distinguish quantum mechanics from local hidden variable theo-
ries. Such tests are performed by measuring correlations of two entangled particles (e.g., polarization of photons
or spins of atoms). In order to constitute conclusive evidence, two conditions have to be satisfied. First, strict
separation of the measurement events in the sense of special relativity is required (“locality loophole”). Second,
almost all entangled pairs have to be detected (for particles in a maximally entangled state the required detector
efficiency is 2�

√
2−1�≈ 82�8%), which is hard to achieve experimentally (“detection loophole”). By using recently

demonstrated entanglement between single trapped atoms and single photons it becomes possible to entangle
two atoms at a large distance via entanglement swapping. Combining the high detection efficiency achieved
with atoms with the space-like separation of the atomic state detection events, both loopholes can be closed
within the same experiment. In this paper we present estimations based on current experimental achievements
which show that such an experiment is feasible in future.

1. INTRODUCTION
In 1935 Einstein, Podolsky and Rosen (EPR) asked the seem-
ingly innocent question, whether quantum mechanics can be
considered complete. If not, this might be cured by additional
parameters of a physical system (now called local hidden vari-
ables, LHV) which are not-yet-known to us. Later, Bell showed,
that experimental tests can be performed which allow to decide
whether the concept of LHV indeed can be used to describe
nature. This proposal triggered a series of experiments, most
importantly by Freedman and Clauser1 and by the group of Alain
Aspect.2�3 More recently, new experimental techniques enabled
Bell-tests with photon pairs from parametric down-conversion
and, with the realm of quantum logic, for trapped ions, nuclear
spins etc.

So far, all experiments to test Bell’s inequalities required addi-
tional assumptions, thus opening loopholes in Bell’s original
argument.4 The first is called the locality loophole, in which
the correlations of apparently separate events could result from
unknown subluminal signals influencing the measurement results
during the observation of an entangled pair.5�6 One experiment
was performed with entangled photons7 enforcing strict relativis-
tic separation between the measurements. But it suffered from

∗Author to whom correspondence should be addressed.

low detection efficiencies. It thus opens the second loophole by
allowing the possibility that the subensemble of detected events
agrees with quantum mechanics even though the entire ensemble
satisfies the limits for local-realistic theories as given by Bell’s
inequalities.8�9 This is also referred to as detection loophole and
was addressed in an experiment with two trapped ions,10 where
the quantum state detection was performed with almost perfect
efficiency. But there the ion separation was too small to eliminate
the locality loophole.

Based on the experiments performed in our group,11�12 a final
test of LHV-theories13 comes into reach of our experimental
techniques. For this purpose two photons, each entangled with
a trapped Rubidium-87 atom, will be distributed far enough to
ensure space-like separation, see Figure 1. A projection of the
photons onto Bell-states serves to swap the entanglement to the
atoms14 whose states now can be observed with high efficiency.
This enables the ideal configuration of a so called event-ready
scheme,4�5�14 which does not require any assumptions at all.

2. EXPERIMENTAL REQUIREMENTS
Let us now analyze the experimental requirements. Crucial for
such a test is a highly efficient state analysis performed by
space-like separated observations on entangled atoms. Here the
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Fig. 1. Space-time schematic of the proposed loophole-free Bell experi-
ment. Two atomic traps are separated by 300 m, each atom emits a photon
whose polarization is entangled with the atomic spin. The two photons arrive
simultaneously on a non-polarizing beamsplitter where interference takes
place. The coincidence detection in the outputs of the beamsplitter (equiv-
alent to a Bell-state measurement (BSM) on the two photons) signals the
projection of the atoms onto an entangled state. The signal of successful
BSM is sent back to both setups, where atomic state detection is started.
The detection is performed in a randomly chosen basis and has to be fin-
ished before any classical signal can reach the other side (i.e., within less
than 1 �s).

minimum distance between the atoms is determined by the dura-
tion of the atomic state detection process.

