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Abstract

We present a scheme for direct and confidential communication between

Alice and Bob, where there is no need for establishing a shared secret key

first, and where the key used by Alice even will become known publicly.

The communication is based on the exchange of single photons and each

and every photon transmits one bit of Alice’s message without revealing

any information to a potential eavesdropper.

PACS: 03.67.Dd, 42.79.Sz

1. Introduction

It is generally believed that cryptography schemes are only completely secure
when the two communicating parties, Alice and Bob, establish a shared secret
key before the transmission of a message. This means they first have to create
a random bit sequence, which is not known to anyone else, and which is of the
same length as the message. In order to communicate, Alice then multiplies the
bits of the message one by one with the key bits. When she announces the result
to Bob, or even publicly, then he is the only one who can interpret it and deduce
Alice’s message.

As shown in a seminal paper by Bennett and Brassard in 1984 [1], Alice and
Bob can establish a shared secret key by exchanging single qubits, physically re-
alised by the polarisation of photons, for example. The protocol of the proposed
scheme, that became known as BB84, is as follows. First, Alice prepares a photon
in a certain polarisation state, a basis vector in a two-dimensional Hilbert space.
Thereby she chooses at random between two complementary bases. Afterwards
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she forwards the photon to Bob who now performs a measurement on the incom-
ing state. If he chooses the same basis as Alice, which happens with a chance of
50 %, they can agree about one key bit. At the end of a transmission they check
whether it was secure or not by just comparing some key bits. An eavesdropper
can be noticed because his interception causes an error rate of at least 25 %.

In 1987 Vaidman, Aharonov and Albert published a paper [2] with the title
“How to ascertain the values of σx, σy and σz of a spin-1

2
particle” and de-

scribed a paradox that later became known as the Mean King’s Problem [3]. The
quantum-optical version of the king’s problem proposed recently [4] suggests a
new cryptography scheme, presented in Refs. [5, 6]. In the present paper we
focus on a further development, namely a modification that allows Alice to send
a message to Bob without the need to establish a shared secret key first.

The protocol of this new scheme has, of course, many similarities to BB84
[1], its later modifications [7, 8, 9] and the proposal made by Ekert in 1991 based
on entangled photon pairs [10]. But it is much more than just another modi-
fication. In contrast to BB84 and its various “analytical continuations”, which
are probabilistic, the scheme we describe here is deterministic. Each and every
photon sent and detected will eventually contribute a key bit. In addition, and
this is another important requirement for direct and confidential communication,
no information is revealed to a potential eavesdropper. The only other proposal
with deterministic features is the one of Goldenberg and Vaidman [11].

Altogether, the transmission of a message becomes more efficient than in other
schemes. The price to be paid for this efficiency raise is that each photon now
has to be prepared in a two-qubit state and not only in a single-qubit state. To
obtain these states Alice can use, for instance, the spatial binary alternative of
a photon with the basis states |R〉 and |L〉 and the two polarisations |v〉 and |h〉.
Here, |R〉 and |L〉 describe a photon traveling either in the “right” fiber or in the
“left” fiber. How any desired superposition of such two-qubit photon states can
be prepared is described in Ref. [4].

In the next section we summarise the basic idea that can be used to construct
direct confidential quantum communication schemes. In Section 3 we describe
concrete proposals for its realisation. The security against eavesdropping attacks
of the general intercept-resend kind is addressed in Section 4. After discussing a
possible experimental setup, we conclude with a summary of our results.

2. The basic idea

In this section we describe the essential ingredients needed for quantum cryp-
tography. The basic protocol that all schemes have in common is the following:
Alice (the sender) exchanges single qubits with Bob (the receiver), each of them
prepared in a certain state. As usual she chooses at random between different
types of states labeled by n. Here we choose the notation such that states trans-
mitting a “+” bit are denoted by |n+〉. In order to transmit a “−” bit Alice
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prepares the state |n−〉. If a photon arrives at Bob’s end, he performs a measure-
ment on its state whereat he switches at random between at least two different
measurement bases. In the following, there will always be only two different mea-
surements he can choose and we denote the corresponding basis states by |Bn〉
or |Cn〉.