The currently used atomic state detection method is a two-step
process.11 It consists of a stimulated Raman adiabatic passage
technique (STIRAP) which transfers a selected superposition of
the atomic spin states to a different hyperfine level (F = 2) and
a subsequent detection of the hyperfine state. While the STIRAP
process is inherently coherent, the coherence of the atomic state
is destroyed right after the STIRAP sequence by resonant scatter-
ing of photons within 300 ns with a probability exceeding 99%.
Alternatively, the hyperfine state detection can be replaced by
state-selective ionization with subsequent detection of the ion-
ization fragments. By irreversibly removing the valence electron,
the coherence of the atom is destroyed (according to calcula-
tions) after 200 ns with a probability of >99%. Together with
the random choice of the measurement basis (100 ns), the STI-
RAP process (120 ns), and flight times of the ionization frag-
ments (<500 ns) it gives an overall detection time of less than
1 �s. The corresponding distance of 300 m between the atoms
for closing the locality loophole can easily be achieved since
the transmission losses in optical fibers for the photons used
for entanglement swapping (wavelength 780 nm) are low (for
a demonstration of an optical fiber link of 300 m length see
Ref. [12]). We emphasize that our scheme is also independent of
any detection related loopholes, because entanglement swapping
enables the event ready scheme,4�5�14 where binary measurement
results are reported for every run, started after a joint photon
detection event in the Bell-state measurement. For limited detec-
tion efficiency/accuracy, however, the obtained results are not

always correct. This leads to a reduction of the expected spin
correlations. The corresponding accuracies of the two detection
methods are analyzed in this paper and the expected violation of
Bell’s inequality is given.

2.1. State-Selective Atom Removal
The currently used detection of the hyperfine state involves state-
selective removal of the atoms from the trap, which is verified
by counting photons collected from the trap region. The mean
accuracy of this procedure was experimentally determined to be
aHF = 97�8%.15 Together with the accuracy of the STIRAP pro-
cess, aST = 97�25% it results in an overall detection accuracy of
a
�flr��
det = 95%. This number specifies the (symmetric) probability

for correct identification of the analyzed atomic state (i.e., � ↓� is
identified as � ↓� and � ↑� as � ↑�). A disadvantage of this method
due to very low collection efficiency of only about 10−3 is the
long duration of sampling fluorescence photons until the outcome
can be determined (10��20 ms). Yet, one should note that deco-
herence (coupling to the environment) already takes place within
short time (300 ns) by scattering a single photon.

2.2. State-Selective Ionization
Alternatively, in order to enable a very fast and direct detec-
tion of the atomic state, state-selective ionization can be used.
Here again a selected superposition of atomic spin states is first
transferred to 52S1/2� F = 2 hyperfine level using the STIRAP
technique. Then the atom in F = 2 level is optically excited to
the 52P3/2� F = 3 level and ionized using an additional laser at
a wavelength of 473 nm. The rate of this two-photon ioniza-
tion process depends on the available intensity of the lasers. We
expect to achieve an ionization probability of pionize > 99% within
200 ns. The resulting free electron e− and Rubidium ion 87Rb+

can be detected by channel electron multipliers. As it is suffi-
cient to detect at least one of the ionization fragments, the overall
detection efficiency pdet is given by

pdet = 1− �1−pe��1−pion� (1)

This method is currently investigated in our group. First calibra-
tion measurements for ionization of Rubidium atoms from back-
ground gas in a vacuum cell show efficiencies of pe = 80% and
pion = 60%. The goal is to reach values pe ≥ 85% and pion ≥ 65%,
which would give a detection efficiency of pdet = 95% and better.

Again it has to be stressed that the efficiency for detection of
ionization fragments is not the detection efficiency in the Bell
experiment. Due to the binary nature of the result (either a frag-
ment is detected corresponding to the measurement result “� ↑�,”
or it is not detected, corresponding to the measurement result
“� ↓�,” but a result is always given) this efficiency here does only
influence the accuracy of the state detection.

3. EXPECTED VISIBILITY FOR THE
ENTANGLEMENT SWAPPING

For all further considerations we assume that the entangled state
of atom-photon or two atoms has the density matrix of the fol-
lowing form

�̂= V �� �	� �+ �1−V �
1
4
1̂ (2)

where V is the visibility, �� � = �1/
√
2��� ↓�� ↑�± � ↑�� ↓�� is a

maximally entangled state and �1/4�1̂ is the density matrix of the
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completely mixed state.16 In a correlation measurement, where
the relative angle between the measurement bases of the two par-
ticles is varied, the visibility V describes the difference between
the maximum and the minimum values (also called contrast)
of the observed interference fringe. Given the state represented
by the density matrix �̂ from (2), the probability to find the two
particles in the (pure) state �� � (also called the fidelity F ) is
F = 1/4+ �3/4�V .

For any additional error occurring at the further stages of the
experiment we assume that the density matrix is modified like

�̂→ �1− e��̂+ e · 1
4
1̂

where e is the error probability. This assumes that any error
results in a completely mixed state. For visibility V and fidelity F
of the state follows

V → �1− e�V

F → �1− e�F + 1
4
e

(3)

These relations allow to calculate the influence of different errors
during the transmission of the state, entanglement swapping, etc.

In order to generate an entangled pair of atoms, the start-
ing situation is the emission of a photon by the atom. During
this process the polarization of the photon gets entangled with
the respective atomic spin resulting in the maximally entangled
state11

��+�at-ph =
1√
2
�� ↓�z��+�+ � ↑�z��−��

The two states � ↑�z and � ↓�z, defining the atomic qubit, cor-
respond to the �F = 1� mF = ±1� Zeeman sublevels of the
52S1/2� F = 1 hyperfine ground level. The purity of this state is
limited only by the errors in preparation of the excited state,17

in our case we assume eexc = 0�5% due to imperfections in the
preparation of the initial state and resulting off-resonant excita-
tion to different atomic states, leading to V

�initial�
at-ph = 99�5%. The

smaller visibility observed in the current experiments11 is due
to errors in the analysis of the atom-photon state which are
described below. For the generation of atom–atom entanglement
via entanglement swapping, the photon propagates via an optical
fiber to a different location where the two-photon interference
takes place. Recently we have demonstrated an optical fiber link
of 300 m length,12 where the polarization errors were kept below
1% by active polarization control. Thus the remaining polariza-
tion errors in the fiber (epol = 1%) reduce the visibility to

Vat-ph = �1− eexc��1− epol�= 98�5%

This is the atom-photon visibility which is assumed before
the photons enter the apparatus for the Bell-state measurement
(BSM).

In the entanglement swapping process an additional error
might occur due to mismatch in the two-photon interference
which is assumed to be eBSM = 3%. The projection of the two
atoms onto the entangled state is heralded by the coincidence
detection (double click) of the two photons leaving two different
output ports of the beamsplitter. Conditioned on this coincidence,
the probability p���−�at-at� to get the desired entangled atom–
atom state ��−�at-at is

�1− eBSM�

(
1
4
+ 3

4
V 2
at-ph

)
+ 1

4
eBSM = 95�6% (4)

where the influence of the error eBSM follows from (3).
Dark counts in the single photon detectors of the Bell-state

analyzer will add spurious events. Fraction of wrong coincidence
events is calculated as follows. The probability to get a photon
from the first trapped atom at the beamsplitter is 	1 = 1�3 ·10−3×
0�6 = 0�78 · 10−3, where the first number is the local efficiency
for the generation of entangled atom-photon pairs (including the
detection efficiency of single-photon detectors), while the sec-
ond number accounts for the coupling and transmission losses
in the fiber, as well as the limited time window for the coin-
cidence detection. For the photon from the second atomic trap
this number is higher due to the higher numerical aperture, 	2 =
2�0 ·10−3×0�6= 1�2 ·10−3. Therefore the probability to detect a
coincidence of the two photons is

p
�true�
coincidence =

1
4
	1	2 = 2�34 ·10−7 (5)