As in Refs. [5, 6], let us call the eavesdropper Evan. He has full access to all
communication channels between the two parties. This means, he can perform
any possible quantum mechanical operation on the photons in transmission and
he can listen into the classical communication between Alice and Bob. Security of
the scheme is assured when Evan’s presence leads to a significantly increased error
rate in the bit transmission. At the end of a transmission, Alice and Bob compare
some of their bits to test whether this rate is above a certain percentage limit or
not. If not, Alice announces the encrypted message via a classical communication
channel or even publicly.

Up to now, our description applies to any quantum cryptography scheme.
If Alice and Bob want to have a scheme to establish a shared secret key, the
states |n±〉, |Bn〉 and |Cn〉 only have to fulfill the condition that Bob can, at
least in some cases, deduce which bit Alice sent from the knowledge of n and
the corresponding outcome of his measurement. In BB84, this applies to 50 %
of the photons which then provide one key bit each. Whether Evan can gain
any knowledge about the bits in transmission or not does not matter. Alice and
Bob only use the key sequence they created if they can verify the absence of any
eavesdropping attempts.

To obtain a more efficient scheme, Alice and Bob should maximise the rate
of photons they can use to establish a key bit. One can even assure that Bob
always knows whether Alice sent a “+” or a “−” bit by using a four dimensional
Hilbert space [5, 6]. This is the case, when a photon in |n+〉 cannot cause the
same measurement outcome as a photon in |n−〉. For instance, if n = 3 and Bob
found |C2〉 and knows that |C2〉 overlaps with the state |3+〉, but not with |3−〉,
then he obtains a “+” bit. Thus every one of Bob’s measurements matches with
whatever state Alice prepared and the scheme is deterministic.

If Alice and Bob want to communicate directly and confidentially, then there
is another condition that has to be fulfilled: Whatever operation Evan performs
on the photon state, he should not be able to gain any information about the
bit in transmission. Let us assume that Alice uses all state pairs with the same
frequency. To find out whether a photon carries a “+” or a “−” bit, Evan has
to answer the question whether its state belongs to the subspace spanned by all
|n+〉 states or to the subspace spanned by all |n−〉 states. If

∑

n

|n+〉〈n+| =
∑

n

|n−〉〈n−| , (1)

then these two subspaces are completely indistinguishable and the bit in trans-
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mission is perfectly concealed in the state space.

3. A concrete scheme for direct communication

In this section we present a concrete scheme for direct communication between
Alice and Bob. To do so let us assume that

|n+〉 ≡ |Bn〉 and |n−〉 ≡ |Cn〉 . (2)

Then the states |n+〉 and |n−〉, respectively, evenly span the whole Hilbert space
and clearly fulfill condition (1). They equal either one or the other measurement
basis of Bob. Note that such a coding is different to BB84 and its modifications,
where where the states |n+〉 and |n−〉 always belong to the same set of basis
states.

To assure that Bob always knows how to interpret his measurement result
there should be no overlap between basis states with the same index n, i.e.

〈Bn|Cn〉 = 0 . (3)

If Bob finds the photon, for instance, in |Bm〉 with m 6= n, then he knows
immediately that Alice prepared it |n−〉. The reason is that a photon in |n+〉
cannot cause a “click” at this detector. Otherwise, if n coincides with m, then
he knows that he received a “+” bit. This tells him that he measured the same
basis as the one used by Alice to prepare the photon state.

The protocol for direct and confidential communication originating from this
ansatz is the following: First, Alice creates a random succession of ciphers n that
will serve as her cryptographic key. The length of this sequence should coincide
with the length of her message. Depending on whether she wants to transmit a
“+” bit or a “−” bit next, she prepares the photon either in |Bn〉 or in |Cn〉 with
n according to the next number of her key and sends it to Bob. Bob measures at
random either the B or the C basis on each incoming photon. After Alice and
Bob assured each other that the transmission was secure (how well this can be
done is discussed in the next section), Alice publicly announces her key. In doing
so, she reveals the message to Bob.