The factor 1/4 accounts for the fact that only one out of four
photonic Bell-states is detected. A “wrong” coincidence happens
if one photon arrives at the beamsplitter and is detected in one
detector while the other detector produces a dark count within the
coincidence time window. For the detectors which will be used
for this purpose (Perkin-Elmer SPCM-AQR15) the dark count
rate is rdc ≤ 50 cps. For a coincidence time window of 
T =
40 ns the probability of such an event is

p
�dark�
coincidence ≈ �	1+	2�rdc
T = 3�96 ·10−9

As the probability of detecting two dark counts as coincidence is
negligible (4 ·10−12), the fraction of wrong events in the coinci-
dence detection is edc = 1�68%. Applying the relations (3) to the
fidelity from (4) we obtain a resulting fidelity of Fat-at = 94�4%
and visibility of Vat-at = �1/3��4Fat-at−1�= 92�5%.

4. EXPECTED VIOLATION OF
BELL’S INEQUALITY

For the experimental test of the CHSH formulation of Bell’s
inequality, the parameter S is measured, which is defined as

S �= �	����+	��′���+ �	���′ �−	��′�′ �� (6)

Here 	���� is the expectation value of joint measurements on
the spins of two particles where one spin is analyzed at an
angle � and the other one at an angle  (we define these angles
in terms of light polarization in the laboratory frame). According
to Bell’s theorem, any theory with local hidden variables pre-
dicts S ≤ 2. In quantum mechanics S = 2

√
2 is reached, e.g., for

�= 0, �′ = 45, = 22�5, ′ = −22�5.
In an experiment we measure the number of events “↑↑,”

“↓↓,” “↑↓,” “↓↑,” where the “ups” and “downs” are the ori-
entations of the spins with respect to the corresponding analy-
sis directions ��. We shall call these numbers N

����
↑↑ , N����

↓↓ ,
N

����
↑↓ , N����

↓↑ , while the total number of events per setting ����

is Ns =N
����
↑↑ +N

����
↓↓ +N

����
↑↓ +N

����
↓↑ . The expectation values

are calculated as

	���� = 1
Ns

(
N

����
↑↑ +N

����
↓↓ −N

����
↑↓ −N

����
↓↑

)

= 2
Ns

(
N

����
↑↑ +N

����
↓↓

)−1 (7)
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We note that
N

����
↑↑ = Ns ·p����

↑↑

N
����
↓↓ = Ns ·p����

↓↓
(8)

where
p
����
↑↑ = p

(� ↑����1 � ↑���2

)
p
����
↓↓ = p

(� ↓����1 � ↓���2

)
are the probabilities for both particles to be measured in the state
� ↑� (� ↓�) along their respective analysis direction. For the atomic
states the relations

� ↑���� = cos�−��� ↑���+ sin�−��� ↓���
� ↓���� = cos�−��� ↓���− sin�−��� ↑���

hold and therefore

��−� = 1√
2

(�↓����1 �↑����2 −�↑����1 �↓����2

)

= 1√
2

(
cos�−���↑����1 �↓���2 −sin�−���↑����1 �↑���2

−cos�−���↓����1 �↑���2 −sin�−���↓����1 �↓���2

)

The probabilities p
����
↑↑ , p����

↓↓ are explicitly calculated in the
following by applying the experimental detection probabilities
and accuracies depending on the detection method.

4.1. Atomic State Analysis via State-Selective Atom
Removal and Fluorescence Detection

When the entangled atom–atom state (2) with an initial visibility
Vat-at is analyzed, we expect the probabilities

p
����
↑↑ = p

����
↓↓

= 1
4
�1−Vat-at�2adet−1�2 cos�2�−���� (9)

of detecting both particles in the state � ↑�, respectively � ↓� along
the directions ����. Inserting this into (6, 7, 8) we determine
the expected parameter S

S�flr.� = 2
√
2Vat-at�2adet−1�2 (10)

For Vat-at = 92�5%, a�flr.�
det = 95% this gives S�flr.� = 2�12, corre-

sponding to an observable atom–atom visibility of V �flr.� = 74�9%.

4.2. Atomic State Analysis via
State-Selective Ionization

The limited detection efficiency for the ionization fragments
leads to an asymmetry in the accuracy for the two measurement
outcomes. The result where one of the channel electron multi-
pliers registers a particle definitely means that an ionization has
taken place (the probability of a dark count is low and therefore
neglected). However, the result where no particle is registered
contains also the events where the ionized fragments were not
detected.18 The probabilities in this case are

p
����
↑↑ = 1

4
p2
d�1−Vat-at�2aST−1�2 cos�2�−����

p
����
↓↓ = 1

4
�2−pd�

2

×
(
1− p2

d

�2−pd�
2
Vat-at�2aST−1�2 cos�2�−���

)
(11)

where we have set pd = pionize ·pdet for brevity. The parameter S
is then given by

S�ioniz� = 2
√
2Vat-atp

2
d�2aST−1�2−2�1−pd�

2 (12)

This expression is exactly valid for pd ≥ �1+ 4
√
2�−1. For the

parameters Vat-at = 92�5%, aST = 97�25%, pd = 95% we get
S�ioniz� = 2�10.

5. STATISTICAL UNCERTAINTY FOR THE
VIOLATION OF BELL’S INEQUALITY

In order to violate Bell’s inequality the value of S > 2 has to
be measured with sufficient statistical significance. Calling the
standard deviation of the measured value 
S, it has to be assured
that

S−2

S

≥ k (13)

where k is the number of standard deviations for the violation.
Taking k= 3 gives a confidence level of ≥99�73%. The standard
deviation 
S depends on the number of measured events and
shall be calculated in the following.

Using Gaussian error propagation we get from (7)


	���� =
2
Ns

√

N 2

↑↑ +
N 2
↓↓

The uncertainty of S is


S =
√∑

��


	����2 (14)

where �= 0� 45� = 22�5� −22�5.
Next, the statistical uncertainties of the event numbers have to

be determined. Here we note that for a Bernoulli experiment the
standard deviation of the expectation value is given by


N↑↑ =
√
N↑↑p↑↑�1−p↑↑�=

√
Ns

√
p2
↑↑�1−p↑↑�


N↓↓ =
√
N↓↓p↓↓�1−p↓↓�=

√
Ns

√
p2
↓↓�1−p↓↓�

(15)

With these expressions the uncertainty of the S parameter is cal-
culated for the two considered detection methods.

5.1. Fluorescence Detection
Using the expression (9) and taking the specific angles for the
Bell measurement we obtain

p
����
↑↑ = p

����
↓↓ = 1

4

(
1∓ 1√

2
V

)

where V = Vat-at�2adet − 1�2, the “−” sign is valid for the set-
tings �0�±22�5�, �45�22�5� while the “+” sign appears in
the setting �45�−22�5�. This expression is inserted into (15)
giving


N↑↑ = 
N↓↓

=
√
Ns

4

√(
1∓ 1√

2
V

)2(
1− 1

4

(
1∓ 1√

2
V

))
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Therefore for ���� equal to �0�±22�5� and �45�22�5�


	���� =
1

2
√
2
√
Ns

√(
1− 1√

2
V

)2(
3+ 1√

2
V

)

and for ���� equal to �45�−22�5�


	���� =
1

2
√
2
√
Ns

√(
1+ 1√

2
V

)2(
3− 1√

2
V

)

Using (14) we finally get


S�flr.�

= 1√
2
√
N

×
√
3
(
1− 1√

2
V

)2(
3+ 1√

2
V

)
+
(
1+ 1√

2
V

)2(
3− 1√

2
V

)

(16)

where N = 4Ns is the total number of events for all four settings
together.