Up to now, we have not yet answered the question, what the B and C basis
should look like. Let us assume here that Alice and Bob use single photon two-
qubit states [4]. Then all states are part of a four-dimensional Hilbert space
but our results can also be carried over easily to higher dimensions. Note, that
is not possible to find a non-trivial solution to Eqs. (2) and (3) in less than
four dimensions, this means a solution for which the states |Cn〉 are not just a
permutation of the states of the B basis.

In the following, we denote the basis transformation that rotates the B basis
into the C basis by A and write

(|C1〉, |C2〉, |C3〉, |C4〉) = (|B1〉, |B2〉, |B3〉, |B4〉)A . (4)
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Table 1: Bob’s probability to find a certain measurement outcome for the scheme
corresponding to Eq. (5).

Alice’s measurement outcome at Bob’s end
photon state B1 B2 B3 B4 C1 C2 C3 C4

1+ 1 0 0 0 0 a2
1 a2

2 a2
3

2+ 0 1 0 0 a2
1 0 a2

3 a2
2

3+ 0 0 1 0 a2
2 a2

3 0 a2
1

4+ 0 0 0 1 a2
3 a2

2 a2
1 0

1− 0 a2
1 a2

2 a2
3 1 0 0 0

2− a2
1 0 a2

3 a2
2 0 1 0 0

3− a2
2 a2

3 0 a2
1 0 0 1 0

4− a2
3 a2

2 a2
1 0 0 0 0 1

Condition (3) is then fulfilled if the unitary 4 × 4 matrix A has only vanishing
diagonal elements. Besides this, there are no other restrictions on A and there are
many choices Alice and Bob can make. For symmetry reasons, let us assume that
A is not only unitary but also Hermitian. Then the inverse of the transformation
(4) is also furnished by A.

It is sufficiently general to consider matrices of the form

A = i











0 a1 a2 a3

−a1 0 a3 −a2

−a2 −a3 0 a1

−a3 a2 −a1 0











(5)

where the parameters ai are real and fulfill the normalisation constraint

a2

1 + a2

2 + a2

3 = 1 . (6)

Thus, Alice and Bob have two free parameters which they can choose to their
liking. Bob’s probabilities to find the incoming photon in a certain state are
summarised in Table 1.

In the next two Sections we will see that the fully symmetric choice

a1 = a2 = a3 = 1/
√

3 (7)

maximises the error rate that a potential eavesdropper introduces in the bit trans-
mission between Alice and Bob. Another solution is to choose

a1 = a2 = 1/
√

2 and a3 = 0 . (8)
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In this case, the experimental implementation of the corresponding scheme is
particularly simple, see in Section 5 below. To prepare a photon in one of the
states of the B and the C basis does not require to produce entanglement be-
tween the two degrees of freedom, the spatial coordinates and the polarisation,
of the photon. Nevertheless, the error rate introduced by an eavesdropper is still
relatively large.

Finally, we would like to convince ourselves that whatever the parameters ai

are, it is indeed impossible for Evan to gain any information without the knowl-
edge of Alice’s key. The reason is that the states |n+〉 (and |n−〉, respectively)
equally span the whole Hilbert space. As long as Alice chooses equally likely
between the four possible values of n, she prepares the ensemble of photons with
a “+” bit in the mixed state that is given by the (normalised) identity matrix.
The same applies to the ensemble of photons that carry a “−” bit. Thus what-
ever Evan measures, the probability to find the photon in a certain state always
equals 1

4
and finding a certain state does not reveal any information to Evan.

4. Security against intercept-resend attacks

The security of the scheme we present here results from the fact that Alice
does not reveal her key before she is not convinced that no eavesdropper has
been listening in. To test whether this is the case or not, Alice and Bob proceed
as follows: Alice intersperses her message with a fair number of control bits
at random positions and of random values. Only Alice knows which ones are
the control bits and which ones the message bits. After the transmission of all
photons, she tells Bob which photons carried control bits and he tells her in which
state he found them. If Alice verifies that Bob’s findings are consistent with what
she sent, then they conclude that the transmission was secure. Otherwise, if the
error rate is above a certain percentage level, they should not trust in the security
of their communication and Alice should repeat her transmission using a different
cryptographic key.

Let us now imagine that Evan is listening in and determine the minimum error
rate he causes in case of the setup described in the previous section. By doing so
we do not care whether Evan can gain any information in this way or not, once
Alice reveals her key. Let us assume, as usual, that Evan intercepts every photon
and performs a measurement on it. Afterwards he forwards a replacement to Bob
accordingly, namely in the two-qubit state that has the best chance of avoiding
wrong detector clicks at Bobs end.

In the following we denote the states of Evan’s measurement basis by |Ek〉. As
explained at the end of the previous section, the probability to find the photon
in a certain state always equals 1

4
and Evan cannot gain any information from

his measurement. For simplicity we consider only the strategy in which Evan
forwards the photon in exactly the same state he found it in. In this way he
forwards it at least in a state that has some overlap with the state prepared by
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Alice. More general strategies in which Evan optimises the forwarded state can
be analysed as well, but that is technically more demanding, and we are here
content with referring the reader to the detailed discussion in [6].

The probability that Alice prepares her photon in |n+〉 equals 1

8
and the

probability that Bob measures the B basis is given by 1

2
. In this case, an error

occurs if Bob finds the photon in |Bm〉 with n 6= m. The contribution of this case
to the total error probability is given by

1

8
· 1

2

∑

k

|〈Ek|n+〉|2
∑

m6=n

|〈Ek|Bm〉|2 = 1

16

[

1 −
∑

k

|〈Ek|Bn〉|4
]

(9)

because the probability that Evan measures |Ek〉 is in this case |〈Ek|n+〉|2 whilst
|〈Ek|Bm〉|2 is the probability that Bob finds the photon afterwards in |Bm〉. Anal-
ogously, one finds that the contribution to the error rate is given by

1

16

∑

k

|〈Ek|n+〉|2 |〈Ek|n−〉|2 = 1

16

∑

k

|〈Ek|Bn〉|2 |〈Ek|Cn〉|2 , (10)

if Bob measures the C basis instead of the B basis. In this case an error occurs
only if Bob finds the photon in |n−〉. Calculating the contributions to the total
error rate when Alice prepares the photon in the state |n−〉 leads to the same
result but with |Bn〉 replaced by |Cn〉 and vice versa.

To calculate the total error rate Perror one has to sum over all contributions
and all possible values of n. Doing so leads to

Perror =
∑

n

[

1

8
− 1

16

∑

k

(

|〈Ek|Bn〉|4 + |〈Ek|Cn〉|4 + 2 |〈Ek|Bn〉|2 |〈Ek|Cn〉|2
)]

= 1

2
− 1

16

∑

n

∑

k

(

|〈Ek|Bn〉|2 − |〈Ek|Cn〉|2
)2

. (11)

Evan’s task of minimising the error rate so reduces to the task of minimising this
expression. Using the notation

|Ek〉 =
∑

m

em |m+〉 (12)

and Eqs. (2)–(5) we find that

Perror ≥ 1

2
− 1

16

∑

n

( 1 + a4

1 + a4

2 + a4

3 )
∑

m

|em|4 (13)

by neglecting all negative terms in the round brackets at the right hand side of
Eq. (11), that is: the terms that stem from Eq. (10). The state |Ek〉 is normalised
and its coefficients em obey the inequality

∑

m |em|4 ≤ ∑

m |em|2 = 1. This leads
to the result

Perror ≥ 1

4
( 1 − a4

1 − a4

2 − a4

3 ) . (14)
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For the optimal scheme corresponding to the parameters given in Eq. (7) the
right hand side of this equation is 1

6
= 16.67 %. For the scheme (8), the error

rate introduced by Evan in the bit transmission is always above 1

8
= 12.5 %.