Inserting this result into the expression for violation of Bell’s
inequality (13) we can estimate the number of events necessary
to achieve a certain confidence level. Figure 2 shows the depen-
dence of the number of events N for a violation by 3 standard
deviations as a function of the expected atom–atom visibility V =
Vat-at�2adet−1�2. For a visibility of V = 74�9% we get N = 2600.

5.2. Ionization Detection
Using the expression (11) and taking the specific angles for the
Bell measurement we obtain

p
����
↑↑ = 1

4
p2
d

(
1∓ 1√

2
Vat-at�2aST−1�2

)

p
����
↓↓ = 1

4
�2−pd�

2

(
1∓ 1√

2

p2
d

�2−pd�
2
Vat-at�2aST−1�2

)

where pd = pionize · pdet. Again the “−” sign is for the settings
�0�±22�5�, �45�22�5� while the “+” sign appears in the set-
ting �45�−22�5�. These are used for calculation of the uncer-
tainty of the S parameter similar to the previous section. It is
again inserted into (13) to estimate the necessary number of
events. Figure 3 shows the dependence of the required num-
ber of events on the detection efficiency. Here we have assumed
Vat-at�2aST−1�2 = 82�6%. For the detection efficiency pd = 95%
we get N = 3470 events.
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Fig. 2. Number N of events necessary to violate Bell’s inequality by 3 stan-
dard deviations using fluorescence detection as a function of the expected
atom–atom visibility V = Vat–at�2adet−1�2.
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Fig. 3. Number N of events necessary to violate Bell’s inequality by
3 standard deviations with ionization detection as a function of the
electron/ion detection efficiency pd (including ionization probability). The
assumed atom–atom visibility excluding the ionization detection efficiency is
Vat-at�2aST −1�2 = 82�6%.

6. EXPERIMENTAL EVENT RATES AND
MEASUREMENT TIME

In this section we estimate the repetition rate of the two-atom
experiment and the overall measurement time necessary to vio-
late Bell’s inequality with sufficient statistical significance. In the
current experiment, the sequence for generation of atom-photon
entanglement consists of the preparation of the initial state by
optical pumping (∼5 �s) and excitation. Currently after every
20 preparation-excitation cycles the atom has to be cooled for
200 �s, which gives additional 10 �s per cycle. For the remote
entanglement the emitted photon will be sent over an optical fiber
of about 200 m length to the place where entanglement swapping
is performed. Therefore a waiting time of 2 ·200 m/��2/3�c�=
2 �s is necessary to send the photon and to receive a signal
about the success or failure of the entanglement swapping proce-
dure. This gives altogether 17 �s per cycle and a repetition rate
of 58.8 kHz. Assuming a mean occupation number of each trap
of 0.5 we get the duty cycle of the two-trap system of at least
�0�5�2 = 0�25. This results in an effective repetition rate of 0�25 ·
58�8 kHz = 14�7 kHz. Together with the success probability (5)
of the entanglement swapping process of 2�34 · 10−7 we expect
1 atom–atom event in approximately 5 minutes. Depending on
the detection method it is necessary to evaluate between 2600
and 3470 atom–atom events in order to violate Bell’s inequality
by 3 standard deviations. This requires a continuous measure-
ment time between 9 and 12 days. By detection of a second Bell
state during the BSM19 this measurement time could be reduced
by a factor of two.

7. SUMMARY
We have shown the feasibility of a loophole-free test of Bell’s
inequality with entangled pairs of neutral atoms. By simultane-
ously exciting two single Rubidium-87 atoms in remote traps and
detecting interference of the emitted photons it should be possi-
ble to entangle the atoms with a high fidelity. The two available
methods of atomic state detection allow to violate Bell’s inequal-
ity by achieving an S ∼ 2�1 > 2 and to evaluate the complete
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ensemble of entangled atom pairs (i.e., without the need of a
fair sampling assumption). Additionally, strict space-like sepa-
ration of measurement events is obtainable by using a distance
between the atomic traps of 300 m. Although very challenging,
this approach is a promising candidate for a conclusive test of
quantum mechanics against theories with local hidden variables.
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