As it stands, this calculation applies only to strategies where Evan forwards
the photon in the detected state, but not to those where the forwarded states
are optimised for minimal error rates. It turns out, however, that these more
sophisticated strategies do not yield error rates below these 16.67 % or 12.5 %,
respectively. This is confirmed by the numerical data presented in Figure 1 which
reports error rates for random choices of Evan’s measurement basis and forwarded
states. The data demonstrate that the right hand side of Eq. (14) is indeed the
lower bound of the error rate.

To derive Eq. (14) we neglected only terms proportional |ek|2|ej|2 with k 6= j.
An optimal strategy for Evan is therefore, for instance, to measure the B basis,
i.e. to measure whether the incoming photon is in one of the states |n+〉. This
strategy also optimises eavesdropping with respect to maximising the information
gain of Evan as soon as he gets to know the key. If Alice and Bob fail to notice
his presence, he can intercept the whole transmitted message.

5. Proposal for an experimental realisation

We have seen in the previous section that the error rate introduced by an
eavesdropper is always above 16.67 % for the optimal choice of the parameters
(7). This is not much larger than the minimum error rate of 12.5 % which was
found for the parameter choice of Eq. (8). In this section we discuss how the
second scheme could be realised experimentally because its implementation is
much simpler, although implementing the optimal scheme is also possible with
the methods of [4]. To achieve the same degree of security in the second scheme,
Alice and Bob must use about 40 % more control bits.

Let us assume now that the vectors of the B basis are given by

(|B1〉, |B2〉, |B3〉, |B4〉) = (|Rv〉, |Lv〉, |Lh〉, |Rh〉) . (15)

Then the states of the C basis equal

(|C1〉, |C2〉, |C3〉, |C4〉) = i (−|Ls〉, |Rs〉, |Ra〉,−|La〉) , (16)

where
|s〉 ≡ 1√

2
(|v〉 + |h〉) and |a〉 ≡ 1√

2
(|v〉 − |h〉) (17)

are the symmetric and the antisymmetric superposition of the basic polarisation
states. Thus, the C basis differs from the states of the B basis only with respect
to the possible polarisations of the photons. The phase factors ±i in Eq. (16)
are a consequence of the conventions adopted at (5) and (8) and could as well be
omitted. To prepare the states |n±〉, Alice could use any source that produces
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single photons on demand. For examples of experimental realisations of such
sources see for instance Refs. [12, 13, 14, 15].

If Alice wants to send a “+” bit to Bob, then she should prepare the photon
at random in one of the four states on the right hand side of Eq. (15). To do
so she chooses equally likely between the polarisations |h〉 and |v〉 and sends the
photon either through a “left” or a “right” fiber. To send a “−” bit, Alice can
proceed in the same way but should then change the polarisation of the outgoing
photon before sending it to Bob. This can be done, for instance with the help
of a half-way plate (HWP) that affects the polarisation of a photon such that |s〉
changes into |v〉 and |a〉 changes into |h〉, or vice versa. For practical realisations,
electrically controllable Pockels-cells should be used.

A possible experimental setup for the transmission of “−” bits is sketched in
Figure 2. To deflect vertically polarised photons to one detector and horizontally
polarised photons to another detector, Bob uses polarising beam splitters (PBS)
whilst he changes the polarisation of a photon, like Alice, with the help of a HWP.
In which state Bob finds a photon in case of a “click” is indicated in Figure 2
by the two letters written next to the corresponding detector. At Bob’s end, a
beam splitter (BS) reroutes the photon either to a measurement of the B or the
C basis.

Instead of using a “left” and a “right” fiber and two polarisation degrees of
freedom, Alice and Bob could also utilise other parameters to create single photon
two-qubit states. The two fibers can, for instance, be replaced by one fiber and
Alice and Bob agree for each photon about two small time windows around a
time tL and a time tR. If Alice sends the photon around tL it means that she
prepared it in the state |L〉, otherwise, if she sends the photon around tR, she
prepared it in |R〉. Alternatively, two degrees of freedom could also be obtained
by exploiting different photon frequencies.

The scheme shown in Figure 2 looks as if it were a combination of two BB84
schemes. But in fact it is not. The scheme is more efficient than what one would
get by just combining two BB84 schemes naively. The reason is that the results
are interpreted in a completely different way (see Section 3 and Table 1). In
contrast to BB84, each and every photon sent by Alice transmits one bit and the
scheme is therefore deterministic. In addition, the bit in transmission is concealed
in such a way that an eavesdropper cannot gain any information by performing
measurements on the photon state (which cannot be achieved in BB84), and Alice
and Bob can communicate directly and confidentially.

6. Conclusions

In summary, we discussed a new scheme for direct and confidential communi-
cation between Alice and Bob in detail. While both parties exchange single bits
(carried by photons) as in any other quantum cryptography scheme, the purpose
of the bit transmission is completely different. Instead of establishing a shared
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secret key, which can be used later to encrypt a message, Alice can send her
message directly. What requirements such schemes have to meet in general has
been discussed in Section 1.

To encrypt her message, Alice creates a random sequence of ciphers – the
cryptographic key. To transmit a “+” bit she prepares the photon in the state
|n+〉, to transmit a “−” bit she prepares it in |n−〉, whereat n always coincides
with the next cipher of her key. After Alice and Bob verified that no eavesdropper
was listening in, Alice can publicise her key without hesitation. She knows that
Bob will be the only one who can decode her message, because he is the only one
who received it. In this sense, the scheme realises quantum cryptography with a
publicly known key.

In Section 2 and 3 we presented a concrete protocol based on single-photon
two-qubit states and discussed its security against intercept-resent eavesdropping
strategies. As in other schemes, security arises from the fact that the presence of
an eavesdropper leads to a significantly increased error rate in the bit transmis-
sion. This rate can be determined by comparing some control bits with which
Alice had interspersed the message before. Only when the measurement out-
comes of Bob’s side match with the states in which Alice prepared the control
qubits, both parties should trust in the security of their communication and Alice
can announce her cryptographic key.

By choosing the parameters that characterise the scheme suitably, Alice and
Bob can assure that the error rate Evan introduces in the bit transmission is
always above 16.67 %. Nevertheless, in Section 5 we discussed possibilities for
the experimental realisation of another scheme, one in which the error rate can
be as low as 12.5 %. The advantage of this scheme is that its implementation is
much simpler, although implementing the optimal scheme is possible too.
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Figure 1: Error rate introduced by Evan into the bit transmission between Alice
and Bob for the parameters chosen (a) as in Eq. (7), where it is always above
16.67 %, and (b) for the parameters as in Eq. (8) where it is always above 12.5 %.
Each point corresponds to a different intercept-resend strategy whereat Evan’s
measurement basis and the state in which he forwards the photon to Bob have
been acquired completely at random.
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Figure 2: A feasible experimental setup for the transmission of a “−” bit with
single-photon two-qubit states. For an explanation of the optical elements see
text. To transmit “+” bits, the HWPs have to be turned around so that they do
not change the polarisation of the outgoing photon. Otherwise, the experimental
setup is exactly the same.
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ERRATUM

A. Beige, B.-G. Englert, Ch. Kurtsiefer and H. Weinfurter, Secure Com-
munication with a Publicly Known Key, Acta Phys. Pol. A 101, 357 (2002).

The particular communication scheme that is specified by the parameter choice
of Eqs. (8) and described in Fig. 2 is not secure. It falls prey to an eavesdropping
attack in which a quantum nondemolition (QND) measurement is performed
that distinguishes L from R. An intermediate measurement of this kind does not
produce error’s at Bob’s end and would, therefore, not be noticed. But it gives
Evan just enough information to infer correctly the value of every bit after Alice
publishes her key sequence.

The main conclusions of the paper are not affected by this flaw. The generic
communication scheme, in which all three ai parameters of Eq. (5) are nonzero,
is secure, because there are no nontrivial QND measurements unless one of the
ai’s vanishes. Any attempt by Evan to acquire the value of every bit sent will un-
avoidably give rise to errors, with the total error rate correctly stated in Eq. (14).

We are greatly indebted to Daniel Collins for detecting the flaw and telling
us about it.
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